Original Article
The utility of Resting Pulse Rate in Defining High Blood Pressure among Adolescents in Mbarara Municipality, Uganda

 Mivule Abdul Kinene ${ }^{4}$, Richard Migisha ${ }^{2}$
${ }^{1}$ Department of Physiology, School of Medicine, King Ceasor University, Kampala, Uganda
${ }^{2}$ Department of Physiology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara Uganda
${ }^{3}$ Department of Biochemistry, School of Medicine, King Ceasor University, Kampala, Uganda
${ }^{4}$ Department of Human Anatomy, School of Medicine, King Ceasor University, Kampala, Uganda
Corresponding author; Godfrey Katamba, King Ceasor University, Kampala Uganda; email; cgmkats13@gmail.com

Abstract

High resting pulse rate (RPR) is associated with adverse cardiovascular events, and could be used as a marker of cardiovascular health. We determined the correlation between RPR and blood pressure (BP); and its accuracy in defining high blood pressure among adolescents attending secondary schools in Mbarara municipality, south-western Uganda. We conducted a cross-sectional study among secondary school adolescents aged 12-19 years in Mbarara municipality, Uganda. We captured demographic characteristics using a structured questionnaire; and measured anthropometric indices and BP. We performed a linear regression analysis to determine the relationship between RPR and blood pressure and plotted receiver operating characteristics curves (ROC) to assess the accuracy of RPR in defining high BP. We enrolled 616 adolescents with a mean age of 15.6 ± 2.0 years and 65.6% (404/616) were female. The RPR was significantly correlated with diastolic blood pressure (DBP) in both boys (Beta $=0.22$ [95% CI: $0.10 ; 0.36]$), $\mathrm{p}<0.001$ and girls (Beta $=0.51$ [$95 \% \mathrm{CI}: 0.43 ; 0.60]$), $\mathrm{p}<0.001$. RPR was significantly correlated with systolic blood pressure (SBP) only in the girls (Beta $=0.23[95 \% \mathrm{CI}$: $0.15 ; 0.30]$), $\mathrm{p}<0.001$. The optimal threshold for RPR in defining prehypertension was $\mathrm{RPR} \geq 76 \mathrm{bpm}$ with an area under the curve (AUC) of $0.653[95 \% \mathrm{CI}: 0.583-0.722]$, the sensitivity of 0.737 and specificity of 0.577 . In defining hypertension, the optimal threshold was RPR \geq 79 bpm at a sensitivity of 0.737 and specificity of 0.719 , with an AUC of $0.728[95 \% \mathrm{CI}$: $0.624-$ $0.831]$. Resting pulse rate was positively correlated with BP and was more accurate in defining hypertension compared to prehypertension in the study.

Introduction

Hypertension (HTN) was previously considered a rare condition among adolescents ${ }^{1}$. In contrast, it has become more common and is increasing unexpectedly in this age group ${ }^{2,3}$. The prevalence of HTN among adolescents has been reported in several countries and varies from 3.6% to $30 \%^{3-11}$. High blood pressure (BP) in young subjects is associated with accelerated vascular aging and increased risk for adult HTN and cardiovascular disease ${ }^{12,13}$. The diagnostic algorithm for HTN in children and adolescents does not rely on single BP cut-offs as is the case for adults. This is believed to be the cause of its under-diagnosis in young populations, because the normal and abnormal BP values vary with sex, height, and age, making it difficult for clinicians to remember ${ }^{14}$. Furthermore, the algorithm involves repeated BP measurements and follow up visits ${ }^{15,16}$. This is laborious and may not be suitable for resourcelimited settings, with a low clinician to patient ratio. Thus, easier to use diagnostic approaches are needed in resourcelimited settings, to facilitate the identification of adolescents with high BP and those who need interventions to prevent or control HTN to improve long-term outcomes.
Resting pulse rate (RPR) has recently attracted attention as an important predictor of high $\mathrm{BP}^{17,18}$ and a risk factor for cardiovascular morbidity and mortality in general populations ${ }^{19-22}$. Additionally, various studies among children and adolescents, have reported a significant correlation of elevated RPR with both systolic (SBP) and diastolic blood pressure (DBP) ${ }^{23-26}$, highlighting its possible role in screening for high BP. Hypertension results from alterations in the overall hemodynamic load on the cardiovascular system ${ }^{27}$, which is an interplay between the cardiac output (CO) and total peripheral vascular resistance (TPR ${ }^{28}$. The CO is affected by changes in the heart rate, which in turn depends on the autonomic tone of the cardiovascular system ${ }^{29}$. The relationship between RPR and BP, among adolescents, has not been well studied in sub-Saharan Africa. RPR is considered a simple and cheap measurement, which does not necessitate the use of special instruments and patients can conveniently measure it by themselves.
In this cross-sectional study, we aimed to assess the utility of RPR in defining high blood pressure (SBP and DBP) among adolescents from selected secondary schools in Mbarara municipality. South-western Uganda.

