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Abstract 
Polygenic [risk] scores (PGS) can enhance prediction and understanding of common diseases 
and traits. However, the reproducibility of PGS and their subsequent applications in biological 
and clinical research have been hindered by several factors, including: inadequate and 
incomplete reporting of PGS development, heterogeneity in evaluation techniques, and 
inconsistent access to, and distribution of, the information necessary to calculate the scores 
themselves. To address this we present the PGS Catalog (www.PGSCatalog.org), an open 
resource for polygenic scores. The PGS Catalog currently contains 192 published PGS from 
78 publications for 86 diverse traits, including diabetes, cardiovascular diseases, neurological 
disorders, cancers, as well as traits like BMI and blood lipids. Each PGS is annotated with 
metadata required for reproducibility as well as accurate application in independent studies. 
Using the PGS Catalog, we demonstrate that multiple PGS can be systematically evaluated 
to generate comparable performance metrics. The PGS Catalog has capabilities for user 
deposition, expert curation and programmatic access, thus providing the community with an 
open platform for polygenic score research and translation.  
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Main Text 
By aggregating the effects of many genetic variants into a single number, polygenic scores 
(PGS) have emerged as a method to predict an individual's genetic predisposition for a 
phenotype1–4. Early studies indicated that combining allelic counts of Genome-wide 
Association Study (GWAS)-significant variants in individuals was predictive of the 
phenotype5–8. Owing to larger and more powerful GWAS, more recent PGS typically 
comprise hundreds-to-millions of trait-associated genetic variants which are combined using 
a weighted sum of allele dosages multiplied by their corresponding effect sizes.  
 
Many PGS have been developed and demonstrated to be predictive of common traits (e.g. 
body mass index [BMI]9, blood lipids10, educational attainment11). Similarly, PGS for various 
diseases have been shown to be predictive of disease  incidence, defining marked increases 
in risk over the lifecourse or at earlier ages for those individuals with high PGS (e.g. coronary 
artery disease [CAD]12,13, breast cancer14, schizophrenia15). Existing risk prediction models 
using traditional risk factors can be improved by incorporating PGS12,16,17. In some cases 
PGS may be the most informative risk factor in pre-symptomatic individuals1,18, and for some 
diseases independent of a family history of the condition19–22. Other potential clinical uses of 
PGS include predicting prognosis, aetiology and disease subtypes; stratification of patients 
according to therapeutic benefit and identification of new disease biomarkers and drug 
targets. Given their multiple applications, a large number of PGS have been developed, with 
over 900 articles indexed in PubMed since 200923. 
 
There is widespread variability in PGS research, even with regard to nomenclature: they can 
be referred to as genetic or genomic scores, and as polygenic risk scores (PRS) or genomic 
risk scores (GRS) if they predict a discrete phenotype (such as a disease)24. There are also 
many approaches to derive PGS using individual level genotype data or GWAS summary 
statistics25. The goals of most computational methods are to select the most predictive set of 
variants in the score, and to adjust their weights to maximise predictive capacity and account 
for linkage disequilibrium (LD) between variants. 

The need for an open resource for polygenic scores 
Multiple barriers inhibit progress in PGS research and the translation of PGS into healthcare 
settings. Lack of best practices and standards, particularly with regard to PGS reporting, are 
major issues identified by our group and others24,26. Reproducibility has been hampered by 
underreporting of key PGS information; ~33% of 165 papers we reviewed during our 
curation efforts did not have adequate variant information (e.g. chromosomal location, effect 
allele and weight) to calculate the PGS for new samples.  
 
Apart from information necessary for PGS calculation, a complete understanding of a score’s 
ability to accurately predict its target trait (also known as analytic validity) is necessary to 
help evaluate clinical utility and enable other applications of PGS. However, the performance 
reported for existing PGS are conditional on study design, participant demographics, case 
definitions, and covariates adjusted for in the original study’s models. While there are few 
direct evaluations of PGS, benchmarking of multiple PGS for the same trait in external data 
provides the comparable performance metrics needed to decide which PGS offers the best 
performance for a particular task and how this varies when important factors change, such 
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as ancestry27. Since PGS are based on data and cohorts of largely European ancestries, 
there is a well-characterised underperformance of PGS when applied to non-European 
individuals, thus the transferability of PGS performance is a particularly important 
challenge28–30.  
 
Here, we present the Polygenic Score Catalog (PGS Catalog; www.PGSCatalog.org): an 
open resource of published PGS annotated with relevant metadata required for accurate 
application and evaluation. The PGS Catalog promotes PGS reproducibility by providing a 
venue to annotate and distribute scores according to current exemplar reporting standards. 
As such, it enables users to re-use and evaluate polygenic scores, thus firmly establishing 
their predictive ability and facilitating studies to investigate clinical utility.  

Development of the PGS Catalog 
The aim of the PGS Catalog is to index and distribute the key aspects of each PGS 
(underlying variants, results, and experimental design) in a standardised representation, in 
order to facilitate evaluations of  analytic validity. To maximise usability, the data 
representation and database were designed to be findable, accessible, interoperable, and 
reusable (FAIR) according to established principles for scientific data management 
(Supplemental Table 1)31.  
 
