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Abstract 59 

Background: Higher body-mass index (BMI) and waist-to-hip ratio (WHR) increase the risk of 60 

cardiovascular disease, but the extent to which this is mediated by blood pressure, diabetes, lipid 61 

traits and smoking is not fully understood.  62 

Methods: Using consortia and UK Biobank genetic association summary data from 140,595 to 63 

898,130 participants predominantly of European ancestry, MR mediation analysis was performed to 64 

investigate the degree to which genetically predicted systolic blood pressure (SBP), diabetes, lipid 65 

traits and smoking mediated an effect of genetically predicted BMI and WHR on risk of coronary 66 

artery disease (CAD), peripheral artery disease (PAD) and stroke. 67 

Results: The 49% (95% confidence interval [CI] 39%-60%) increased risk of CAD conferred per 1-68 

standard deviation increase in genetically predicted BMI attenuated to 34% (95% CI 24%-45%) after 69 

adjusting for genetically predicted SBP, to 27% (95% CI 17%-37%) after adjusting for genetically 70 

predicted diabetes, to 47% (95% CI 36%-59%) after adjusting for genetically predicted lipids, and to 71 

46% (95% CI 34%-58%) after adjusting for genetically predicted smoking. Adjusting for all the 72 

mediators together, the increased risk attenuated to 14% (95% CI 4%-26%). A similar pattern of 73 

attenuation was observed when considering genetically predicted WHR as the exposure, and PAD or 74 

stroke as the outcomes. 75 

Conclusions: Measures to reduce obesity will lower risk of cardiovascular disease primarily by 76 

impacting on downstream metabolic risk factors, particularly diabetes and hypertension. Reduction 77 

of obesity prevalence alongside control and management of its mediators is likely to be most 78 

effective for minimizing the burden of obesity. 79 
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Background 80 

Cardiovascular disease (CVD) is the leading cause of death and disability worldwide(1). Obesity can 81 

contribute towards CVD risk through effects on hyperglycaemia, hypertension, dyslipidaemia, and 82 

smoking behaviour(2-5). The global prevalence of obesity has more than tripled in the last 40 years, 83 

with an even greater rise in incidence amongst children(6). It is estimated that by 2030, 84 

approximately half of the US population will be obese(7). There are treatments available to 85 

effectively manage the downstream mediators through which obesity causes CVD(8-11). 86 

Understanding of such pathways is therefore paramount to reducing cardiovascular risk. 87 

Obesity can be measured by various means, and is often defined as a body-mass index (BMI) of 88 

greater than 30kg/m2 (12). However, BMI is a not a direct measure of adiposity, and is also 89 

correlated with fat-free mass(12). Assessment of obesity using waist-to-hip ratio (WHR) is less 90 

subject to influence from height and muscle mass, and is associated with cardiovascular risk in 91 

individuals with a normal BMI(13, 14). Both BMI and WHR are easy to measure clinically, without any 92 

requirement for radiological investigation. Conventional observational studies have shown that the 93 

relationship between obesity measures such as BMI and WHR with CVD is attenuated when 94 

adjustment is made for cardiometabolic risk factors such as blood pressure, lipid traits or measures 95 

of glycaemia(15). This has allowed for estimation of the proportion of the effect of obesity that is 96 

mediated through these intermediates(15). However, such analysis is vulnerable to bias from 97 

confounding and measurement error, both of which can result in underestimation of the proportion 98 

of effect mediated(16, 17). The Mendelian randomization (MR) approach uses genetic variants as 99 

instruments for studying the effect of an exposure on an outcome, and has now been extended to 100 

perform mediation analyses(16, 18). The use of randomly allocated genetic variants in this paradigm 101 

means that the estimates generated are less vulnerable to confounding from environmental factors, 102 

with consideration of their lifelong effects reducing bias from measurement error(16).  103 
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The increasing availability of large-scale genome-wide association study (GWAS) data has greatly 104 

facilitated MR analyses considering cardiovascular risk factors and outcomes. In this study, we aimed 105 

to use such data within the MR framework to investigate the role of blood pressure, diabetes, 106 

fasting glucose, lipid traits and smoking in mediating the effect of BMI and WHR respectively on 107 

coronary artery disease (CAD), peripheral arterial disease (PAD) and stroke risk.  108 

 109 

Methods 110 

Ethical approval, data availability and reporting 111 

The data used in this work are publicly available and the studies from which they were obtained are 112 

cited. All these studies obtained relevant participant consent and ethical approval. The results from 113 

the analyses performed in this work are presented in the main manuscript or its supplementary files. 114 