Methods

Study sample

The participants were part of a cross-sectional study ((IRB No. 18/03-18), which involved three secondary schools in Mbarara municipality, southwestern Uganda between May and November 2018. The sample size was estimated using the Kish Leslie method of $1965{ }^{30}$ assuming a prevalence of hypertension of 10.7% among secondary school adolescents ${ }^{31}$, and 95% confidence interval within a 3% error margin. The final sample size was adjusted for an anticipated participant non-response rate of 10%; thus 449 participants were required. In this analysis, a total sample of 616 adolescents aged 12-19 years was used.

Socio-demographic information

The age of the participant was self-reported and was the number of complete years since birth while the sex of the participant was a binary variable (male or female) and based on the sexual characteristics as was observed by the researcher.

Determination of anthropometric indices

The methods used to determine the height, weight, neck circumference, waist circumference, and their respective ratios, have been described in detail elsewhere ${ }^{32}$. Briefly, height was measured using a wall mount height board in centimeters with the participant having no shoes ${ }^{6}$. A standard Seca scale was used to determine the weight to the nearest $0.5 \mathrm{~kg}{ }^{33}$. Body mass index (BMI) was calculated as the ratio of weight in kilograms to height in square meters. Waist circumference (WC) was measured at the midpoint between the lowest border of the rib cage and the top of the lateral border of the iliac crest while hip circumference was measured at the greatest horizontal circumference below the iliac crest at the level of the greater trochanter using a non-elastic measuring tape (Seca 203 Ergonomic circumference measuring tape, Hamburg, Germany). Waist to hip ratio (WHR) was the ratio of WC to HC ${ }^{34}$ while waist to height ratio (WHtR) was the ratio of WC divided by height ${ }^{35}$. The Neck circumference (NC) assessed as a surrogate measure for upper body adipose tissue distribution. It was measured at the level of the laryngeal prominence using an inelastic flexible measuring tape (Seca 203 Ergonomic circumference measuring tape, Hamburg, Germany), with the subjects in the standing position and the head held erect and eyes facing forward to the nearest $0.1 \mathrm{~cm}{ }^{36}$.

Measurement of blood pressure and resting pulse rate

Blood pressure and resting pulse rate were measured using a digital blood pressure machine (Scian SP-582 Digital Blood Pressure Monitor) as previously described by Katamba et al ${ }^{32}$. Each participant was allowed to seat on a chair with back supported, feet on the floor, arm supported and cubital fossa at heart level after 5 minutes of sitting rest without talking ${ }^{37,38}$. The cuff of appropriate size (ranged from $12 \times 22 \mathrm{~cm}$ to $16 \times 30 \mathrm{~cm}$) was placed at the bare upper arm, one inch above the bend of the participant's elbow. It was ensured that the tubing fell over the front center of the arm so that the sensor was correctly placed. The end of the cuff was pulled so that it was evenly tight around the arm. The cuff was placed tight enough so that only two fingertips could be slipped under the top edge of the cuff. It was made sure that the skin did not pinch when the cuff inflated. The participant was asked to remain and quiet as the machine begins measuring. The cuff inflated automatically after placing the start button, and then slowly deflated so that the machine took the measurement. When the reading was complete, the monitor displayed the BP and pulse rate on the digital panel ${ }^{39}$. Three readings were recorded per participant at 5 minutes interval. The average of the 2 nd and 3rd SBP and DBP measurements was used as the subject's BP respectively ${ }^{38}$. Those adolescents who had elevated BP in the first session were identified. A re-measurement, using the same procedure was done after one week to confirm that BP is truly and constantly elevated.

