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Effective policy making based on ongoing COVID-19 pandemic is an urgent issue. We 
present a mathematical model describing the viral infection dynamics, which reveals two 
transmissibility parameters influenced by the management strategies in the area for 
control of the current pandemic. The parameters readily yield the peak infection rate and 10 

means for flattening the curve. Model parameters are shown to be correlated to different 
management strategies by employing machine learning enabling the comparison among 
different strategies. Treatment of population data with the model shows that restricted 
non-essential business closure, school closing and strictures on mass gathering influence the 
spread of infection. While a rational strategy for initiation of an economic reboot would 15 

call for a wider perspective of the local economics, the model can speculate on its timing 
based on the status of the infection as reflected by its potential for an unacceptably 
renewed viral onslaught. 

One Sentence Summary: We established a framework of assessing the government policies 

based on two proposed indicators from infection modeling. 20 

 

The pandemic of coronavirus (SARS-COV-2) infection has gripped the world with unparalleled 

anxiety. An alarming number of deaths have occurred within the short span of a little over four 

months! In US, more than one hundred thousand have died at the time of compiling this article 

with prospects of many more in the horizon. Despite the epidemic slowing, it appears to be 25 

abating at an unacceptable rate. There has been a scramble for controlling the spread of infection 

by people of various backgrounds including medical professionals, scientists, engineers, 

economists, the media, and political leaders. Although considerable insight has accumulated over 

efficient ways to confront this cataclysm (1,2), much more remains to be learned about the 

disease transmission, its treatment, and prevention by a suitable vaccine for the future. While the 30 

government has taken actions to relieve the economic burden of coronavirus on certain 

industries, businesses, and American workers (e.g., paycheck protection program), the looming 
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prospects of an economic breakdown of catastrophic proportions are a further complication that 

must also somehow influence the mode of confrontation of the pandemic. 

An essential prerequisite to facing the coronavirus pandemic is understanding of the 

various factors that have a potential contribution to limiting the spread. The spread of infection 

occurs in multifarious ways. Thus one that is cited the most frequently is spread of the virus 5 

through droplets from coughing and sneezing (3). Another is from unwitting contact with 

infected surfaces (4) such as glassware, boxes and so on. Intimate contact through handshakes 

and hugs are even more efficient ways to transmit infection. Each occurs through different 

scenarios that must be envisaged with their respective frequencies of occurrence for a model 

formulation.  For symptomatic disease associated with a pathogen transmissibility (marked by a 10 

basic reproduction number), different transmission routes are aligned to their implications for 

prevention; specifically, there may be four categories: symptomatic transmission, pre-

symptomatic transmission, asymptomatic transmission, and environmental transmission. Given 

recent evidence of SARS-CoV-2 transmission by mildly symptomatic and asymptomatic persons 

(5), its incubation period is about 5.1 days and about 12 days of infection from exposure to 15 

symptom development (latent period).  Therefore, unusually long term of latency period and pre-

symptomatic transmission could have important implications for transmission dynamics (6). 

Analysis of data accumulated from numerous sources have provided the general features 

of the spread in terms of when to expect the peak infection rate and what it takes to flatten this 

curve. Yet this understanding must be said to be qualitative without notable predictive features. 20 

A mathematical model is presented here of the spread of coronavirus (COVID-19) in terms of 

three parameters that control the rate of its spreading and flattening the infection rate curve when 

intervention by a vaccine is not available. Our model is concerned with a specific geographic 

domain of the United States with a given population of specified density (number per unit area) 

of which a fraction is initially infected. The infected population contributes virus within the 25 

domain which, for the present, is completely isolated from other domains. The spread of 

infection within the domain depends on the uninfected population and occurs at a rate governed 

by the extent of protective measures adopted to avoid infection from those infected. This spread 

obviously depends also on the viral population in the domain which grows by contribution from 

the infected (exhaled droplets, aerosol, contaminated surfaces, and possibly fecal-oral 30 

contamination (7)) and disappears by death/isolation/herd immunity etc. We should note that 
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while there are numerous reports on reinfection of COVID-19 (8), majority of recovered patients 

retain certain immunity against the virus. 

