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Abstract 

Clinical trials are essential but often have high financial costs and long execution time.  Trial simulation using real 
world data (RWD) could potentially provide insights on a treatment’s efficacy and safety before running a large-scale 
trial.  In this work, we explored the feasibility of using RWD from a large clinical data research network to simulate 
a randomized controlled trial of Alzheimer’s disease considering two different scenarios: an one-arm simulation of 
the standard-of-care control arm; and a two-arm simulation comparing treatment safety between the intervention and 
control arms with proper patient matching algorithms.  We followed original trial’s design and addressed some key 
questions, including how to translate trial criteria to database queries and establish measures of safety (i.e., serious 
adverse events) from RWD.  Our simulation generated results comparable to the original trial, but also exposed gaps 
in both trial simulation methodology and the generalizability issue of clinical trials.   

Introduction 
Clinical trials, especially randomized controlled trials (RCTs), are critical in the drug discovery and development 
process to assess how the treatment being developed will interact with the human body.1  While the controlled 
conditions of clinical trials can reduce bias and ensure the internal validity of the study results, they also come with 
the drawbacks of high financial costs and long execution time.2  For example, the total cost of developing an 
Alzheimer's disease (AD) drug were estimated at $5.6 billion with a timeline of 13 years from preclinical studies to 
FDA approval,3 even though no effective drugs have been developed for either AD treatment or prevention thus far.  
In general, the median cost of pivotal trials (i.e., Phase III trials) for new therapeutic agents approved by the U.S. Food 
and Drug Administration (FDA) is estimated at $19.0 million;4 while Phase III AD trials typically cost $1.79 billion 
and take on average more than 4 years to complete.3  Strategies that can accelerate the drug development process and 
reduce costs will not only be of interest to pharmaceutical companies but also ultimately benefit the patients.  

In the last decade, there has been an increased uptake of electronic health record (EHR) systems in the United States 
(US).  These technological advances and policy changes in the US have created a fertile ground with increasing 
opportunity to use EHR data to improve current methods of clinical evidence generation.  The FDA coined the term 
real-world data (RWD) refereeing to data collected from sources outside of conventional research settings, including 
EHRs, administrative claims, and billing data among others.5,6  RWD have emerged as an important data source 
reflecting real-world clinical environment of where the treatments are actually used, including patient demographics, 
comorbidities, adherence, disease status, treatment outcomes, and concurrent treatments that are tracked in detail and 
longitudinally.  The opportunity to design studies simulating clinical trials using RWD could (1) provide insights on 
a treatment’s efficacy and safety before running a large-scale RCT and help to decide whether a trial would be 
beneficial and yield a high return on investment, and (2) replace standard-of-care control arms to reduce trial costs. 

The design of pivotal Phase III trials typically includes intervention arms using the new chemical entities and control 
arms with the current standard of care for the disease.  The control arms are often repeated across different trials, have 
rigid eligibility criteria, and often incur high costs to enroll sufficient samples.  Simulating contemporaneous external 
control arms using RWD collected from routine care could potentially reduce these costs.  In addition, clinical trials 
are often conducted under rigorously controlled conditions to assure their internal validity.  In clinical trials, the target 
population (TP) is the patients to whom the trial results are intended to be applied.  The study population (SP, also 
called trial-eligible population) is the set of patients defined by the trial’s eligibility criteria.  To ensure patient safety 
and demonstrate efficacy, a trial’s criteria are often restrictive, leading to an SP that is a constrained subset of the TP.  
Low trial generalizability has been widely documented across different clinical areas7 including AD and dementia8,9 
when applying the findings from trials to the broad TP.  Therefore, real-world evidence (RWE) is needed to reflect 
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the population who would most likely use the treatment.  A simulation-based study that simulates the logic flow of a 
clinical trial using RWD can be used to estimate the safety and efficacy of the treatment in a broad, diverse, and more 
general patient population, thus, generating RWE.  In addition, by simulating a trial, the on treatment-outcome effects 
observed from observational RWD could potentially illuminate causal relationships. 