Data management and analysis

Data were analyzed using the Stata software version 13.0 (College Station, Texas, USA). Continuous variables such were described as mean \pm SD while categorical variables such as sex were described as percentages and frequencies. The outcome variable was BP (both SBP and DBP). Pearson correlation analysis was done to determine the strength of the relationship between BP, RPR, and anthropometric indices. The Pearson correlation coefficients and their 95% confidence intervals were reported. Multivariate linear regression analysis was used to control for anthropometric indices in the relationship between RPR and BPs. A p-value of less than 0.05 was considered for assessing the statistical significance and 95% CI of the changes in BP values associated with a unit change in RPR was calculated. Receiver operating characteristic (ROC) curve analyses were performed to determine the accuracy of RPR in defining high BP (prehypertension and hypertension) among adolescents and identify optimal thresholds of RPR for identifying high arterial BP. Optimal thresholds were selected as the values corresponding to the maximum of Youden's index on the ROC curve. Prehypertension and hypertension were then redefined by the determined optimal thresholds of RPR. These were compared with the gold standard blood pressure cut-offs in adolescents as stated by the Joint National Committee on hypertension guidelines ${ }^{40}$. The sensitivities and specificities and their respective 95% confidence intervals (CI) were obtained to assess the performance of the determined RPR optimal thresholds. All analyses were stratified by sex because of the physiological difference in resting pulse rates between the two groups.

Results

Characteristics of study participants by body mass index
A sample of 616 had complete data and was included in the final analysis as was obtained from a larger prevalence study. These were aged between 12 to 19 years; with a mean age of 15.6 ± 2.0 years. The prevalence of hypertension was found at 3.1% while prehypertension was estimated at $7.1 \%{ }^{41}$. In table 1, the characteristics of the participants are described according to BMI categories.

Correlation analysis

RPR was positively correlated with both SBP and DBP among adolescents in our study. While the overall linear correlation coefficients of 0.22 [95% CI: $0.14-0.29$] for SBP and 0.44 [$95 \% \mathrm{CI}: 0.37-0.50$] for DBP were statistically significant, they are weak. The correlation of RPR with both SBP and DBP was still significant and positive even after controlling for the sex of participants as shown in figure 1 . Most of the indices showed positive linear relations with both DBP and SBP among the girls, except for the WHR, which exhibited a negative correlation with SBP as seen in table 2.

Linear regression analysis

A bivariate linear regression of RPR and BP (SBP and DBP) indicated a significant positive linear relationship between two variables. However, the variability (using the linear regression R squared value) in DBP, which could be explained by RPR, was only 19% compared to 5% for SBP. For the entire sample, a multivariate linear regression showed that a unit increase in RPR was significantly associated with increases in BP (SBP and DBP). The change in SBP reduced after adjusting for anthropometric indices as shown in table figures 2 a and 2 b and figures 3 a and 3 b .

Optimal thresholds of RPR for identifying prehypertension and hypertension among adolescents

The optimal threshold for identifying prehypertension was determined as $R P R \geq 76 \mathrm{bpm}$ with a sensitivity of 0.737 and specificity of 0.577 . The performance of this threshold based on the AUC was 0.652 [CI; $0.583-0.722]$ as shown in figure 4. This optimal threshold classified 58.8% of the participants correctly as prehypertensive. The positive predictive value (PPV) of 0.118 and a negative predictive value (NPV) of 0.882 . The optimal threshold for hypertension in our study was determined as RPR $\geq 79 \mathrm{bpm}$, with a sensitivity of 0.737 , the specificity of 0.719 and an AUC of $0.728[\mathrm{CI} ; 0.624-0.831]$ as shown in figure 5 . This threshold classified 71.92% of the participants correctly, with a PPV of 0.077 and NPV of 0.988 . Both sensitivity and specificity of RPR were higher for the identification of HTN than prehypertension among our study participants as shown in table 3.