This paper has been reported based on recommendations by the STROBE-MR Guidelines (Research 115 

Checklist)(19). The study protocol and details were not pre-registered.  116 

Data sources 117 

Genetic association estimates for BMI and WHR were obtained from the GIANT Consortium GWAS 118 

meta-analysis of 806 834 and 697 734 European-ancestry individuals respectively(20). Genetic 119 

association estimates for SBP were obtained from a GWAS of 318 417 White British individuals in the 120 

UK Biobank, with correction made for any self-reported anti-hypertensive medication use by adding 121 

10mmHg to the mean SBP measured from two automated recordings that were taken two minutes 122 

apart at baseline assessment(21). Genetic association estimates for lifetime smoking (referred to 123 

hereon as smoking) were obtained from a GWAS of 462 690 European-ancestry individuals in the UK 124 

Biobank(22). A lifetime measure of smoking was created based on self-reported age at initiation, age 125 

at cessation and cigarettes smoked per day(22). Genetic association estimates for liability to 126 

diabetes came from the DIAGRAM Consortium GWAS meta-analysis of 74 124 cases and 824 006 127 

controls, all of European ancestry(23). Genetic association estimates for plasma fasting glucose were 128 
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obtained by using PLINK software to carry out a meta-analysis of MAGIC Consortium GWAS 129 

summary data from separate analyses of 67 506 men and 73 089 women who were not diabetic(24, 130 

25). Genetic association estimates for fasting serum low-density lipoprotein cholesterol (LDL-C), 131 

high-density lipoprotein cholesterol (HDL-C) and triglycerides were obtained from the Global Lipids 132 

Genetic Consortium GWAS of 188,577 European-ancestry individuals(26). Genetic association 133 

estimates for CAD were obtained from the CARDIoGRAMplusC4D Consortium 1000G multi-ethnic 134 

GWAS (77% European-ancestry) of 60 801 cases and 123 504 controls(27). Genetic association 135 

estimates for PAD were obtained from the Million Veterans Program multi-ethnic (72% European-136 

ancestry) GWAS of 31 307 cases and 211 753 controls(28). Genetic association estimates for stroke 137 

were obtained from the MEGASTROKE multi-ethnic (86% European-ancestry) GWAS of 67 162 cases 138 

(of any stroke) and 454 450 controls(29). Population characteristics and specific trait definitions 139 

relating to all these summary genetic association estimates are available in their original 140 

publications. For the analyses performed in this current work, genetic variants from different studies 141 

were aligned by their effect alleles and no exclusions were made for palindromic variants. Only 142 

variants for which genetic association estimates were available for all the traits being investigated in 143 

any given analysis were considered, and proxies were not used. 144 

Instrument selection 145 

To estimate the total effect of BMI and WHR respectively on the considered cardiovascular 146 

outcomes, instruments were selected as single-nucleotide polymorphisms (SNPs) that associated 147 

with BMI or WHR at genome-wide significance (P<5x10
-8

) and were in pair-wise linkage 148 

disequilibrium (LD) r
2
<0.001. To select instruments for mediation analysis, all SNPs related to the 149 

considered exposure (BMI or WHR) or mediators at genome-wide significance were pooled and 150 

clumped to pairwise LD r
2
<0.001 based on the lowest P-value for association with any trait. All 151 

clumping was performed using the TwoSampleMR package in R(30). 152 
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Total effects 153 

Random-effects inverse-variance weighted (IVW) MR was used as the main analysis for estimating 154 

the total effects of genetically predicted BMI and genetically predicted WHR respectively on each of 155 

the considered CVD outcomes(31). Contamination-mixture method and weighted median MR were 156 

used in sensitivity analyses to explore the robustness of the findings to potential pleiotropic effects 157 

of the variants(32, 33). The contamination-mixture model makes the assumption that MR estimates 158 

from valid instruments follow a normal distribution that centres on the true causal effect estimate, 159 

while those calculated from invalid instrument variants follow a normal distribution centred on the 160 

null(33). This allows for a likelihood function to be specified and maximized when allocating each 161 

variant to one of the two mixture distributions(33). The weighted median approach orders the MR 162 

estimates from individual variants by their magnitude weighted for their precision and selects the 163 

median as the overall MR estimate, calculating standard error by bootstrapping(32). The 164 