To define the key information that would need to be captured in the PGS Catalog we 
undertook an initial literature review of 27 highly-cited publications that developed PGS for 
the following traits and diseases based on their potential clinical utility and public health 
burden of disease: coronary artery disease (CAD), diabetes (types 1 and 2), obesity / body 
mass index (BMI), breast cancer, prostate cancer and Alzheimer’s disease. During our 
review we took note of how PGSs were described, how they differed between studies and 
traits, as well as the most common study designs and PGS evaluation scenarios. To capture 
common aspects of PGS studies we built upon the NHGRI-EBI GWAS Catalog’s established 
frameworks to catalog published data from genomic studies, using established conventions 
for representing sample ancestry 32, variant, and trait information 33. Using our survey and 
established frameworks we defined four major data objects: Scores, Samples, 
Performance Metrics, and Publications (Box 1, Supplemental Table 2). These objects 
describe the common PGS development and evaluation processes (Figure 1A), and can be 
used to capture the detailed data elements necessary to evaluate PGS development and 
performance.  
 
To ensure that the PGS Catalog contains the information necessary to describe and 
evaluate PGS, we collaborated with the ClinGen Complex Disease Working group34, 
composed of experts in epidemiology, statistics, implementation science and the actionability 
of genetic results, as well as those with disease-domain specific knowledge and interests in 
PRS application. Together we developed the Polygenic Risk Score Reporting Standards 
(PRS-RS)24, a joint statement describing a set of reporting items that should be described in 
studies developing and evaluating PRS. The PGS Catalog captures the data required by the 
PRS-RS to assess PGS validity, while also being flexible enough to capture multiple different 
study designs and evaluation scenarios in a structured database. The PGS Catalog 
therefore provides a venue to index PGS analyses and maximize uptake of these reporting 
standards.  
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Box 1: Description of the PGS Catalog objects and metadata. 
(Field-by-field reporting items are available in Supplemental Table 2) 
 
Scores (e.g. PGS/PRS/GRS) are the main data object-type in the PGS Catalog, linked to 
all other objects internally and can be cited or externally linked to by its persistent identifier 
(e.g. PGS000018). Each PGS is annotated with information about the phenotype it 
predicts (Reported Trait), and mapped to Experimental Factor Ontology (EFO) terms35,36 to 
consistently annotate related scores and facilitate data linkage and search. Score 
development details, including computational algorithms and parameters are recorded for 
each score. The GWAS summary statistics used to derive the model, if any, are linked as 
Sample objects and  further linked to the GWAS Catalog if applicable33; any other 
datasets used for training are also linked as Sample objects.   Each PGS has a PGS 
Scoring File, a flat text file in a consistent format (Supplemental Note 1) which contains 
the variant-level information necessary to calculate the score on new data (minimally the 
genome build, rsID or chromosomal positions, effect alleles and their weights). 
 
Samples are described with detailed information to enable the interpretation and 
assessment of the validity of a PGS. Sample size (stratified by cases and controls if 
dichotomous) and participant ancestry are described using frameworks identical to the 
GWAS Catalog - this enables the systematic tracking of participant diversity in PGS37. To 
facilitate reproducible analyses, phenotyping descriptions (e.g. case definition, ICD-9/10 
codes, measurement methods), the sex distribution, and the distributions of participant 
ages and follow-up times for prospective study designs can also be recorded. To ensure 
that PGS are not evaluated on individuals who contributed to the original GWAS or PGS 
training cohorts, Samples can be annotated with existing cohort names38. Groups of 
Samples used to evaluate PGS are given a Sample Set (PSS) ID. 
 
Performance Metrics assess the validity of a PGS in a Sample Set, independent of the 
samples used for score development. Common metrics include standardised effect sizes 
(odds/hazard ratios [OR/HR], and regression coefficients [𝛽]), classification accuracy 
metrics (e.g. AUROC, C-index, AUPRC), but other relevant metrics (e.g. calibration [𝜒2]) 
can also be recorded. The covariates used in the model (most commonly age, sex, and 
genetic principal components (PCs) to account of population structure) are also linking to 
each set of metrics. Multiple PGS can be evaluated on the same Sample Set and further 
indexed as directly comparable Performance Metrics.  
 
Publications provide provenance information for Scores and Performance Metrics 
(including those from external evaluations of existing PGS). Both journal articles and pre-
prints can be indexed by either DOI or PubMed ID. 

 

The PGS Catalog: data content, access, and expansion 
Any published or preprinted PGS can be added to the PGS Catalog provided it has (1) 
established analytic validity in external samples, and (2) the information necessary to 
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calculate the score (see Supplemental Note 2 for additional details). To populate the PGS 
Catalog we screened over 180 publications for eligibility, of which 110 publications were 
eligible for curation and inclusion. The PGS Catalog currently contains 192 consistently-
annotated PGS, curated from 69 publications (with the earliest published in 2008). These 
PGS predict a wide variety of diseases (e.g. cardiovascular diseases and different types of 
cancer) as well as anatomical (e.g. body mass index (BMI), bone density), cellular (e.g. 
blood cell counts and phenotypes) and molecular (serum urate, cholesterol and triglyceride 
levels) traits and measurements, encompassing 86 unique mapped ontology terms. To 
assess external validity the Catalog also indexes the results of evaluations of existing PGS 
in new contexts (e.g. direct comparisons of multiple PGS on the same sample); nine of these 
benchmarking publications evaluating nine existing PGS are also included in the current 
release of the PGS Catalog. Of the 68 publications developing at least one new PGS, nine 
also include a benchmarking of the performance to existing PGS. 
 