The concept of trial simulation has been explored before.10–13  For example, Danaei et al. conducted a comparative 
effectiveness research (CER) study using EHR data from United Kingdom (UK) by emulating a hypothetical RCT to 
estimate the effect of statins for primary prevention of coronary heart disease.12  Like many other emulation studies,14–

16 this is essentially a retrospective cohort study, where the authors followed a clinical trial design to identify unbiased 
initiation of exposures and eventually to reach an unbiased estimation of the casual relationship.  On the other hand, 
studies simulating external control arms aim to identify eligible individuals who are on standard-of-care treatments 
for the specific disease from patient databases, as comparators to treatment arms in RCTs.  For example, Carrigan et 
al. used Flatiron, a US-based oncology EHR database, to assess how closely results from advanced non-small cell 
lung cancer (aNSCLC) RCTs could be approximated, by substituting EHR-based external control arms as the 
comparator.13  Their findings showed promising results as the hazard ratio estimates of overall survival aligned closely 
with those from the corresponding RCT (i.e., a Pearson correlation coefficient of 0.86).  These prior studies showed 
great potential for trial simulations and asking causal questions using observational RWD data.17  

In this study, we aimed to explore the feasibility of using RWD from the OneFlorida Clinical Research Consortium—
one of the large clinical data research networks funded by the Patient-Centered Outcomes Research Institute (PCORI) 
contributing to the national Patient-Centered Clinical Research Network (PCORnet)—to simulate a real-world AD 
RCT as a use case.  We attempted to address a number of key barriers that have not been well-explored in previous 
studies working with RWD, for example, the lack of discussions on how to translate eligibility criteria to database 
queries and the difficulties in establishing the outcome measures (e.g., serious adverse events [SAEs]).  We will 
consider two main scenarios: (1) a one-arm simulation: simulating a standard-of-care arm that can serve as an external 
control arm; and (2) a two-arm simulation: simulating both intervention and control arms with proper patient matching 
algorithms for comparative effectiveness analysis.   

Methods 
Identification of Alzheimer’s disease (AD) clinical trials for simulation 
To identify AD clinical trials for simulation, we searched all clinical trials on ClinicalTrials.gov using a group of AD-
related keywords (e.g., “Alzheimer’s disease”, “Dementia of AD type”).  ClinicalTrials.gov18 is a registry of clinical 
research studies maintained by the U.S. National Library of Medicine.  It enables researchers to find clinical trials by 
disease category with different searching filters (e.g., study phase, recruitment status, etc.) to refine the search results.  
The trial summaries are semi-structured in ClinicalTrials.gov: study descriptors (e.g., study phase, intervention type, 
and locations) and study results (e.g., baseline characteristics of participants, serious adverse events [SAEs]) are stored 
in structured fields, whereas eligibility criteria are largely free text.  In this analysis, we focused on Phase 3 or 4 drug 
development RCTs on AD.  To compare the study results with our simulated trials regarding drug safety (e.g., SAEs) 
and participants' characteristics (e.g., age, gender, and race), we only included studies that have already been 
completed and the study results were already published on ClincalTrials.gov.  44 trials were identified.  Next, we 
attempted to search for studies that have study protocols available on ClinicalTrials.gov as the trial protocol documents 
the objectives, design, methodology, statistical considerations, and other aspects related to the organization of clinical 
trials.19  Out of the initial 44 trials, only 6 published their study protocols.  Nevertheless, they were all excluded for 
various reasons (e.g., primarily focused on other diseases, small sample sizes in the target patient database—
OneFlorida—as the drug being developed is still in early stage and not widely used in real-world settings).  Thus, we 
opted to looking for the most frequently used AD drugs and their corresponding RCTs that have generated publications 
with sufficient details on the study design including the eligibility criteria used to select subjects, treatment protocols 
of the subjects, and assessments of treatment efficacy and safety (i.e., definitions of adverse events [AEs]).   

Target trial characteristics 
We identified donepezil as the most widely tested AD drug and selected trial NCT00478205.20  This study is a Phase 
III double-blind, double-dummy, parallel-group comparison of 23 mg donepezil sustained release (SR) with the 10 
mg donepezil immediate release (IR) formulation (currently marketed standard-of-care) in patients with moderate to 
severe Alzheimer's disease.  Patients who have been taking 10 mg IR (or a bioequivalent generic) for at least 3 months 
prior to screening were recruited.  The study consisted of 24 weeks of daily administration of study medication, with 
clinic visits at screening, baseline, 3 weeks (safety only), 6 weeks, 12 weeks, 18 weeks, and 24 weeks or early 
termination.  Patients received either 10 mg donepezil IR in combination with the placebo corresponding to 23 mg 
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donepezil SR, or 23 mg donepezil SR in combination with the placebo corresponding to 10 mg donepezil IR.  A total 
of 400 patients and 800 patients were needed for the 10mg arm and 23mg arm, respectively, with a total of 471 and 
963 patients enrolled eventually, respectively.  The study was conducted at approximately 200 global sites (Asia, 
Oceania, Europe, India, Israel, North America, South Africa, and South America).  In our simulation, we followed the 
detailed study procedures outlined in their published article21 to formulate our simulation protocol, including the 
treatment regimen, population eligibility, and follow-up assessments for SAEs.  Table 1 describes how the original 
trial design was followed in our simulation. 