MendelianRandomization package in R was used for performing the IVW, contamination-mixture 165 

and weighted median MR analyses(34). 166 

Mediation analysis 167 

To estimate the direct effect of genetically predicted BMI and genetically predicted WHR on each of 168 

the three considered CVD outcomes that was not being mediated by the investigated intermediary 169 

risk factors, summary data multivariable MR was performed(35-37). Specifically, the variant-170 

outcome genetic association estimates were regressed on the variant-exposure and variant-171 

mediator estimates, weighted for the precision of the variant-outcome association, and with the 172 

intercept fixed to zero(37). Using this approach, adjustment was made for genetically predicted SBP, 173 

diabetes, smoking and lipid traits (LDL-C, HDL-C and triglycerides together) in turn, and finally 174 

including all mediators together in a joint model. In a sensitivity analysis, genetically predicted 175 

diabetes was excluded from this joint model to remove any bias that might be introduced because of 176 

its binary nature(38). For analyses considering genetically predicted fasting glucose in non-diabetics 177 
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instead of genetically predicted diabetes, the corresponding genetic association data were 178 

substituted.  179 

Multivariable MR mediation analysis was performed to estimate the proportion of the effect of BMI 180 

and WHR respectively on CAD, PAD and stroke that was mediated through each of  the considered 181 

risk factors, and also all of them together(16). Specifically, the direct effect of genetically predicted 182 

BMI and genetically predicted WHR respectively was divided by their total effect and subtracted 183 

from 1, with standard errors estimated using the propagation of error method(16, 18). 184 

Independent effects of genetically predicted BMI and WHR  185 

The direct effects of genetically predicted BMI and genetically predicted WHR on the considered 186 

CVD outcomes that are not mediated through each other were measured by including only these 187 

two traits together as exposures in the summary data multivariable MR model described above. 188 

 189 

Results 190 

Total effects 191 

Considering total effects, there was consistent evidence across the IVW, contamination-mixture and 192 

weighted median MR methods that both higher genetically predicted BMI and higher genetically 193 

predicted WHR increased CAD, PAD and stroke risk (Figure 1). In the main IVW MR analysis, the odds 194 

ratio (OR) per 1-standard deviation (SD) increase in genetically predicted BMI for CAD risk was 1.49 195 

(95% confidence interval [CI] 1.39-1.60), for PAD risk was 1.70 (95% CI 1.58-1.82), and for stroke risk 196 

was 1.22 (95% CI 1.15-1.29). For a 1-SD increase in genetically predicted WHR, this was 1.54 (95% CI 197 

1.38-1.71) for CAD risk, 1.55 (95% CI 1.40-1.71) for PAD risk, and 1.30 (95% CI 1.21-1.40) for stroke 198 

risk. 199 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.15.20154096doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.15.20154096
http://creativecommons.org/licenses/by/4.0/


10 

 

Mediation analysis 200 

There was attenuation in the effect of genetically predicted BMI and genetically predicted WHR on 201 

the three CVD outcomes after adjusting for genetically predicted SBP, diabetes, lipid traits (LDL-C, 202 

HDL-C and triglycerides together) and smoking, either separately or in the same joint model (Figure 203 

2). The 49% (95% CI 39%-60%) increased risk of CAD conferred per 1-SD increase in genetically 204 

predicted BMI attenuated to 34% (95% CI 24%-45%) after adjusting for genetically predicted SBP, to 205 

27% (95% CI 17%-37%) after adjusting for genetically predicted diabetes, to 47% (95% CI 36%-59%) 206 

after adjusting for genetically predicted lipids, and to 46% (95% CI 34%-58%) after adjusting for 207 

genetically predicted smoking. Adjusting for all the mediators together in the same model, the 208 

attenuation was to 14% (95% CI 4% to 26%).  209 

The percentage attenuation in the total effects of genetically predicted BMI and WHR respectively 210 

on the three CVD outcomes after adjusting for the mediators is depicted in Supplementary Figure 1. 211 

For the effect of genetically predicted BMI on CAD risk, 27% (95% CI 3%-50%) was mediated by 212 

genetically predicted SBP, 41% (95% 18%-63%) was mediated by genetically predicted diabetes, 3% 213 

(-23%-29%) was mediated by  genetically predicted lipids, and 6% (95% CI -20%-32%) was mediated 214 

by genetically predicted smoking. All the mediators together accounted for 66% (95% CI 42%-91%) of 215 

the total effect of genetically predicted BMI on CAD risk.  216 

A joint model including all considered mediators except genetically predicted diabetes was also 217 

constructed (Supplementary Figure 2). Adjusting together for all the mediators except genetically 218 

predicted diabetes, the effect of genetically predicted BMI on CAD risk attenuated from 49% (95% CI 219 