The PGS Catalog can be accessed through a user interface (www.PGSCatalog.org) where 
indexed publications, scores and traits are browsable and searchable. Metadata describing 
PGS development and evaluation can be viewed on each score’s page (annotated example 
in Figure 1B). Pages describing traits with available PGS and the scores developed and 
evaluated within each publication can also be viewed (Supplemental Figure 1). Each PGS 
Scoring File contains a header describing the provenance of the score and consistently 
formatted columns describing the variants, alleles and weights. The Scoring File can be 
used in conjunction with common tools (e.g. PLINK39; (Supplemental Note 1)). The metadata 
and scoring files can be downloaded alone or in bulk from our website and FTP server; 
programmatic access to the database is also available through a RESTful API (complete 
implementation details are provided in Supplemental Note 3). Importantly the PGS Catalog 
provides users a source of existing scores that can be directly applied to their own data, 
making results obtained in PGS using the same score more comparable and circumventing 
the need to develop a new PGS for every application.   
 
The Catalog identifies new papers from a manual literature search and user submissions, 
which subsequently undergo curation prior to their inclusion. Data curation and submission 
have been designed around a flexible template40, that allows common PGS development 
and evaluation details and results to be described according to our reporting items, and can 
be submitted directly to the Catalog for inclusion after validation by curators 41. Authors of 
PGS studies are encouraged to submit new PGS as well as subsequent PGS validations for 
indexing (by e-mail to pgs-info@ebi.ac.uk), to grow the Catalog for the community, to 
maximize the utility of their PGS, and to enable reproducibility. 

Systematic evaluation of PGS yields comparable performance metrics 
To demonstrate re-use and systematic comparison, we utilised the Catalog to assess the 
performance of nine PGSs for colorectal cancer in European, South Asian and African 
ancestries in the UK Biobank (UKB), a dataset external to all scores42 (methods described in 
Supplemental Note 4, cohort described in Supplemental Table 3). For each ancestry group, 
each PGS was evaluated using the standardised effect size of the PGS (OR/HR per 
standard deviation increase of PGS) and changes in classification accuracy (AUROC and C-
index) as performance metrics (Figure 2, Supplemental Figure 2). Eight of the nine scores 
were predictive of colorectal cancer in European ancestries of UKB to varying degrees, and 
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the magnitudes of effect sizes for two of the PGS were similar to that previously reported 
(Supplemental Figure 2). The score not significantly predictive of colorectal cancer in 
Europeans (PGS000151) comprised only 14 variants, and its predictive capacity in 
Europeans had not been previously evaluated. In South Asian and African ancestries of 
UKB, which combined are ~8% of total UKB individuals, the PGSs were largely not 
significantly predictive (Supplemental Table 2).  

Conclusions and future developments  
The PGS Catalog serves the community as a platform for polygenic score studies. The 
Catalog makes polygenic scores available for analysis in a standardised format along with 
consistent metadata, thereby enabling direct comparison between scores. We hope to 
facilitate reproducible PGS analyses by working with others towards standard formats and 
content of scoring files, and to provide new tools to support this (e.g. for validation and 
scoring). For instance, to address a common user request, we will harmonise PGS scoring 
files to frequently utilised genome builds (GRCh37 and 38). As the database grows, we will 
leverage the trait ontology to extend search functionality, allowing users to better identify and 
extract PGSs for any trait of interest.  
 
PGS reproducibility must ensure that calculations are valid and consistent, with minimal 
variability across users. Based on community need, we intend to provide reference sample 
calculations and population distributions, similar to those for clinical tests. These 
enhancements will facilitate systematic and external PGS benchmarking studies, which are 
key to evaluating the validity of existing PGS.  
 
As PGS increase in number, along with the diversity of phenotypes they predict, we will 
continue to grow the Catalog, curating new data and simplifying processes for researchers to 
deposit PGS they have developed and evaluated. We hope that researchers will join us in 
promoting data-sharing and submitting data so that the PGS Catalog provides a 
comprehensive resource for the community, enabling reproducibility as well as subsequent 
applications and translation of PGS.  
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Figures 

 

Figure 1. Common aspects of PGS analyses that are captured and displayed in the 
PGS Catalog. (A) PGS analyses can broadly be described in two stages: determining the 
set of variants and weights that will predict a trait of interest (Score Development), and an 
evaluation of how predictive the PGS is in an external set of samples (PGS Evaluation). 
Major data items (Box 1) that can be queried and browsed in the PGS Catalog are 
highlighted as coloured boxes, and linked to metadata items that are recorded. (B-C) 
Example of how PGS metadata is displayed for each score on PGSCatalog.org (example 
score PGS00007 14). Sections are highlighted with coloured bars corresponding to the data 
objects they display in A. 
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Figure 2. Benchmarking the association of nine colorectal cancer PGS in UKB. Each 
PRS was evaluated using a Cox proportional hazards regression model (age-as-timescale) 
to predict colorectal cancer status. Each model was fitting separately for each ancestry 
group. Standardised effect size (Hazard Ratio; HR), together with 95% confidence interval 
(CI), describes the increase in hazard per standard deviation increase of each PGS. Models 
were adjusted for sex, recruitment country, genotyping array, and the first 10 genetic 
principal components within each ancestry group. 
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Supplemental Text 

 

Supplemental Note 1. PGS Catalog Scoring Files 
The PGS Catalog’s Scoring File format is described on our website: 
https://www.pgscatalog.org/downloads/. Each scoring file (variant information, effect 
alleles/weights) is formatted to be a gzipped tab-delimited text file, labelled by its PGS 
Catalog Score ID (e.g. PGS000001.txt.gz). We developed the scoring file format to 
closely resemble existing formats used to calculate scores in common software (e.g. PLINK) 
so that users could easily apply these scores within existing pipelines. 
 