Our goal here is to find a suitably simple framework to produce a mathematical model 

that contains a limited number of parameters which can be readily identified from gross 

observations. Furthermore, they should relate in some way to various strategies that may be 5 

envisaged to control the spread of infection. To simulate both dynamics of viral and infected 

population, the modeling of the system in a considered geometric domain can be abstracted as its 

dimensionless form 

( )1 ,
dx

x y x
d

γ
τ

= − −          (1) 

 ,
dy

x y
d

α β
τ

= −          (2) 10 

where / ox n N= is the infected population density ( n ) normalized by the population density in 

the domain ( oN ), / oy V V= is the dimensionless viral population density, inf/t Tτ = is the time 

scaled by the average time for an individual to be infected ( infT ); And the explanations of both 

dynamic equations are elaborated in supplementary material. Three dimensionless parameters 

(see physical interpretation of α , β ,γ  in Table 1) presented in above differential equations 15 

compare the rates of different processes and have the capacity to control the spread of infection. 

Daily infection data must be fitted to the model by appropriate choice for the values of the 

dimensionless parameters (Figs. 1(B,C)). The socio-economic behavior has diversified the 

dynamics of the infection curve; Furthermore, major regulatory governmental strictures may 

enforce more discipline in public behavior thus seriously affecting the parameters. This effect, it 20 

must be conceded, is buried in subtle empiricism of the model that we must seek to unearth. In 

doing so, we emulate the currently popular practice of machine learning towards estimating the 

parameters in each domain to assess the local government policy. In Fig. 1(A), the national scale 

social distancing is undertaken with the administration guideline “15 Days to Slow the Spread” 

that divides the pre-guideline enforcement period (P1) and the post-guideline enforcement period 25 

(P2). Furthermore, to consider the heterogeneity of the population density, we model the 

infection dynamics in the leading county of every state (50 states plus Washington D.C.) Within 

different periods and regions, their parameter values will reflect the quality of management of 
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the spread of infection in the area under consideration. The different mechanisms of transmission 

of infection may operate to varying extents in different areas depending on how the infection is 

managed locally. Thus one must regard the model as only “broadly” mechanistic and the 

relationship of model parameters to different strategies would be somewhat diffuse. Therefore, in 

connecting the model to guide strategies we resort to a statistical methodology based on machine 5 

learning tools, which could overcome the limitation just mentioned.   

We first examine role of model parameters in the spread of infection. The P1 duration 

reveals the period of pathogen transmission with limited prevention in the United States. The 

early state of virus transmissibility can be characterized by `R-naught' (R0), which is the basic 

reproduction number. Our estimate of R0 is about 2.8 (the median from data is 2.75; our model is 10 

2.90) whose transmission is stronger than influenza (R0:1.4-1.6) (9) and weaker than Measles 

(R0:12-18) (10). The speed of infection of an individual would depend on the value of infT : a 

large infT  would imply a longer real time and thus a slower rise in infection. For instance, in New 

York at P1 period without government policy intervention, it typically takes about inf 10T ≈

minutes to infect an individual. With the implementation of government policy about social 15 

distancing, in P2 period, infT  increases 25 times, and the approximation of an individual infection 

takes about 4 hours! To measure parameters (α , β ,γ ), it is purposeful to examine the steady 

state solutions of the model represented by Eqs. (1) and (2). We show that the only more relevant 

solution is 11 ( / )x γ α β −= −% and /y α β γ= −% where the projected total infected population ( x% ) 

and viral population ( y% ) are determined by /α β  and γ . Parameter /α β  represents the ratio of 20 

viral growth rate to its death rate, which represents the extent of environmental virulence. Fig. 

1(D) show that severe virulence environment (large /α β ) are associated with the large counties 

(i.e. Los Angeles-CA (P1,P2), New York City-NY(P1,P2)). In particular, Wayne county at 

Michigan State shows significant improvement (severe → moderate) as the proper social 

distancing is taken and thereby there would be a significant reduction of the virus in circulation. 25 

In general, counties with populous majority remain as small virulence during the entire period 

(Fig. 1(D)). Parameter γ  represents the removal rate of infected patients (by recovery/death). 