39%-60%) to 27% (95% CI 16% to 40%).  220 

There was little change in the association of either genetically predicted BMI or genetically predicted 221 

WHR with risk of the three CVD outcomes after adjusting for genetically predicted fasting glucose in 222 

non-diabetic individuals (Figure 3). 223 
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Independent effects of genetically predicted BMI and WHR  224 

Both genetically predicted BMI and genetically predicted WHR had direct effects on CAD, PAD and 225 

stroke after mutual adjustment (Figure 4). The increased CAD risk attributed to a 1-SD higher 226 

genetically predicted BMI attenuated from 49% (95% CI 39%-60%) to 32% (95% CI 20%-45%) after 227 

adjusting for genetically predicted WHR, and the increased CAD risk attributed to a 1-SD higher 228 

genetically predicted WHR attenuated from 54% (95% CI 38%-71%) to 33% (95% CI 18%-50%) after 229 

adjusting for genetically predicted BMI. 230 

 231 

Discussion 232 

This study uses large-scale genetic association data within the MR paradigm to investigate the role of 233 

SBP, diabetes, lipid traits and smoking in mediating the effect of BMI and WHR on CAD, PAD and 234 

stroke risk. The results support the idea that the majority of the effects of obesity on CVD are 235 

mediated through these risk factors, with diabetes and blood pressure being the most notable and 236 

accounting for approximately one-third and one-quarter of the effect respectively. In contrast, the 237 

analysis of genetically predicted fasting glucose in non-diabetic individuals did not provide any 238 

evidence to support its role in mediating the effect of obesity on CVD risk.  239 

The sum of the estimated mediating effects of the various risk factors considered individually was 240 

comparable to their total mediating effect estimated when considering them all together in the 241 

same model, consistent with them acting through distinct mechanisms. Including genetically 242 

predicted BMI and genetically predicted WHR in the same model produced evidence consistent with 243 

these traits having direct effects on CVD risk independently of each other. It follows that rather than 244 

analysing BMI or WHR alone, they should be considered together as they capture different aspects 245 

of adiposity. 246 

Our findings have important clinical and public health implications. Behavioural interventions to 247 

reduce obesity can have inadequate long term effects(39), pharmacological treatments may be 248 
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limited by unfavourable adverse effect profiles(40), and surgical procedures are often reserved for 249 

only severe cases(41). This work supports the concept that the majority of the cardiovascular 250 

consequences of obesity may be managed by effectively controlling its downstream mediators, most 251 

notably diabetes and raised blood pressure, for which effective pharmacological interventions are 252 

available. This has relevance for the more than 640 million individuals worldwide currently living 253 

with obesity(42), and the many more forecasted to become obese in coming years(43). Such holistic 254 

consideration of obesity together with its mediators could contribute to a shift from the single-255 

disease focus of health systems towards prioritizing multi-morbidity and promoting individual and 256 

societal wellness(44). Our analyses were also suggestive of some possible residual effect of BMI and 257 

WHR on CVD risk even after adjusting for all the considered mediating risk factors, consistent with 258 

metabolically healthy obesity still conferring increased CVD risk(45). Taken together, these results 259 

suggest that unless the growing obesity epidemic is effectively tackled, we risk undoing the large 260 

reductions in CVD mortality achieved over past decades(1). Population-based approaches that 261 

decrease obesity by addressing key upstream drivers such as poor diet and physical inactivity have 262 

substantial potential for impact and are also effective for reducing health inequalities(46, 47). 263 

The results of our current study can be contrasted to those from a large-scale observational analysis 264 

of 1.8 million people across 97 studies(15, 48). This previous work estimated that 46% (95% CI 42%-265 

50%) of the excess risk conferred by raised BMI on CAD and 76% (95% CI 65%-91%) on stroke were 266 

mediated by effects on blood pressure, glucose levels and lipid traits, with blood pressure being the 267 

most important and mediation for stroke being greatest(15). However, the approach and data used 268 

in our current study offers a number of possible improvements. Our work includes a greater 269 

repertoire of risk factors and CVD outcomes than have been considered together previously(15, 49), 270 

in particular drawing on recently available GWAS summary data to study smoking and PAD(22, 28). 271 