Scores are extracted from the relevant publication, and a consistent header (lines starting 
with #) has been added to each file listing relevant information about the PGS with links to 
the original publication and Catalog identifier: 

### PGS CATALOG SCORING FILE - see www.pgscatalog.org/downloads/#dl_ftp for 
additional information 
## POLYGENIC SCORE (PGS) INFORMATION 
# PGS ID = PGS identifier, e.g. 'PGS000001' 
# Reported Trait = trait, e.g. 'Breast Cancer' 
# Original Genome Build = Genome build/assembly, e.g. 'GRCh38' 
# Number of Variants = Number of variants listed in the PGS 
## SOURCE INFORMATION 
# PGP ID = PGS publication identifier, e.g. 'PGP000001' 
# Citation = Information about the publication 
rsID chr_name chr_position effect_allele reference_allele... 

 
PGS scoring files are re-formatted to have consistent column headings based on the 
following schema: 
 
Column 
Header Field Name Field Description Mandatory? 

rsID 

dbSNP 
Accession ID 
(rsID)  The SNP’s rs ID 

YES - Each PGS Scoring file must 
have either an rsID column or 
both a chr_name and 
chr_position column to 
identify the variant. 

chr_name 
Location - 
Chromosome  

Chromosome name/number 
associated with the variant 

chr_positio
n 

Location - Base 
pair position 
within the 
Chromosome 

Chromosomal position associated 
with the variant 

effect_alle
le Effect Allele 

The allele that's dosage is counted 
(e.g. {0, 1, 2}) and multiplied by 
the variant's weight 
('effect_weight') when calculating 
score. The effect allele is also 
known as the 'risk allele'. YES   
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reference_a
llele Reference Allele The other allele(s) at the loci 

Suggested - most software 
requires this for the calculation of 
scores and matching of the 
variants to existing genotype data,  

effect_weig
ht Variant Weight 

Value of the effect that is 
multiplied by the dosage of the 
effect allele ('effect_allele') when 
calculating the score. YES 

locus_name Locus Name 

This is kept in for loci where the 
variant may be referenced by the 
gene (APOE e4). It is also 
common (usually in smaller PGS) 
to see the variants named 
according to the genes they 
impact. Optional 

weight_type Type of Weight 

Whether the author supplied 
Variant Weight is a: beta (effect 
size), or a log(OR/HR 
(odds/hazard ratio)) Optional 

allelefrequ
ency_effect 

Effect Allele 
Frequency 

Reported effect allele frequency, if 
the associated locus is a 
haplotype then haplotype 
frequency will be extracted. Optional 

is_interact
ion FLAG: Interaction 

This is a TRUE/FALSE variable 
that flags whether the weight 
should be multiplied with the 
dosage of more than one variant. 
Interactions are demarcated with a 
_x_ between entries for each of 
the variants present in the 
interaction.  Optional 

is_recessiv
e 

FLAG: Recessive 
Inheritance Model 

This is a TRUE/FALSE variable 
that flags whether the weight 
should be added to the PGS sum 
only if there are 2 copies of the 
effect allele (e.g. it is a recessive 
allele). Optional 

is_haplotyp
e 

FLAG: Haplotype 
or Diplotype 

This is a TRUE/FALSE variable 
that flags whether the effect allele 
is a haplotype/diplotype rather 
than a single SNP. Constituent 
SNPs in the haplotype are semi-
colon separated.  Optional is_diplotype 

imputation_
method 

Imputation 
Method 

This describes whether the variant 
was specifically called with a 
specific imputation or variant 
calling method. This is mostly kept 
to describe HLA-genotyping 
methods (e.g. flag SNP2HLA, 
HLA*IMP) that gives alleles that 
are not referenced by genomic 
position. Optional 

variant_des
cription 

Variant 
Description 

This field describes any extra 
information about the variant (e.g. 
how it is genotyped or scored) that Optional 
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cannot be captured by the other 
fields. 

inclusion_c
riteria 

Score Inclusion 
Criteria 

Explanation of when this variant is 
included into the PGS (e.g. if it 
depends on the results from other 
variants). Optional 
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Supplemental Note 2. Inclusion Criteria for the PGS Catalog. 
For the current PGS Catalog inclusion criteria see: 
https://www.pgscatalog.org/about/#eligibility. For a publication's data to be included in the 
PGS Catalog, it must fulfill the following criteria for either a newly developed polygenic score 
or an evaluation of an existing score(s): 

A newly developed PGS  
This includes the following information about the score and its predictive ability (evaluated on 
samples not used in training): 

● Variant information necessary to apply the PGS to new samples (variant rsID and/or 
genomic position, weights/effect sizes, effect allele, genome build). 

● Information about how the PGS was developed (computational method, variant 
selection, relevant parameters). 

● Descriptions of the samples used for training (e.g. discovery of the variant 
associations [these can usually be extracted directly from the GWAS Catalog using 
GCST IDs], as well as fitting the PGS) and external evaluation. 

● Establishment of the PGS' analytic validity, and a description of its predictive 
performance (e.g. effect sizes [beta, OR, HR, etc.], classification accuracy, proportion 
of the variance explained (R2), and/or covariates evaluated in the PGS prediction). 