Discussion

Our study demonstrated a positive linear relationship between RPR and blood pressure (SBP and DBP), even after adjusting for anthropometric indices and sex. This is in agreement with findings from several studies done among children and adolescents in Brazil ${ }^{42,43}$, Nigeria ${ }^{31}$, India ${ }^{44}$, USA ${ }^{45}$, and China ${ }^{25,46,47}$. The association between RPR and elevated BP is believed to be due to alterations in the cardiovascular autonomic tone, including a reduction in cardiac vagal stimulation, increased sympathetic activation and imbalance in the sympathovagal system ${ }^{48}$. As previously reported ${ }^{49,50}$, these alterations are associated with the recognized increased risk for HTN among individuals with elevated resting heart rates. Moreover, it has been previously postulated that the effect of elevated heart rate on cardiovascular mortality might be mediated through high BP^{26}.

Our study also found RPR to be more accurate in defining HTN as opposed to defining prehypertension among adolescents. The AUC of 0.609 to 0.854 suggested a high and robust discriminatory accuracy of RPR in identifying HTN among secondary school adolescents in our study setting. In defining prehypertension, the AUC was lower but well above 0.6 which is the recommended minimum. Besides, the much higher NPVs of the cut off for HTN indicated that our test is unlikely to omit adolescents with HTN and prehypertension. However, due to the low prevalence of HTN in our study, the PPVs of our optimal cut-offs were also low. This showed that many adolescents with both HTN and PreHTN would be misclassified as not having prehypertension or hypertension. This makes RPR not the best substitute for the commonly used age, gender and height BP percentiles for diagnosing hypertension. However, it can be used for screening adolescents at high risk of high BP in populations with a high prevalence of high BP and in resource-limited settings. The study findings are in agreement with those as reported by Tjugen et al ${ }^{51}$, which involved elderly subjects to determine whether the heart rate itself was a risk factor for the development of hypertension or just a marker of sympathetic overactivation. It was found that a high heart rate was a strong predictor of cardiovascular disease and a reliable predictor for the development of hypertension ${ }^{51}$. The study also addresses recommendations for further research on the use of RPR in defining HTN among adolescents from China ${ }^{46}$, Hong Kong ${ }^{25}$ among others. Thus, this study responds to such recommendations with fair news, showing that RPR may be useful in discriminating people who are at risk of developing elevated BP; however, it may not be used as the basis for the diagnosis of the condition. Nonetheless, our findings contribute to the existing body of evidence that proposes the use of RPR as a useful clinical measurement and as a risk factor for cardiovascular disease as was reported from the WHO Cardiovascular Disease and Alimentary Comparison Study ${ }^{23}$.

Our study has some limitations as outlined; First, the participants were not objectively evaluated secondary causes of high blood pressure and elevated heart rate. Nevertheless, we did not exclude adolescents with a self-reported history of other endocrine disorders and those with acute febrile conditions. Additionally, we assessed adolescents with high BP and elevated RPR on more than one occasion before confirming the diagnosis. Second, we conducted the study in a few selected secondary schools, because of logistical concerns. This limits the generalization of our
findings to adolescent populations outside the peri-urban secondary schools of Mbarara municipality, south-western Uganda. We thus recommend larger surveys in a wider population to corroborate our findings. Finally, we cannot assess the temporal relationship between RPR and BP in our study population, because of the cross-sectional nature of our study design. Future longitudinal studies in larger adolescent populations are needed to explore this relationship.

Conclusions

Our study demonstrated a positive linear relationship between RPR and BP among adolescents after controlling for anthropometric indices and sex. RPR was found to be more accurate in defining hypertension than in defining prehypertension in our study population.

List of abbreviations

AUC: area under the curve
BMI: Body mass index
BP: blood pressure
CI: Confidence interval
CO: cardiac output
CVD: Cardiovascular disease
DBP: diastolic blood pressure
HTN: Hypertension
NC: Neck circumference
NPV: negative predictive value
PPV: positive predictive value
PreHTN: Prehypertension
ROC: receiver operating characteristic
RPR: resting pulse rate
SBP: systolic blood pressure
TPR: total peripheral resistance
WHR: Waist hip ratio
WHtR: Waist height ratio

Declarations

Ethical approval and consent to participate

The study was approved by the research ethics committee of Mbarara University of Science and Technology (IRB No. 18/03-18) We also obtained permission to collect data from the school headteachers. The class teachers were informed about the purpose of the study and all potential participants were first sensitized about study procedures, possible benefits, and risks. Adolescents of $12-17$ years freely assented, and consent for their participation was obtained through their teachers. We obtained written informed consent from adolescents aged 18-19 years.