MR analysis uses randomly allocated genetic variants that represent lifelong cumulative liability to 272 

the traits for which they serve as instruments and can therefore help overcome the confounding and 273 

measurement error that typically bias conventional observational studies(16). Consistent with this, 274 
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our MR results indicate that these risk factors mediate a greater proportion of the effect of obesity 275 

than suggested by previous conventional observational analyses
(15)

.  276 

Also of relevance here, we considered genetic liability to diabetes and genetically predicted fasting 277 

glucose in non-diabetic individuals as separate risk factors. Our findings support the concept that 278 

obesity traits confer an increased risk of CVD specifically through liability to diabetes, rather than 279 

variation in fasting glucose levels within the normal physiological range. This is important because 280 

fasting glucose may have a non-linear association with CVD risk(50), only having detrimental effects 281 

beyond a certain point(51).  282 

Our current study also has limitations. The genetic association data used in this work are drawn from 283 

predominantly European populations, and should therefore be interpreted with caution when 284 

extrapolating to other ethnic groups. Diabetes is a binary outcome, and as such our consideration of 285 

genetically predicted diabetes could introduce bias into the mediation analysis because not all 286 

individuals possessing such genetic liability develop diabetes-related traits(38). SBP was used as a 287 

proxy for studying the effects of blood pressure more generally. Given the high degree of phenotypic 288 

and genetic correlation between blood pressure traits(52), this would seem unlikely to affect the 289 

conclusions drawn. A theoretical weakness of the MR approach relates to bias from pleiotropic 290 

effects of the genetic variants incorporated as instruments for the traits under study, whereby they 291 

may directly affect the outcome through pathways independent of the exposure or mediators being 292 

considered. Although such bias cannot be entirely excluded, it is reassuring that we obtained similar 293 

MR estimates for the total effect of BMI and WHR respectively on the three CVD outcomes when 294 

performing the IVW, contamination-mixture and weighted median MR methods that each make 295 

different assumptions concerning the presence of pleiotropic variants(53). Finally, there is currently 296 

no available method for assessing instrument strength within the two-sample multivariable MR 297 

setting, and we could therefore not assess potential vulnerability to weak instrument bias(35).  298 
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In conclusion, this work using the MR framework suggests that the majority of the effects of obesity 299 

on CVD risk are mediated through metabolic risk factors, most notably diabetes and blood pressure. 300 

Comprehensive public health measures that target the reduction of obesity prevalence alongside 301 

control and management of its downstream mediators are likely to be most effective for minimizing 302 

the burden of obesity on individuals and health systems alike.   303 

 304 
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 486 

Figure legends 487 

Figure 1. Total effects of genetically predicted body mass index (BMI) and genetically predicted 488 

waist-to-hip ratio (WHR) on coronary artery disease (CAD), peripheral artery disease (PAD) and 489 

stroke. Inverse-variance weighted (IVW), contamination-mixture method (Con-Mix) and weighted 490 

median (Median) represent distinct Mendelian randomization approaches that differ in their 491 

requisite assumptions. CI: confidence interval; IVW: inverse-variance weighted; OR: odds ratio; SD: 492 

standard deviation. 493 

Figure 2. Direct effects of genetically predicted body mass index (BMI) and genetically predicted 494 

waist-to-hip ratio (WHR) on coronary artery disease (CAD), peripheral artery disease (PAD) and 495 

stroke, estimated after adjusting for genetic liability to mediators separately and together in the 496 

same model. The y-axis details the genetically predicted mediator(s) for which adjusted was made. 497 

Blood pressure relates to systolic blood pressure. Lipids relates to serum low-density lipoprotein 498 

cholesterol, high-density lipoprotein cholesterol and triglycerides considered together in one model. 499 

CI: confidence interval; OR: odds ratio; SD: standard deviation. 500 
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Figure 3. Direct effects of body mass index (BMI) and waist-to-hip ratio (WHR) on coronary artery 501 

disease (CAD), peripheral artery disease (PAD) and stroke, estimated after no adjustment and 502 

after adjustment for genetically predicted fasting glucose in non-diabetics. CI: confidence interval; 503 

OR: odds ratio; SD: standard deviation. 504 

Figure 4. Direct effects of genetically predicted body mass index (BMI) and genetically predicted 505 

waist-to-hip ratio (WHR) on coronary artery disease (CAD), peripheral artery disease (PAD) and 506 

stroke, estimated after adjusting for each other. CI: confidence interval; OR: odds ratio; SD: 507 

standard deviation.  508 
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