An evaluation of a previously developed PGS 
This would include the evaluation of PGS already present in the Catalog (or one that meets 
the inclusion criteria specified above), on samples not used for PGS training. The 
requirements for description would be the same as for the evaluation of a new PGS. 
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Supplemental Note 3. PGS Catalog Data Access and Implementation. 
Data in the PGS Catalog is provided under EMBL-EBI’s standard terms of use 
(https://www.ebi.ac.uk/about/terms-of-use/). The data in the Catalog can be currently 
accessed in the following three ways: 
 

● Bulk download of the entire PGS Catalog's metadata, describing all PGS in terms of 
their publication source, samples used for development/evaluation, and related 
performance metrics (details and links: www.pgscatalog.org/downloads/). 

● The PGS Catalog FTP server (available at: 
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/) is indexed by Polygenic Score (PGS) 
ID to allow programmatic access to the Scoring Files and metadata for each PGS, 
archived versions of the scoring files and metadata are also stored for reference 
(additional details: www.pgscatalog.org/downloads/). 

● A REST API is also provided to allow programmatic access and querying of the PGS 
Catalog, better enabling other applications to be built on top of the resource.  
Endpoints to retrieve all or individual PGS Catalog data objects (Publications, 
Scores, Samples, Traits, Performance Metrics) are available (details at: 
https://www.pgscatalog.org/rest/). 

The PGS Catalog is also is indexed on FAIRsharing.org (ref: bsg-d001448), and polygenic 
score identifiers (e.g. PGS000018) can be externally resolved via IDENTIFIERS.org (ref: 
pgs). A description of the FAIR indicators for the PGS Catalog are provided in Supplemental 
Table 1. 
 
Additional bibliographic information for PGS Catalog Publication objects are retrieved from 
EuropePMC (e.g. title, authors, journal, publication dates)43. Additional information for each 
ontology term (e.g. synonyms, and mapped terms from other ontologies and disease coding 
resources [e.g. ICD/READ/SNOMED]) from the EFO 35 are obtained using the EMBL-EBI 
Ontology Lookup Service (OLS)36. 
 
The PGS Catalog website and database are developed using the Django framework (version 
3.0; https://djangoproject.com) in Python (version 3.7; https://www.python.org) with a 
PostgreSQL database (version 11; https://www.postgresql.org/). The website and database 
are both deployed on the Google Cloud (https://cloud.google.com/). The codebase for the 
Catalog can be viewed within our public GitHub repository (https://github.com/PGScatalog), 
currently provided under an Apache 2.0 License.  
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Supplemental Note 4. Colorectal cancer benchmarking methods 
To evaluate the predictive ability of PGS for colorectal cancer in the Catalog we used data 
from the UK Biobank (UKB), a cohort of ~500,000 participants from three countries 
(England, Wales, Scotland) of the United Kingdom42. Our analysis included 421,332 
participants with genetic and phenotypic data (Supplemental Table 2), corresponding to 
409,253 participants of European ancestry (UKB “White British” subset), 6,086 South Asian 
ancestry, and 5,984 African ancestry participants. South Asian (self-identifying as: Indian, 
Pakistani, or Bangladeshi) and African ancestry (self-identifying as: Caribbean, African, or 
Any other black background) participants were defined using an identical process to the 
White British participants, using principal components of genetic ancestry to identify a 
homogenous subset of self-identifying individuals by clustering42. 
 
Diagnosis of colorectal cancer was performed using data linkage to the UK’s national cancer 
and death registries. Cases of colorectal cancer were identified using previously used ICD 
codes in UKB 44 :  

ICD9: 153.0 - 153.9, 154.0, 154.1, 154.8  
ICD10: C18.0 - C18.9, C19, C20, C21.8 

For each colorectal cancer diagnosis or death we recorded the date and age of the event. 
colorectal cancer events were defined as the first event of colorectal cancer, and participants 
were censored after the last cancer registry linkage date (2016-03-31). We excluded 449 
participants who had self-reported history of colorectal cancer at recruitment and no linked 
cancer registry data.  
 
PGS files were downloaded from the PGS Catalog and scores for each participant were 
calculated using PLINK39. Scores were standardised within each ancestry; the mean and 
standard deviation for colorectal cancer cases and controls are reported by ancestry group 
(Supplemental Table 3). 
 
Each score’s predictive ability is measured in terms of classification of cases vs controls, via 
the standardised effect size of the PGS (OR/HR per standard deviation increase of PGS) 
and classification accuracy (AUROC and concordance statistic [C-index]). We measured the 
HR and C-index using a Cox Proportional Hazards model with age-as-timescale, adjusting 
for sex, genotyping array, country of recruitment, and 10 PCs of genetic ancestry. We 
measured the OR and AUROC using a logistic regression model adjusting for the sex, age 
at recruitment, country of recruitment, genotyping array, and 10 PCs of genetic ancestry. 
The effect sizes are reported with the 95% confidence interval for each PGS (Supplemental 
Table 3). Statistical analyses were performed in python: the Cox model was implemented 
using the lifelines package45, and logistic regression was performed using the statsmodels 
package46. 
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Supplemental Figures 