Table 1. Overall study design of the simulated trial in comparison with the original trial. 
Component Target trial (NCT00478205) Simulated trial 

Aim Assess the safety and effectiveness of 
23mg compared to 10 mg 

Assess whether the simulated trial can generate similar 
results to the “real” trial 

Eligibility 36 eligibility criteria 25 are computable or partially computable 

Treatment 
strategies 

Randomized allocation of 23mg :10 
mg ratio is 2:1 

Scenarios 1 and 2 are two-arm simulations. Propensity 
score matching was performed on baseline covariates: 
sex, race, age, and Charlson comorbidity index (CCI). 
 
Scenario 3 is a one-arm simulation of the 10 mg control 
arm only.  The same sample size as calculated in the 
original trial, random sampling and proportional 
sampling were used. 

Sampling 
strategies N/A 

Bootstrap with replacement was repeated 1,000 times to 
randomly generate the sample population, and mean 
value and 95% confidence interval were reported. 

Follow-up The outcomes were measured from the first dose to 24 weeks after the first dose. 
Outcome SAE and cognition function measures SAE 
Statistical 
analysis 

Compare the average number of SAEs per patient, and the SAE rates (i.e., how many patients have 
SAE). 

SAE: Serious Adverse Events 

Real-world patient data (RWD) from the OneFlorida network 

Our OneFlorida data contain robust longitudinal and linked patient-level 
RWD of ~15 million (>50%) Floridians, including data from Medicaid & 
Medicare claims, cancer registry, vital statistics, and EHRs from its clinical 
partners.  As one of the PCORI-funded clinical research networks in the 
national PCORnet, OneFlorida includes 12 healthcare organizations that 
provide care through 4,100 physicians, 914 clinical practices, and 22 
hospitals, covering all 67 Florida counties.  The OneFlorida data is a HIPAA 
limited data set (i.e., dates are not shifted; and 9 digit zip codes of patients’ 
residences are available) that contains detailed patient characteristics and 
clinical variables, including demographics, encounters, diagnoses, 
procedures, vitals, medications, and labs.22  Table 2 shows the demographics 
of AD patients in OneFlorida.  Note that even though clinical notes are 
potentially available through OneFlorida, we focused on the structured data 
immediately available to us formatted according to the PCORnet common 
data model (PCORnet CDM) version 5.1.23 

Cohort identification: target population, study population, and trial not 
eligible population 
We identified three populations: the target population (TP), the study 
population (SP), and the trial not eligible population (NEP) for the selected 
trial following the process shown in Figure 1.  Starting with the overall 
OneFlorida AD population, we defined the target population as patients who (1) had the disease of interest (i.e., AD), 
and (2) had used the study drug (i.e., donepezil) for a specific time period according to the study protocol.  The criteria 
to define the TP were extracted from both the study description on ClinicalTrials.gov and study-related publications.  
We then identified the study population (i.e., patients who met both the TP criteria and the trial eligibility criteria) and 

Table 2.  Alzheimer’s disease 
(AD) patients in OneFlorida; N = 
101,904 (100%), Q3 2019 
Sex 

 

    Male 31,680 (31.1%) 
    Female 69,032 (67.7%) 
    Unknown 1,192 (1.2%) 
Race/Ethnicity 

 

    NHW 50,067 (49.1%) 
    NHB 12,451 (12.2%) 
    Hispanics 25,237 (25.7%) 
    Other 1,314 (1.3%) 
    Unknown 11,835 (11.8%) 
Age 

 

    < 65 6,422 (6.3%) 
    65 – 74 15,184 (14.9%) 
    75 – 84 36,407 (35.7%) 
    ≥ 85 43,890 (43.1%) 
    Unknown 1 (0.0%) 
NHW = Non-Hispanic White; 
NHB = Non-Hispanic Black; 
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trial not eligible population (i.e., patients who meet the TP criteria but do not meet the trial eligibility criteria) by 
applying clinical trial eligibility criteria to the TP.  To do so, for the selected trial, we analyzed its eligibility criteria 
and determined the computability of each criterion.  A criterion is computable when its required data elements are 
available and clearly defined in the target patient database (i.e., the OneFlorida data in our study).  Then, we manually 
translated computable criteria into database queries against the OneFlorida database.  Note that not all eligibility 
criteria are queryable against the patient database as the needed data elements may not exist in the target database 
(e.g., “A cranial image is required, with no evidence of focal brain disease that would account for dementia.” and 
“Written informed consent.”).  We assumed that all patients met the non-computable criteria, which is a limitation of 
our study. 