Consent for publication

Not applicable

Competing interests

There is no conflict of interest in this work.

Funding

This research received no external funding
Availability of data and materials

The dataset is available on request from the corresponding other

Authors' contributions

GK, RM, and DCA: Conceptualization of work \& its realization, wrote the manuscript, checked the references, compiled the literature sources, data collection, statistical analysis, and interpretation of data, and wrote the manuscript and is the corresponding author.
RN, DCA, RM: mentored the conceptualization of work \& its realization, compiling literature sources and statistical analysis, helped in data interpretation, guided manuscript writing, checked the references.
AN, AM, MAK: Assent and consent form administration, data collection, data entry, and analysis.
All authors read and approved the study manuscript

Acknowledgments

I am thankful to my family, friends and the participants from the various data collection sites.

References

1. Chiolero A, Bovet P, Paradis G. Screening for elevated blood pressure in children and adolescents: a critical appraisal. JAMA pediatrics 2013; 167(3): 266-273.
2. Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood. Circulation 2008; 117(25): 3171-3180.
3. Abdul-Jalil I. Obesity and Hypertension among Adolescents in Senior High Schools in the Asante Akim North District, Ghana. University of Ghana, 2018.
4. Gonçalves VSS, Galvão TF, Andrade KRCd, Dutra ES, Bertolin MNT, Carvalho KMBd et al. Prevalence of hypertension among adolescents: systematic review and meta-analysis. Revista de saude publica 2016; 50.
5. Leung LC, Sung RY, So H-K, Wong SN, Lee KW, Lee KP et al. Prevalence and risk factors for hypertension in Hong Kong Chinese adolescents: waist circumference predicts hypertension, exercise decreases risk. Archives of disease in childhood 2011; 96(9): 804809.
6. McNiece KL, Poffenbarger TS, Turner JL, Franco KD, Sorof JM, Portman RJJTJop. Prevalence of hypertension and pre-hypertension among adolescents. 2007; 150(6): 640644. e1.
7. Noubiap JJ, Essouma M, Bigna JJ, Jingi AM, Aminde LN, Nansseu JR. Prevalence of elevated blood pressure in children and adolescents in Africa: a systematic review and meta-analysis. The Lancet Public Health 2017; 2(8): e375-e386.
8. Nkeh-Chungag BN, Sekokotla AM, Sewani-Rusike C, Namugowa A, Iputo JE. Prevalence of hypertension and pre-hypertension in 13-17 year old adolescents living in MthathaSouth Africa: A cross-sectional study. Central European journal of public health 2015; 23(1): 59.
9. Luma GB, Spiotta RT. Hypertension in children and adolescents. Am Fam Physician 2006; 73(9): 1558-68.
10. Uwaezuoke S, Okoli C, Ubesie A, Ikefuna AJNjocp. Primary hypertension among a population of Nigerian secondary school adolescents: Prevalence and correlation with anthropometric indices: A cross-sectional study. 2016; 19(5): 649-654.
11. Emmanuel EE, Dada SA, Amu EO, Aduayi VA, Atoyebi OA, Marcus O et al. Hypertension and its correlates among in-school adolescents in Ekiti State, South-west, Nigeria. Asian Journal of Medical Sciences 2017; 8(4): 1-5.
12. Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation 2008; 117(25): 3171.
13. Harvey A, Montezano AC, Touyz RM. Vascular biology of ageing-Implications in hypertension. Journal of molecular and cellular cardiology 2015; 83: 112-121.
14. Hansen ML, Gunn PW, Kaelber DCJJ. Underdiagnosis of hypertension in children and adolescents. JAMA 2007; 298(8): 874-879.