Supplemental Figure 1. Examples of PGS Catalog Publication and Trait website 
pages. (A) Example of how each Publication and its related metadata (links to publication, 
EuropePMC, and PGS that were developed and evaluated within the paper) are displayed 
on PGSCatalog.org (example publication PGP0000712). (B) Example of how each Trait 
(ontology term, description, synonyms, and mapped terms [e.g. ICD/SNOMED] extracted 
from EFO35,36) and its related metadata (PGS that have predicted the current trait, and 
subsequent evaluation of those scores) are displayed on PGSCatalog.org (example trait: 
colorectal cancer, EFO_0005842). Sections of each webpage are highlighted with coloured 
bars corresponding to the data objects they display in Figure 1A. 
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Supplemental Figure 2. Performance Metrics for colorectal cancer PGS in UKB. Each 
PRS was evaluated within a logistic regression model for predicting colorectal cancer status 
for participants in UKB (A-B), and a separate Cox proportional hazards regression model 
(age-as-timescale) (Figure 2, C). (A) Standardised effect size (Odds Ratio; OR) describing 
the odds of having colorectal cancer per unit increase in each PGS. Previously reported 
effect sizes that were recorded in the Catalog are also plotted for PGS000074 and 
PGS000146. (B) Change in model classification accuracy (Area Under the Reciever 
Operating Characteristic Curve; AUROC) when the PGS is added to a logistic regression 
model including the existing covariates (age at recruitment, sex, recruitment country, 
genotyping array, and 10 PCs of genetic ancestry). (C) Change in model classification 
accuracy (concordance statistic; C-index) when the PGS is added to a risk model including 
the existing covariates (sex, recruitment country, genotyping array, and 10 principal 
components [PCs] of genetic ancestry).   
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Supplemental Tables 

 

Supplemental Table 1. FAIR indicators of PGS Catalog. 
This table describes details of how the current PGS Catalog conforms to FAIR data 
principles. For the purposes of this table the Score constitutes the data (e.g. variants, effect 
weights and alleles), and is linked to metadata (Samples, Performance Metrics, Publications) 
describing it.  
 

Core FAIR 
principle 

FAIR principle PGS Catalog indicator 

Findable 
 

F1. (meta)data are assigned a 
globally unique and persistent 
identifier 

Each polygenic score is assigned a unique 
identifier (e.g. PGS000018) that is linked to all 
relevant metadata and publication sources in the 
Catalog. The PGS identifier can be resolved 
externally through IDENTIFIERS.org (prefix: pgs) 

F2. data are described with rich 
metadata (defined by R1 below) 

Polygenic scores included in the database are 
well-described, both in terms of their provenance 
and ability to be applied. Details in Supplemental 
Table 1 and on our website at: 
http://www.pgscatalog.org/docs/  

F3. metadata clearly and explicitly 
include the identifier of the data it 
describes 

All metadata is linked to either a Polygenic Score 
(PGS), Sample Set (PSS), Performance Metric 
(PPM), or Publication (PGP) ID within the 
database. Ontology terms are described using 
the identifiers from the Experimental Factor 
Ontology. Publication sources are described 
using DOI and PMID.  
 
Scoring files for each PGS are labelled with their 
PGS ID, and finable with the metadata on our 
FTP 
(http://ftp.ebi.ac.uk/pub/databases/spot/pgs/) 
described here: 
http://www.pgscatalog.org/downloads/ 

F4. (meta)data are registered or 
indexed in a searchable resource 

The PGS Catalog is indexed at FAIRsharing.org 
(ID: bsg-d001448) and indexed by Google 
Search. 

Accessible A1. (meta)data are retrievable by 
their identifier using a standardized 
communications protocol 

Metadata can be easily viewed on our web 
interface (www.pgscatalog.org) with visible 
download links for each Score.  
 
Scoring files and metadata can also be browsed 
and downloaded from our FTP site by PGS ID. 
 
The full Catalog can also be accessed using our 
REST API: https://www.pgscatalog.org/rest/. 
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A1.1 the protocol is open, free, and 
universally implementable 

Yes, the www.pgscatalog.org website is freely 
accessible to all.  

A1.2 the protocol allows for an 
authentication and authorization 
procedure, where necessary 

Not applicable 

A2. metadata are accessible, even 
when the data are no longer 
available 

Archived versions of the scoring files and 
metadata are stored for the complete database 
as well as individual scores on our FTP 
(http://ftp.ebi.ac.uk/pub/databases/spot/pgs/) 

Interoperable I1. (meta)data use a formal, 
accessible, shared, and broadly 
applicable language for knowledge 
representation. 

PGS metadata is distributed from our API using 
JSON formats, the REST API is documented 
using the OpenAPI Specification (OAS3; 
https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.2.md).  

I2: (Meta)data use vocabularies that 
follow the FAIR principles 

The PGS identifier can be resolved externally 
through IDENTIFIERS.org (prefix: pgs) 

I3. (meta)data include qualified 
references to other (meta)data 

Traits are represented using (represented using 
ontology terms) associated with PGS are linked 
to the Experimental Factor Ontology (EFO) terms 
and include links to the EFO.  

Reusable R1. meta(data) are richly described 
with a plurality of accurate and 
relevant attributes 

Polygenic scores included in the database are 
well-described, both in terms of their provenance 
and ability to be applied. Details in Supplemental 
Table 1 and on our website at: 
http://www.pgscatalog.org/docs/  

R1.1. (meta)data are released with a 
clear and accessible data usage 
license 

All data are made available through EMBL-EBI’s 
standard terms of use 
(https://www.ebi.ac.uk/about/terms-of-use/) 

R1.2. (meta)data are associated with 
detailed provenance 

Each PGS and Performance Metric is linked to a 
source Publication that can be accessed by 
either a digital object identifier (DOI) or PubMed 
ID (PMID).  