 
Figure 1.  The cohort identification process for the target, study, and trial not eligible populations. 

Definition and identification of serious adverse events (SAE) from EHRs 
The drug efficacy of AD is often measured based on neuropsychological tests (e.g., Mini-Mental State Examination) 
that may only exist in unstructured EHR data (i.e., clinical notes).  The target trial used Severe Impairment Battery 
(SIB) and the Clinician’s Interview-Based Impression of Change Plus Caregiver Input scale (CIBIC+; global function 
rating) to assess the efficacy of donepezil.  Because these data are not in the OneFlorida structured data, we instead 
focused our simulation on drug safety in terms of the occurrences of SAEs.  To define an SAE, we first followed the 
FDA24 definition of SAEs and the Common Terminology Criteria for Adverse Events (CTCAE) version 5 and then 
consulted with clinical experts.  The final guideline for identifying SAEs for the target trial NCT00478205 is as below:  

• Step 1. For each reported AE in the trial result on ClinicalTrails.gov, map the AE term to CTCAE . 
• Step 2. For those mapped terms, use the CTCAE manual to identify the severity grading scale. 
• Step 3. To identify SAE, if an AE happened during the SAE selection window (i.e., 24 weeks after study 

injection and within 30 days after study end), and is graded with grade 4 (life-threatening or hospitalization) 
and 5 (death), we consider the AE as an SAE.  If death happened with 30 days after an AE, we consider the 
AE as an SAE.  Note that if the AE condition is a chronic disease and happened before the study, we did not 
consider it as an SAE. 

Simulation protocol 
Table 1 shows our design of the simulated trial corresponding to the original target trial.  Based on the calculation 
from the original trial21, a sample size of 400 and 800 were needed for the 10mg and 23mg arms, respectively.  We 
did not find a sufficient number of patients who took 23mg donepezil in our OneFlorida data.  Thus, we decided to 
explore two different scenarios for the two-arm simulation, and one scenario for the one-arm simulation.  In scenarios 
1 and 2, we aimed to simulate both 10mg and 23 mg arms with different ratios for the number of subjects between the 
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two arms.  We used propensity score matching on baseline covariates: sex, race, age, and Charlson Comorbidity Index 
(CCI) to simulate the randomization of the original trial.  In scenario 1, we set the 23mg to 10mg number of subjects 
ratio as 1:1, while in scenario 2, the ratio was set to 1:3.  Because of the limited number of individuals who took the 
23mg form, we can only increase the number of subjects in the 10mg arm.  In scenario 3, we only simulated the control 
arm using standard therapy (i.e., the 10 mg arm of the original trial), where we have a sufficiently large sample size 
from the OneFlorida data.  Thus, we designed our sampling strategy based on the sample size calculated in the original 
trial (N=400).  For all scenarios, bootstrap sampling with replacement was repeated for 1,000 times to generate the 
sample populations, and the mean value and 95% confidence interval of each bootstrap sample were used to generate 
the overall estimates.  We focused on comparing the average number of SAE per patient, and the overall SAE rates 
(how many patients have SAE) in our simulation. 

Results 
Computability of eligibility criteria in the original trial (i.e., NCT00478205) 
In total, there are 36 eligibility criteria in trial NCT00478205 based on ClinicalTrials.gov, where 17 are inclusion 
criteria and 19 are exclusion criteria.  However, not all eligibility criteria are computable against our OneFlorida 
patient database.  The reasons are summarized in Table 3.   

Table 3.  Reasons for eligibility criteria that are either partially computable or not computable for NCT00478205. 
Computability Reasons Examples 
Not 
computable 
(N = 11) 

Data elements needed for the criterion 
are not present in the OneFlorida data. 
(Inclusion：N = 3; Exclusion: N = 3) 

e.g., “A cranial image is required, with no 
evidence of focal brain disease that would 
account for dementia.” 