15. Program NHBPE. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents, US Department of Health and Human Services, National Institutes of Health ..., 2005.
16. Spagnolo A, Giussani M, Ambruzzi AM, Bianchetti M, Maringhini S, Matteucci MC et al. Focus on prevention, diagnosis and treatment of hypertension in children and adolescents. Italian journal of pediatrics 2013; 39(1): 20.
17. Koskela JK, Tahvanainen A, Haring A, Tikkakoski AJ, Ilveskoski E, Viitala J et al. Association of resting heart rate with cardiovascular function: a cross-sectional study in 522 Finnish subjects. BMC cardiovascular disorders 2013; 13(1): 102.
18. Yang HI, Kim HC, Jeon JY. The association of resting heart rate with diabetes, hypertension, and metabolic syndrome in the Korean adult population: The fifth Korea National Health and Nutrition Examination Survey. Clinica Chimica Acta 2016; 455: 195200.
19. Zhang M, Han C, Wang C, Wang J, Li L, Zhang L et al. Association of resting heart rate and cardiovascular disease mortality in hypertensive and normotensive rural Chinese. Journal of cardiology 2017; 69(5): 779-784.
20. Cooney MT, Vartiainen E, Laakitainen T, Juolevi A, Dudina A, Graham IM. Elevated resting heart rate is an independent risk factor for cardiovascular disease in healthy men and women. American heart journal 2010; 159(4): 612-619. e3.
21. Jouven X, Empana J-P, Schwartz PJ, Desnos M, Courbon D, Ducimetière P. Heart-rate profile during exercise as a predictor of sudden death. New England Journal of Medicine 2005; 352(19): 1951-1958.
22. Reunanen A, Karjalainen J, Ristola P, Heliövaara M, Knekt P, Aromaa A. Heart rate and mortality. Journal of internal medicine 2000; 247(2): 231-239.
23. Liu L, Mizushima S, Ikeda K, Nara Y, Yamori Y, Group CS. Resting heart rate in relation to blood pressure: Results from the World Health Organization-Cardiovascular Disease and Alimentary Comparison Study. International journal of cardiology 2010; 145(1): 7374.
24. Christofaro DGD, Casonatto J, Vanderlei LCM, Cucato GG, Dias RMR. Relationship between Resting Heart Rate, Blood Pressure and Pulse Pressure in Adolescents. Arquivos brasileiros de cardiologia 2017; (AHEAD): 0-0.
25. Kwok S-Y, So H-K, Choi K-C, Lo AF, Li AM, Sung RY et al. Resting heart rate in children and adolescents: association with blood pressure, exercise and obesity. Archives of disease in childhood 2013: archdischild-2012-302794.
26. Fernandes RA, Júnior IFF, Codogno JS, Christofaro DGD, Monteiro HL, Lopes DMR. Resting heart rate is associated with blood pressure in male children and adolescents. The Journal of pediatrics 2011; 158(4): 634-637.
27. Ventura HO, Taler SJ, Strobeck JE. Hypertension as a hemodynamic disease: the role of impedance cardiography in diagnostic, prognostic, and therapeutic decision making. American journal of hypertension 2005; 18(S2): 26S-43S.
28. Mayet J, Hughes A. Cardiac and vascular pathophysiology in hypertension. Heart 2003; 89(9): 1104-1109.
29. Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circulation research 2015; 116(6): 976-990.
30. Kish LJAsr. Sampling organizations and groups of unequal sizes. 1965: 564-572.
31. Uwaezuoke S, Okoli C, Ubesie A, Ikefuna A. Primary hypertension among a population of Nigerian secondary school adolescents: Prevalence and correlation with anthropometric indices: A cross-sectional study. Nigerian journal of clinical practice 2016; 19(5): 649654.
32. Katamba G, Collins Agaba D, Migisha R, Namaganda A, Namayanja R, Turyakira E. Using blood pressure height index to define hypertension among secondary school adolescents in southwestern Uganda. Journal of Human Hypertension 2019.