R1.3. (meta)data meet domain-
relevant community standards 

The PGS Catalog is consistent with Polygenic 
Risk Score Reporting Standards (PRS-RS) 24 
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Supplemental Table 2. PGS Catalog Reporting Items. 
This table describes the reporting items that can be captured for each of the data objects in 
the PGS Catalog.  
 
PGS Catalog 
Data Objects 

Reporting Item Description Comments 

Publication 
(Identified by 

PGP ID) 

PubMed ID (PMID) PubMed Identification number 

This information is 
extracted and annotated 
according to 
EuropePMC 43. 
 
Publications are flagged 
if they are preprints (e.g. 
not undergone peer 
review). 

Digital Object Identifier 
(DOI) 

The DOI of each publication is curated in 
addition to the PMID to allow unpublished 
work (e.g. pre-prints) to be added to the 
Catalog. 

Title Title of the publication or preprint 

Author(s) List of publication authors, the first author is 
also extracted for a shorter display. 

Journal The name of the publication source. 

Publication Date  Date of publication (with respect to the PMID 
or DOI upon DB upload). 

Release Date Date the publication was added to the PGS 
Catalog.  

Score 
(Identified by 

PGS ID) 

Reported Trait The author-reported trait (e.g. body mass 
index [BMI], or coronary artery disease) that 
the PGS has been developed to predict. 

 

Mapped Trait(s) The Reported Trait is mapped to 
Experimental Factor Ontology (EFO) terms 
and their respective identifiers by PGS 
Catalog curators. For more information about 
the ontology traits see the Trait object. 

Linked to Ontology 
Term(s). 

PGS Name This may be the name that the authors use to 
refer to the PGS, or a name that a curator 
has assigned to identify the score during the 
curation process (before a PGS ID has been 
given). 

 

Original Genome Build The version of the genome that the variants 
present in the PGS are associated with. 
Listed as NR (Not Reported) if unknown. 

 

Number of Variants Number of variants used to calculate the 
PGS. In the future this will include a more 
detailed description of the types of variants 
present. 

 

Number of Variant 
Interaction Terms 

Number of higher-order variant interactions 
included in the PGS.  

PGS Development 
Method 

The name or description of the method or 
computational algorithm used to develop the 
PGS. 
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PGS Development 
Details/Relevant 
Parameters 

A description of the relevant inputs and 
parameters relevant to the PGS development 
method/process. 

 

Contributing Samples: 
Source of Variant 
Associations (GWAS) 

Samples used to define the variant 
associations/effect-sizes used in the PGS. 
 
These data are extracted from and linked to 
the NHGRI-EBI GWAS Catalog when a 
GWAS study ID (GCST) is provided. 

Linked as a Sample 
object(s). 

Contributing Samples: 
Score 
Development/Training 

Samples used to develop or train the score 
(e.g. not used for variant discovery, and non-
overlapping with the samples used to 
evaluate the PGS predictive ability). 

Linked as a Sample 
object(s). 

Publication/Citation A PGP ID links the PGS to the publication in 
which it was described. 

Linked as a Publication 
object. 

Release Date Date the score was added to the PGS 
Catalog.  

Ontology 
Term 

(Mapped traits 
are identified 

by an EFO ID) 

Name The trait label from the ontology. 

This information is 
extracted and annotated 
according to 
Experimental Factor 
Ontology (EFO) 35 using 
the Ontology Lookup 
Service (OLS) 36. 

Identifier The Experimental Factor Ontology ID 
(EFO_ID) identifier to consistently refer to 
traits using the EFO, and to other resources 
like the NHGRI-EBI GWAS Catalog. 

Description Detailed description of the trait from EFO. 

Synonyms Other names for the trait. 

Mapped Term(s) Includes references to terms in other 
databases and ontologies (e.g. ICD9/ICD10, 
MONDO, SNOMEDCT, etc.). 

Sample 
 

(Groups of 
samples used 
in evaluations 

are given a 
Sample Set 

[PSS ID]) 

Number 
of Individuals 

Number of individuals included in the sample 

Similar to the GWAS 
Catalog sample 
descriptions, and directly 
extracted from the 
GWAS Catalog for 
samples with a GCST 
ID. 

Number of Cases Number of individuals with the phenotype of 
interest (if dichotomous). 

Number of Controls Number of individuals without the phenotype 
of interest (if dichotomous). 

Percent of participants 
who are Male 

Percent individuals in the sample that are 
identified as male. 

Age of Study 
Participants 

A summary of the age 
distribution(mean/median, range/confidence 
intervals) of study participants. 

Broad Ancestral 
Category 

Author reported ancestry is mapped to the 
best matching ancestry category from the 
NHGRI-EBI GWAS Catalog framework (Table 
1, Morales et al. (2018)). 
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Ancestry A more detailed description of sample 
ancestry that usually matches the most 
specific description described by the authors 
(e.g. French, Chinese). 

Country of recruitment Author reported countries of recruitment (if 
available). 

Additional Ancestry 
Description 

Any additional description not captured in the 
structured data (e.g. founder or genetically 
isolated populations, or further description of 
admixed samples). 

Age of Study 
Participants 

A summary (mean/median, range/confidence 
intervals) of study participants ages.  

Participant Follow-up 
Time 

A summary of the follow-up time 
(mean/median, range/confidence intervals) 
for participants that are part of a prospective 
cohort/study design (used to measure 
disease incidence). 

 

Detailed Phenotype 
Descriptions 

A description of how the phenotype was 
measured or defined (e.g. ICD codes used to 
identify cases/phenotypes in EHR data). 