Patients need caregiver support. 
(Inclusion：N = 1; Exclusion: N = 1) 

e.g., “The patient must have a relative/caregiver 
who supervises the regular taking of the drug at 
the correct dose and is alert for possible side 
effects, unless the patient's legal guardian takes 
on this task.” 

The criterion asked for subjective 
information from patients. 
(Inclusion：N = 0; Exclusion: N = 1) 

e.g., “Patients who are unwilling or unable to 
fulfill the requirements of the study.” 

Data elements have granularity issues. 
(Inclusion：N = 0; Exclusion: N = 1) 

e.g., “Known hypersensitivity to 
acetylcholinesterase inhibitors or memantine.” 

Requires information about another 
clinical trial. 
(Inclusion：N = 0; Exclusion: N = 1) 

e.g., “Involvement in any other investigational 
drug clinical trial during the preceding 3 months, 
or likely involvement in any other such trial 
during the course of this study.” 

Partially 
computable 
(N = 7) 

Data elements of interest are not clearly 
defined. 
(Inclusion：N = 4; Exclusion: N = 1) 

e.g., “The patient must meet certain psychometric 
test criteria related to the degree of impairment of 
cognitive functioning.” 

Requires physicians’ subjective 
judgment. 
(Inclusion：N = 1; Exclusion: N = 1) 

e.g., “Clinical laboratory values must be within 
normal limits or, if abnormal, must be judged not 
clinically significant by the investigator.” 

Characteristics of the target, study, and trial not eligible populations from OneFlorida 
Overall, a total of 90 and 2048 TP patients were identified in OneFlorida for the 23 mg arm and 10 mg arm, 
respectively.  Among them, 38 and 782 met the eligibility criteria of the original target RCT for the two arms, 
respectively.  Table 4 shows the demographic characteristics and SAE statistics of the original trial population as well 
as the target population (TP), study population (SP), and trial not eligible population (NEP) from OneFlorida. 

Table 4. Population characteristics and SAE statistics of the target trial vs. TP, SP, and NEP from OneFlorida. 
 23mg Arm 10mg Arm  

Original 
Triala 

Overall 
TPb 

Overall 
SPc 

Overall 
NEPd 

Original 
Trial 

Overall 
TP* 

Overall 
SP# 

Overall 
NEP& 

# of Subject 963 90 38 52 471 2,048 782 1,266 
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Age Mean (SD) 73.9 
(8.53) 

74.3 
(9.01) 

73.3 
(9.01) 

81.6 
(12.37) 

73.8 
(8.56) 

73.4 
(11.0) 

74.2 
(9.67) 

77.1 
(11.8) 

Gender 
    Male 356 

(37.0%) 
24 

(26.7%) 
10 

(26.3%) 
14 

(26.9%) 
177 

(37.6%) 
727 

(35.5%) 
234 

(29.9%) 
493 

(38.9%) 
    Female 607 

(63.0%) 
66 

(73.3%) 
28 

(73.7%) 
38 

(73.1%) 
294 

(62.4%) 
1321 

(64.5%) 
548 

(70.1%) 
773 

(61.1%) 
Racee 
   White 708 

(73.5%) 
63 

(70.0%) 
25 

(65.8%) 
38 

(73.1%) 
346 

(73.5%) 
829 

(40.5%) 
280 

(35.8%) 
549 

(43.4%) 
   Asian/Pacific 161 

(16.7%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
87 

(18.5%) 
22 

(1.1%) 
11 

(1.4%) 
11 

(0.9%) 
   Hispanic 67 

(7.0%) 
15 

(16.7%) 
4 

(10.5%) 
11 

(21.2%) 
26 

(5.5%) 
440 

(21.5%) 
192 

(24.6%) 
248 

(19.6%) 
   Black 22 

(2.3%) 
11 

(12.2%) 
4 

(10.5%) 
7 

(13.5%) 
9 

(1.9%) 
380 

(18.6%) 
126 

(16.1%) 
254 

(20.1%) 
   Other 5 

(0.5%) 
1 

(1.1%) 
5 

(13.2%) 
7 

(13.5%) 
3 

(0.6%) 
377 

(18.4%) 
173 

(22.1%) 
204 

(16.1%) 
CCIf N/A 1.54 1.32 1.53 N/A 2.36 1.64 2.36 
Mean SAEg  0.15 1.89 0.92 2.60 0.14 1.68 0.64 2.59 
# of patients 
with ≥ 1 SAE 

45 
(9.6%) 

20 
(22.2%) 