33. Al-Isa AJEJoCN. Body mass index, overweight and obesity among Kuwaiti intermediate school adolescents aged 10-14 years. European Journal of Clinical Nutrition 2004; 58(9): 1273.
34. WHO. Waist circumference and waist-hip ratio: Report of a WHO expert consultation, Geneva, 8-11 December 2008. 2011.
35. Ashwell M, Gunn P, Gibson SJOr. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obesity reviews 2012; 13(3): 275-286.
36. Kuciene R, Dulskiene V, Medzioniene JJBp. Association of neck circumference and high blood pressure in children and adolescents: a case-control study. BMC pediatrics 2015; 15(1): 127.
37. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN et al. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation 2005; 111(5): 697-716.
38. WHO. A global brief on hypertension: silent killer, global public health crisis: World Health Day 2013. 2013.
39. O'brien E, Waeber B, Parati G, Staessen J, Myers MGJBBMJ. Blood pressure measuring devices: recommendations of the European Society of Hypertension. British Medical Journal 2001; 322(7285): 531.
40. Rodriguez-Cruz E. Pediatric Hypertension. In: Medscape, 2017.
41. Katamba G, Agaba DC, Migisha R, Namaganda A, Namayanja R, Turyakira E. Prevalence of hypertension in relation to anthropometric indices among secondary adolescents in Mbarara, Southwestern Uganda. Italian Journal of Pediatrics 2020; 46(1): 76.
42. Christofaro DGD, Casonatto J, Vanderlei LCM, Cucato GG, Dias RMR. Relationship between resting heart rate, blood pressure and pulse pressure in adolescents. Arquivos brasileiros de cardiologia 2017; 108(5): 405-410.
43. Farah BQ, Christofaro DGD, Balagopal PB, Cavalcante BR, de Barros MVG, Ritti-Dias RM. Association between resting heart rate and cardiovascular risk factors in adolescents. European journal of pediatrics 2015; 174(12): 1621-1628.
44. Chitrapu RV, Thakkallapalli ZM. Prehypertension among medical students and its association with cardiovascular risk factors. Journal of Dr. NTR University of Health Sciences 2015; 4(1): 8.
45. Yilmazel G. PREHYPERTENSION PREVALENCE AND ITS ASSOCIATION WITH NECK AND ABDOMINAL OBESITY IN DISEASE-FREE YOUNG ADULTS. ACTA MEDICA MEDITERRANEA 2017; 33(2): 329-334.
46. Hu J, Shen H, Chu G-P, Fu H, Huang F-F, Zheng Y-M et al. Association of elevated resting pulse rate with increased risk of hypertension development in children: A prospective study in Suzhou, China. Medicine 2017; 96(32).
47. Kwok S-Y, So H-K, Choi K-C, Lo AF, Li AM, Sung RY et al. Resting heart rate in children and adolescents: association with blood pressure, exercise and obesity. Archives of disease in childhood 2013; 98(4): 287-291.
48. Palatini P, Julius S. The physiological determinants and risk correlations of elevated heart rate. American journal of hypertension 1999; 12(S1): 3S-8S.
49. Ji C, Zheng X, Chen S, Dong Y, Yang G, Gao X et al. Impact of resting heart rate on the progression to hypertension in prehypertension patients. Zhonghua xin xue guan bing za zhi 2014; 42(10): 860-865.
50. Aladin AI, Al Rifai M, Rasool SH, Keteyian SJ, Brawner CA, Michos ED et al. The association of resting heart rate and incident hypertension: the Henry Ford Hospital Exercise Testing (FIT) Project. American journal of hypertension 2016; 29(2): 251-257.
51. Tjugen TB, Flaa A, Kjeldsen SE. High Heart Rate as Predictor of Essential Hypertension:: The Hyperkinetic State, Evidence of Prediction of Hypertension, and Hemodynamic Transition to Full Hypertension. Progress in cardiovascular diseases 2009; 52(1): 20-25.