Our model implies that γ  is associated with /α β  positively: despite the infection, its 

percentage in each county remains low (e.g. the percentage of infection at New York City is 
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about 2(10 )O − ); Therefore, 1( / ) ~ 1γ α β −  and always ( / )γ α β< . Here, we ought to demonstrate 

two significant points: (1) mathematically, ( / )γ α β<  is the necessary and sufficient condition 

for the stability of the solution; (2) as the difference between γ  and /α β  becomes smaller, the 

eventual infected population is smaller. The most direct way of containing infection depends on 

the availability of the effective vaccines and therapies that can rise the value of γ . However, we 5 

should note that, without further modification, the current model would not directly account for 

the possibility of using experimental prescriptions such as Remdesivir recently authorized by 

Food and Drug Administration (FDA) (11). 

Based on our model, we propose two indicators /α β  and x%  to characterize the infection 

dynamics. Reducing /α β  is accomplished by slowing the viral transfer from the infected to the 10 

uninfected which can be accomplished by several ways such as social distancing (individual 

precautions can be washing, wearing masks, physical distancing 6 or 12 feet, and so on). In Fig. 

2(A), we find that /α β  is strongly correlated with the county population (R=0.91, p=2.1e-6; 

p<0.05 considered as significant), which is consistent with the physical explanation of 

( / ) ( / )o oN Vα β ∝  in Table 1; given any domain, ( / )o oN V  increases with large population 15 

number but independent of population density oN . On the other hand, the projected total 

infection fraction x% , which characterizes the pathogen transmissibility, is positively correlated 

with the county population density (R=0.61, p=0.016 in Fig. 2(B)) because of oN ; the 

transmission of the infection becomes faster when the population density is high. Other factors 

such as weather (temperature, humidity) remain insignificant (weak correlation) to the infection 20 

dynamics (see supplementary material; also (12)). Fig. 2(C) exhibits how parameters /α β  and 

x%  affect the peak infection rate. The peak infection rate represents the stage beyond which the 

infection rate will drop. It is now possible to address the much debated strategy of “flattening the 

curve” by lowering peak infection rate. To reduce the transmissibility (i.e. lower x% ), the peak 

infection rate has to be small (see Fig. 2(C)). Our model recommends that this is accomplished 25 

when /α β  is low, suggesting the reduction of virus circulation (Fig. 2(D)).  

We now proceed to model the effect of lockdown on COVID-19 transmissibility in New 

York City, as an example. Additionally, considering recently published policy of “Opening Up 

America Again” by the white house administration, we will study the effect of reopening 
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economy on the dynamics of transmissibility in the New York metropolitan area. Here, we 

consider the influence of lockdown policy at New York City, where the isolation is determined 

by the geographic constraint of five boroughs (the Bronx, Brooklyn, Manhattan, Queens, and 

Staten Island) within the New York City (Fig. 3(A)). From Fig. 3(B), our model suggests that the 

mitigation brought about by lockdown is sensitive to the moment of implementation; an early 5 

enforcement of lockdown could delay its occurrence. Our study also shows that if the 

implementation happens after the peak infection, the strategy of slowing works less efficiently. 

However, the lockdown likely results in a long-term dynamics and the associated economic 

damage has to be considered as well. 

During this pandemic, the financial center of the world--New York City area has been hit 10 

by massive layoffs and anticipates looming recession (13). This situation, spells some urgency 

for reopening the economy and resuming normal daily activity. However, we stress that opening 

the economy has to be cautious to the possible appearance of a second wave thus making the 

timing of the reopening very important. To simulate the impact of normal daily activity on the 

current dynamics of infection, we study the transmissibility in both New York City and Hudson 15 

County within the metropolitan area. These two regions represent the most active interactions in 

the United States (leading out-computing in the metro area, NYC Planning 2018) and yet both 

have the leading coronavirus infections in their states. In the model, we relax the current 

government restraints and resume normal daily operations and activities, which allows the model 

to consider the worst scenario of the infection curve. Fig. 3(C) show that the economy reopening 20 

(with the least precaution) inevitably brings the second wave and thereof more mortality. 