4 
(10.5%) 

16 
(30.7%) 

80 
(8.3%) 

573 
(28.0%) 

121 
(15.5%) 

452 
(35.7%) 

aReported in the original trial on ClinicalTrials.gov 
bTP: Target population—patients who (1) had the disease of interest (i.e., AD), and (2) had used the study drug 
(i.e. donepezil) for a specific time period according to the study protocol. 
cSP: Study population—patients in the TP who met the computable eligibility criteria of the original trial. 
dNEP: Trial not eligible population—patients in the TP who did NOT meet the eligibility criteria of the original 
trial. 
eThe original trial reported Hispanic as a race, thus, we followed the same convention to make sure the results 
are comparable even though race and ethnicity are two different fields in OneFlorida. 
fCharlson Comorbidity Index. 
gMean SAE: average number of SAEs per patient. 

For demographic characteristics, relative to the target RCT population, we observed a large difference in race in our 
OneFlorida population (all p-values of race group comparison were smaller than 0.05).  OneFlorida had more 
Hispanics (10.5% - 24.6% vs. 5.5% - 7%) and Blacks (10.5% - 20.1% vs. 1.9% - 2.3%), but less Whites (35.8% - 
73.1% vs. 73.5% - 73.5%) or Asian/Pacific islanders (0% - 1.4% vs. 16.7% - 18.5%).  The age distributions were 
similar across all populations.  For clinical variables, we calculated the Charlson Comorbidity Index (CCI) of the 
various populations from OneFlorida.  Smaller CCIs were observed in the SP compared with the TP for both arms 
(p<0.05), and a smaller CCI was observed in the 23mg arm compared with the 10mg arm (p<0.05).  Our primary 
outcomes of interest in this analysis were SAEs.  Thus, we calculated the mean SAE (i.e., the average number of SAEs 
per patient) and the number of patients who had more than 1 SAE during the study period.  For both 23mg and 10mg 
arms, the mean SAE and the number of patients with SAEs were the largest in the TP, followed by the SP, and then 
the original trial.  Consistent with the original trial, populations derived from the OneFlorida data in the 23mg arm 
have higher numbers of mean SAE and more patients with SAE compared with the 10mg arm. 

Two-arm trial simulation results 
Because of the limited number of eligible patients who took 23mg donepezil in OneFlorida data, we were unable to 
sample the 23mg arm with the original trial’s sample size.  Thus, we used all 38 OneFlorida subjects for the 23mg 
arm simulation and did not run the bootstrap sampling for this arm.  But the matched 10mg arm was very stable in the 
matching variables (age, gender, race, and CCI) across the 1000 bootstrap samples.  Table 5 shows our two-arm 
simulation results, where we show the average and 95% confidence interval (CI) of all variables for the 10mg 
simulation arms.  In both scenarios 1 and 2, the mean SAE and SAE rates were higher in the 23mg arm than in the 
10mg arm, which is consistent with the original trial.  However, the variance for both SAE outcomes for the 10mg 
arm are higher in scenario 1 than in scenario 2.  This is understandable as the sample size for 10mg arm in scenario 2 
is much bigger (i.e., in scenario 1, we set the 23mg to 10mg number of subjects ratio as 1:1, while in scenario 2, the 
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ratio was set to 1:3).  Further, in scenario 2, the 10mg arm does have a higher SAE rate comparing to the original trial 
and scenario 1.  Because of the sample size difference, estimates from scenario 2 should be more reliable. 

Table 5. Results for the two-arm simulation for both scenarios 1 and 2. 
 Target RCT Scenario 1 Scenario 2 

 23 mg 10mg 23mg 10mg 23mg 10mg 
# of Subjects 963 471 38 38 38 114 
Age (mean) 73.9 73.8 73.3 72.7±0.1 73.3 71.8±0.1 
Gender 

    Male 37.0% 37.6% 26.3% 31.6%±0.1
% 26.3% 34.2%±0.1

% 

    Female 63.0% 62.4% 73.7% 68.4% 
±0.1% 73.7% 65.8% 

±0.1% 
Race 

    White 73.5% 73.5% 65.8% 63.2% 
±0.1% 65.8% 64.9% 

±0.1% 
    Asian/Pacific  16.7% 18.5% 0.0% 0.0% 0.0% 0.0% 
    Hispanic 7.0% 5.5% 10.5% 7.9%±0.1% 10.5% 9.6%±0.1% 
    Black 2.3% 1.9% 10.5% 7.9%±0.1% 10.5% 6.1%±0.1% 
    Other 0.5% 0.6% 13.2% 9.6%±0.1% 13.2% 8.0%±0.1% 
Charlson Comorbidity 
Index (mean) N/A N/A 1.32 0.97±0.1 1.32 1.11±0.1 

Mean SAE 0.15 0.14 0.92 0.118 
±0.121 0.92 0.547 

±0.016 

SAE Ratea 9.6% 8.3% 10.5% 5.3% 
±3.4% 10.5% 15.8% 

±0.3% 
aPercentage of patients with ≥ 1 SAE. 