Table 1: Showing characteristics of participants by BMI categories

Variable	Obese $(\mathrm{n}=21)$	Overweight $(\mathrm{n}=188)$	Normal weight $(\mathrm{n}=387)$	Underweight $(\mathrm{n}=20)$
Female	$(\mathrm{n}=18)$	$(\mathrm{n}=166)$	$(\mathrm{n}=215)$	$(\mathrm{n}=5)$
Male	$(\mathrm{n}=3)$	Mean $(S D)$	Mean $($ SD $)$	Mean $(S D)$
	Mean $(S D)$	$15.6(1.9)$	$15.5(2.0)$	$15.9(1.9)$
Age $($ years $)$	$17.7(1.6)$	$30.3(1.7)$	$29.9(2.2)$	$28.8(1.6)$
NC $(c m)$	$31.9(1.8)$	$0.76(0.07)$	$0.8(0.08)$	$0.79(0.07)$
WHR	$0.84(0.05)$	$74.9(7.0)$	$75.6(8.7)$	$76.4(13.5)$
RPR $(b p m)$	$77.9(6.8)$	$114.3(7.3)$	$112.9(8.9)$	$107(14.4)$
SBP $(m m H g)$	$117.3(14.6)$	$65.8(7.4)$	$66.4(8.1)$	$66.4(9.7)$
DBP $(m m H g)$	$75.3(7.9)$			

$\overline{S B P}=$ Systolic blood pressure, $D B P=$ Diastolic blood pressure, $N C=$ neck circumference, $W H R=$ waist height ratio, $R P R=$ resting pulse rate

Table 2: Showing the correlation between blood pressure and anthropometric indices
r (Pearson correlation) p-value
[95% confidence interval]

Systolic blood pressure		
BMI $\left(\mathrm{kgm}^{-2}\right)$	$0.10[0.02-0.18]$	0.011
$N C(\mathrm{~cm})$	$0.50[0.44-0.56]$	<0.001
$W H R$	$-0.14[-0.21-0.39]$	<0.001
$W H t R$	$0.24[0.17-0.31]$	<0.001
Diastolic blood pressure		
BMI $\left(\mathrm{kgm}^{-2}\right)$	$0.05[0.03-0.12]$	0.265
NC (cm)	$0.32[0.25-0.39]$	<0.001
$W H R$	$-0.14[-0.22-0.07]$	<0.001
$W H t R$	$0.15[0.07-0.23]$	<0.001

BMI=Body mass index, $N C=$ Neck circumference, WHR $=$ Waist hip ratio, $W H t R=$ Waist height ratio.
Table 3: Optimal thresholds of RPR for identifying PreHTN and HTN among adolescents

Category	Threshold	PPV	NPV	Se	Sp	AUC [95\% CI]
Overall						
PreHTN	$\geq 76 \mathrm{bpm}$	0.117	0.965	0.727	0.577	$0.653[0.583-0.722]$
HTN	$\geq 79 \mathrm{bpm}$	0.077	0.989	0.737	0.719	$0.728[0.624-0.831]$
Boys						
PreHTN	$\geq 75 \mathrm{bpm}$	0.167	0.975	0.722		$0.685[0.558-0.811]$
HTN	$\geq 76 \mathrm{bpm}$	0.154	0.993	0.700	0.608	$0.674[0.470-0.877]$
Girls					0.629	
PreHTN	$\geq 76 \mathrm{bpm}$	0.141	0.966			$0.623[0.515-0.731]$
HTN	$\geq 78 \mathrm{bpm}$	0.053	0.100	0.769	0.545	$0.822[0.739-0.905]$
				0.100	0.620	

PreHTN: Prehypertension, HTN: Hypertension, Se: sensitivity, Sp: Specificity, PPV: positive predictive value, NPV: Negative predictive value, $\boldsymbol{A U C}$: area under the curve.

Graphs by sex of participnant

Figure 1: Showing the Pearson correlation of resting pulse rate with blood pressure of the participants

Figure 2a: Showing linear regression of resting pulse rate with systolic blood pressure by sex of the participants

Linear prediction of SBP by sex

Figure 2b: Adjusted linear regression of resting pulse rate with systolic blood pressure by sex of the participants

Linear prediction of DBP by sex

Figure 3a: Showing linear regression of resting pulse rate with systolic blood pressure by sex of the participants

Adjusted Predictions of sex

Figure 3b: Adjusted linear regression of resting pulse rate with diastolic blood pressure by sex of the participant.

prehtn: prehypertension, rprprehtn: resting pulse rate in defining prehypertension
Figure 4: ROC curve sowing the overall prehypertension definition by resting pulse rate among adolescents

htn : hypertension, rprhtn: resting pulse rate in defining hypertension
Figure 5: ROC curve showing the overall AUC of resting pulse rate in defining hypertension among adolescents