However, the extent of infection outbreak can be drastically reduced by delaying the opening 

date (35% increase at 5.5th week vs. 4% increase at 7.5th week). We note that an effective policy 

intervention may reduce the drastic increment of the infected population. In the next section, we 

discuss how to quantify the effectiveness of current implemented policy on coronavirus 25 

transmissibility. 

With the U.S. administration declaring the social distancing guideline since March 16th, 

local governments have implemented more than 300 executive orders in fifty states, Puerto Rico, 

the District of Columbia, Guam, and the Virgin Islands. The executive actions and policies are 

related to declarations of states of emergency, school/business closure, prohibition of mass 30 

gathering, stay at home order, etc. Central issues stand as the effectiveness of ongoing individual 
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policy is unclear. In our study, the statistical inference suggests the relevance of several ongoing 

policies on the coronavirus transmission (Fig. 4(A)). With our model empowered by machine 

learning tools, we perform the regression of both parameters /α β  and x%  based on all policy 

influences. By examining the weight associated with each policy measure and its significance (p-

value) in Fig. 4(B-1), we should conclude that factors such as non-essential business closure, 5 

gathering ban and school closure possess strong impact on x%  (adjusted- R2=0.59, p=2e-6), 

which represents the total infected population. Both gathering ban and school closure emphasize 

the activity of population in young age, which is consistent with the recent finding that young 

people play a vital role in spread of COVID-19 (14,15). For virulence environment ( /α β ), 

while the severity of coronavirus spread is largely determined by the local population number, 10 

nonessential business closure plays a role in its attenuation effort among other considered 

policies (adjusted-R2=0.30, p=1e-3; see Fig. 4(B-2)). With the context of reopening the 

economy, the policies on certain non-essential business limitation, gathering ban and school 

closure may be continuously enforced. In this regard, the informative results delivered by 

combining both approaches (i.e. mechanistic model and machine learning) could promote 15 

effective implementations against the transmission disease (Fig. 4(C)). 

In this report, we have proposed a new mechanistic model describing the transmission of 

COVID-19 in the United States. Our model is established in conjunction with administration 

policy, from which we propose two significant parameters. The parameter /α β  quantifies the 

severity of the coronavirus circulation, and the parameter x%  represents the projected total 20 

infected fraction. To be consistent with CDC county-by-county guideline, we studied the 

infection dynamics of the leading county in each state. Our study shows that New York City in 

New York, Los Angeles county in California, and Wayne county in Michigan exhibit strong 

coronavirus circulation. By examining the peak infection rate, our suggested strategy of 

‘flattening the curve’ has to deal with lowering /α β , meaning to drastically diminish the virus 25 

population in the environment. Our further study of lockdown suggests that this policy has to be 

implemented before the peak infection arrives. We have quantified the impact of current social 

distancing policies with /α β and x% , suggesting that polices such as, restrictive non-essential 

business closure, a ban on gathering, and that of school closure are critical. This may strongly 

associate with the restricted activity of young people (young adults and teenagers). Although a 30 
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rational analysis for an economic reboot should be based on a considerably expanded view of the 

local economics, it is possible to derive some useful guidelines from our model study.  To this 

extent, we conclude, perhaps somewhat speculatively, that our suggestion for an economic 

reopening may be viable if non-essential business closure is conditional, mass gathering is 

limited and school opening is delayed. At any rate, in the absence of such restrictive measures, 5 

the prospect of an economic recovery is less likely.  
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Fig. 1. Parametric study on coronavirus infection in United States. (A) The timeline of total 
population with COVID-19 positive in conjunction with the policy of “15 Days to Slow the Spread” in 
the United States, in which the infection period is divided into the pre-guideline enforcement period (P1) 
and the post-guideline enforcement period (P2). (B and C) The dynamic evolution of (B) infected 5 

population density n and (C) daily increment nΔ  are scaled by the county population density oN ; the 

data are associated with three counties (e.g., Los Angeles county in California State, New York City in 
New York State, and King county in Washington State); The zeroth week is set at the moment when the 
total number of infections in individual counties is ten. (D) The phase space in terms of /α β  and γ  is 
plotted for the leading infected counties in first fifteen states: P1 duration and P2 duration. The phase 10 
space is segregated as three regions: ‘severe’ (labeled as green; / (1.0, )α β ∈ ∞ ), ‘moderate’ (labeled as 

red; / [0.4,1.0]α β ∈ ), and ‘mild’ (labeled as blue; / (0,0.4)α β ∈ ). 
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Fig. 2. Relationship between county population and /α β  & %x . (A and B) The statistical correlations 