External standard-of-care control arm (i.e., one-arm) simulation results 
Our third scenario was to simulate an external control arm of the original trial (i.e., the 10mg stand-of-care arm).  
Table 6 displays the results for this scenario.  Two different sampling approaches were used: (1) random sampling, 
and (2) proportional sampling controlling for race distribution.  When using the random sampling approach, compared 
with the control arm in the original trial, higher mean SAE and SAE rates were observed, in addition to discrepancies 
in demographic variables.  When using proportional sampling, the results were closer and more consistent with the 
original trial.  Notably, the SAE rates in the simulated control were similar to the SAE rates from the original control 
(8.9% vs. 8.3%), and a z-score test for population proportion had a p-value of 0.75, suggesting there were no significant 
differences between the two SAE rates.  

Table 6. One-arm simulation results for the external control arm (i.e., 10mg arm). 

 Original Control Simulated Control 
Random Sampling Proportional Sampling 

# of Subjects 471 400 400 
Age 73.8 74.1±0.1 73.8±0.1 
Gender 
    Male 37.6% 29.9%±0.1% 32.7%±0.1% 
    Female 62.4% 70.1%±0.1% 67.3%±0.1% 
Race 
    White 73.5% 35.8%±0.1% 73.5% 
    Asian/Pacific 18.5% 1.4%±0.1% 18.5% 
    Hispanic 5.5% 24.5%±0.1% 5.5% 
    Black 1.9% 16.1%±0.1% 1.9% 
    Other 0.6% 22.1%±0.1  0.6% 
Mean SAE 0.14 0.643±0.005 0.448±0.007 
SAE Rates  8.3% 15.5%±0.1% 8.9%±0.1% 
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Discussions and conclusion 

In this work, we simulated an AD RCT utilizing the rich RWD from OneFlorida—a large clinical data research 
network, considering three different simulation scenarios.  In the two scenarios of two-arm simulation, we showed 
that randomization in the original trial might be achieved by controlling for baseline characteristics using propensity 
score matching.  However, the outcomes measured in the simulated trial were different from the original trial for 
various reasons (e.g., sample size issue, conducted in research settings vs. in real-world clinical settings).  In the one-
arm simulation scenario, we attempted to simulate an external control arm for the original trial.  We demonstrated that 
we could achieve a similar estimate of SAE rates as the original trial when proportional sampling was used to control 
for race distribution, and the statistics of the simulated control arm were very stable across all bootstrap simulation 
runs.  Overall, our findings suggested that our trial simulation framework has some potential to mimic an original 
clinical trial; and the outcome estimates (i.e., SAEs) are stable and reliable, especially when simulating the standard-
of-care control arm.  However, there are still gaps, especially data gaps, that led to the differences between our 
simulation results and the original trial results when considering the two-arm simulation scenarios.  Future studies are 
warranted to identify strategies to fill these gaps.  

While simulating the original AD trial followed the study protocol in Table 1, we found it is difficult to replicate 
every single eligibility criterion in the original trial since not all of them are computable.  Out of the original 36 
eligibility criteria, only 25 of them were computable or partially computable.  Since these criteria were used to weed 
out patients who are unlikely to complete the protocol (e.g., due to safety concerns), ignoring some of the criteria (not 
computable eligibility criteria) could potentially explain some of the increases either in the mean SAE or SAE rates.  
For example, we were unable to query for OneFlorida patients who met the inclusion criterion, “Clinical laboratory 
values must be within normal limits or, if abnormal, must be judged not clinically significant by the investigator”, 
because the criterion was vague and did not define what abnormal clinical laboratory values are.  Also, we found some 
of the SAEs (e.g., abnormal behavior, presyncope) reported in the trial’s results cannot be mapped to any AE terms in 
CTCAE, and the definitions of AEs in the original trial were unavailable, which increased the difficulty of accurately 
accounting for all SAEs.  Further, even though trials’ SAEs reported in ClinicalTrials.gov largely follow the Medical 
Dictionary for Regulatory Activities Terminology (MedDRA), not all reported SAEs were correctly defined in the 
trial results.  For example, we found “Back pain” and “Fall” were defined as SAEs in the original AD trial we modeled.  
However, in CTCAE, there is no corresponding category 4 or 5 definition for them.  More effort is needed to 
consistently model SAEs reported in clinical trials. 

Our findings are consistent with previous literature on clinical trial generalizability.25–28  More SAEs were observed 
in real-world settings.  In our data, the overall number of patients who had SAEs and the average number of SAEs per 
patient were the highest in the target population (i.e., patients who took the medication for the target disease), which 
is the population who actually used the medication in real-world situation.  Compared with reports from the original 
trial, the mean SAE and SAE rates were also higher in the study population—the population who used the medication 
and also met the original trial’s eligibility criteria.  Some of the differences may be due to the incomputable eligibility 
criteria and SAE types that we did not account for, but it is also possible that the original trial samples did not 
adequately reflect the TP and thus there might be treatment effect heterogeneity across patient subgroups, not captured 
by the original trial.  In the two-arm simulations, large variances were observed, especially when the matched sample 
size was small.  This may also indicate the heterogeneous treatment effects of donepezil when applied to different 
patient subgroups in real-world settings. 

Our study demonstrated the feasibility of trial simulation using RWD, especially when simulating external standard-
of-care control arms.  Our one-arm simulation provided stable and robust estimates and sufficient sample sizes to 
compare with the original trial’s control arm.  The SAE rates observed in the simulated control arm with proportional 
sampling were very close to what was reported in the original trial.  The mean SAE per patient, however, was larger 
in the simulated control arms, which suggested that, in a real-world setting, the patients who experienced SAEs tend 
to have more occurrences of SAEs.  On the other hand, the two-arm simulation, although it provided insights, was not 
entirely successful.  Although the randomization process was effectively simulated by using propensity score 
matching, the outcome measures were very different from the original trial.  The reasons for the differences could be 
multi-fold (e.g., research setting vs. real-world clinical setting, difference in sample size, overly restrictive eligibility 
criteria that limits the generalizability of the original trial), but cannot be explored due to limited data reported by the 
original trial (i.e., no patient-level data is available). 

There are some other limitations in this study.  First, we only looked at one original trial for one medication (i.e. 
donepezil).  Simulations on different drugs and diseases may have different results.  Future studies could build on the 
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findings from our work and apply the same methodology to simulating other clinical trials.  Second, the population 
who took the 23mg form in our data is very small (even though the overall OneFlorida population is large with more 
than 15 million patients), where we only identified 38 patients who took the 23mg donepezil and met the eligibility 
criteria of the original trial.  The 23mg donepezil form was approved by the FDA in 2012, so it is still a relatively new 
drug on the market, and following its approval, the clinical utility of the 23mg form was called into question because 
of its limited efficacy and higher rates of adverse events.29  The current practice of using the donepezil 23mg form is 
reserved for AD patients who have been on stable donepezil 10 mg form for at least 3–6 months with no significant 
improvement,31,32 which limited its use in real-world clinical practice.  Third, when comparing the study population 
of the simulated control arm to the study population in the original trial, although it is possible to match the distribution 
of demographic variables, we were unable to match the baseline health status (e.g., CCI) between our simulation and 
the original trial, because the health status of the patients enrolled in the original trial was not reported.  The potential 
difference in baseline health status in the study populations may explain some of the differences in the number of 
SAEs detected.  Strategies that can help make the simulated control arm more comparable to the original trials are 
needed.  For example, backward estimation of CCI in the trial population based on the exclusion criteria and average 
CCI in the general population may provide insights on the baseline health status of the trial population.  Of course, it 
would be beneficial if future clinical trials do actually report participants’ overall baseline health status (e.g., CCI).  
Finally, because of data limitations, we were not able to assess the efficacy of AD treatment.  Nevertheless, 
neuropsychological tests (e.g., Mini-Mental State Examination and Severe Impairment Battery) may exist in clinical 
narratives.  Future studies that explore the use of advanced natural language processing (NLP) methods to extract 
useful variables from clinical notes will be important.  Further, variables extracted from clinical notes with NLP could 
also be used to render some of the incomputable eligibility criteria computable.  Thus, systematic efforts are necessary 
to explore the benefits of NLP. 
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