(R: Pearson correlation coefficient) are displayed for (A) virulence ( /α β ) vs. the corresponding county 

population and (B) the projected infection fraction ( x% ) vs. the corresponding county population density 
(sample number is 15). (C) A phase diagram in terms of /α β  and x%  for the peak infection rate Γ ; 5 

domain ‘ Ω ’ represents the region in which the peak infection is not reached and Region { 0.1x >% } 

indicates the unlikely space where total infection exceeds 10% of the total population in the domain 

considered. (D) The effect of dimensionless parameter /α β  on peak infection is studied with 0.01x =%

. For (C) and (D), the simulations are conducted for a duration of 1 year (365 days) with inf 40T =  

minutes.  10 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 7, 2020. ; https://doi.org/10.1101/2020.06.05.20123356doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.05.20123356


13 
 

 

Fig. 3. Effect of lockdown and reopening economy on the spread of infection in New York City. (A) 
The strict policy of lockdown is assumed at the borders of five boroughs - Manhattan(I), the Bronx (II), 
Queens (III), Brooklyn (IV) and Staten Island (V) within New York City. (B) The date of initiating 
lockdown affects daily positive cases nΔ  in New York City scaled by total population density oN , 5 

where the start of policy enforcement is set at different initiation points: zeroth week (B-1), 2nd week (B-
2), and 5th week (B-2), respectively. (C) Modeling of infected population (C-1) and increment (C-2) by 
considering different opening periods for New York City and Hudson county (New Jersey): 
‘NYC+Hudson(O1)’ indicates the reopening economy at 5.5th week; ‘NYC+Hudson (O2)’ indicates the 
reopening economy at 7.5th week; ‘NYC, Hudson (R)’ indicates the economy remains closed. In (C), oN  10 

represents the averaged resident population density of both New York City and Hudson (New Jersey); 
Symbols ‘ Δ ’ are the data of the infected population within New York City and Hudson (New Jersey); 
Plots with shaded area are the modeling results where solid lines represent the median of the prediction 
and the shaded area indicates the uncertainty. The zeroth week is set at the moment when the total number 
of infections at the New York City is ten. 15 
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Fig. 4. Evaluation of policies on COVID-19 transmissibility. (A) The relevance and 
significance of individual policy and population dynamics (population and population density) 
on model parameters /α β  and x% , characterized by adjusted R-square and p-values, 
respectively. In the diagram, the color of the ellipse represents the value of adjusted R2 while the 5 
size of ellipse accounts for p-value.  (B) The regression analysis of government policies and local 
population dynamics against (B-1) the projected eventual infection fraction x%  and (B-2) 
virulence /α β . The extent of influence from individual factor is reflected by the corresponding 
weight (W). In (B), the weights are normalized by the first factor. (C) By incorporating both 
mechanistic modeling and data analytic (in blue) into the traditional workflow of the policy 10 
making (in black), a refreshed framework forms a three-way communication among expert 
(doctor/epidemiologist), engineers/scientists and lawmakers, thus improving the implementation 
of health policies against the infectious disease.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 7, 2020. ; https://doi.org/10.1101/2020.06.05.20123356doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.05.20123356


15 
 

Table 1. Emerging indicators from pathogen system 

Notation Variables 

2
v o

o

k N

kV
α ≡  

Fractional rate of viral growth during the (average) infection time 
with Vo viral population;  

vk  is the rate constant for production of virus from the infected;  
k is the rate constant for transfer of infection 

v

o

k

kV
β

′
≡  

Viral death rate during (average infection time); 
'
vk is the rate of death of virus 

r

o

k

kV
γ ≡  

Removed rate of infected patients relative to infection rate 
with Vo viral population; 

rk  is the rate of removed population (either by death or recovery) 

'
v o

v o

k N

k V

α
β

≡  Ratio of viral growth rate to its death rate 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 7, 2020. ; https://doi.org/10.1101/2020.06.05.20123356doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.05.20123356