 

Cohort(s) A list of cohorts that collected the samples. The initial list of common 
cohorts used in genetics 
studies that seeded 
these annotations is 
from Mills & Rahal. 
Communications Biology 
(2019) 38 

Additional 
Sample/Cohort 
Information 

Any additional description about the samples 
and what they were used for that is not 
captured by the structured categories (e.g. 
sub-cohort information). 

 

Performance 
Metrics 

(Identified by 
a PPM ID) 

Evaluated Score  Linked as a Score 
object 

Evaluated Samples ID that links to the samples the displayed 
PGS evaluated. 

Linked as a Sample 
object(s). 
 
Samples used in 
evaluations are given a 
Sample Set (PSS ID) so 
that PGS evaluated on 
the exact same samples 
can be extracted from 
the Catalog. 

Trait This field displays both the Reported and 
Mapped Traits. The reported trait often 
corresponds to the test set names reported in 
the publication, or more specific aspects of 
the phenotype being tested (e.g. if the 
disease cases are incident vs. recurrent 

Can be linked to a Trait 
object. 
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events). 

Reported Metric: PGS 
Effect Size 

Standardised effect sizes, per standard 
deviation [SD] change in PGS. Examples 
include regression coefficients (betas) for 
continuous traits, Odds ratios (OR) and/or 
Hazard ratios (HR) for dichotomous traits 
depending on the availability of time-to-event 
data. The reported values of 

the performance metrics 
are all reported similarly 

(e.g. the estimate is 
recorded along with the 
95% confidence interval 

(if supplied) 

Reported Metric: PGS 
Classification Metrics 

Examples include the Area under the 
Receiver Operating Characteristic (AUROC) 
or Harrell's C-index (Concordance statistic). 

Reported Metric: Other Metrics that do not fit into the structured 
categories. Examples include: R2 (proportion 
of the variance explained), reclassification 
metrics, p-values from association tests, 
binned comparisons of PGS risk (e.g. odds 
ratio of disease risk in the top vs. bottom 
decile of score). 

Covariates Included in 
PGS Model 

List of covariates used in the prediction model 
to evaluate the PGS. Examples include: age, 
sex, smoking habits, etc. 

 

Other Relevant 
Information 

Any other information relevant to the 
understanding of the performance metrics.  

Source ID that links to the publication where the 
performance metrics were reported. 

Linked as a Publication 
object. 
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Supplemental Table 3. UKB Benchmarking cohort description and 
results.  
Cohort age and sex demographics broken down by colorectal cancer case/control status and 
participant ancestry. The distribution (mean and standard deviation [SD]) of each 
standardised PGS in colorectal cancer cases is also given, along with its effect size (Hazard 
Ratio; HR), citation and number of variants included in the PGS; the distribution of each PGS 
in controls is zero-mean and unit-variance.  

  European South Asian African Ancestry 

  Cases Controls Cases Controls Cases Controls 

Cohort Demographics 

N 5188 (1.28%) 404065 31 (0.51%) 6055 51 (0.86%) 5933 

N (Female) 2213 218990 18 2751 30 3503 

N (Male) 2975 185075 13 3304 21 2430 

Mean age at recruitment (SD) 61.97 (6.15) 57.35 (8.00) 57.87 (7.93) 53.63 (8.45)  58.34 (8.35) 52.87 (8.06)  

Mean event/censoring age (SD) 61.47 (8.66) 64.51 (7.98) 58.38 (8.15) 60.43 (8.42) 56.88 (9.96) 59.57 (8.07) 

PGS distribution and effect size 

PGS000055 
Case PGS Distribution = 

0.32 (1.00) 
 

HR = 1.38 [1.34 - 1.42] 

Case PGS Distribution = 
-0.10 (0.85) 

 
HR = 0.9 [0.63 - 1.29] 

Case PGS Distribution = 
0.17 (1.07) 

 
HR = 1.2 [0.91 - 1.58] 

Schmit SL et al. J 
Natl Cancer Inst 

(2019) 
76 

PGS000074 Case PGS Distribution = 
0.30 (1.01) 

 
HR = 1.35 [1.31 - 1.38] 

Case PGS Distribution = 
0.18 (0.71)  

 
HR = 1.22 [0.85 - 1.76] 

Case PGS Distribution = 
-0.02 (0.96) 

 
HR = 0.99 [0.75 - 1.31] 

Graff RE et al. 
bioRxiv (2020) 103 

PGS000146 
Case PGS Distribution = 

0.26 (1.00) 
 

HR = 1.3 [1.27 - 1.34] 

Case PGS Distribution = 
-0.06 (0.88) 

 
HR = 0.96 [0.67 - 1.36] 

Case PGS Distribution = 
0.06 (1.01) 

 
HR = 1.06 [0.8 - 1.39] 

Hsu L et al. 
Gastroenterology 

(2015) 
27 

PGS000147 
Case PGS Distribution = 

0.18 (1.01) 
 

HR = 1.2 [1.17 - 1.23] 

Case PGS Distribution = 
0.37 (0.97) 

 
HR = 1.44 [1.01 - 2.06] 

Case PGS Distribution = 
0.09 (0.89) 

 
HR = 1.1 [0.84 - 1.44] 

Ibáñez-Sanz G et 
al. Sci Rep (2017) 21 
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PGS000148 
Case PGS Distribution = 

0.28 (1.00) 
 

HR = 1.32 [1.28 - 1.35] 

Case PGS Distribution = 
-0.03 (0.84)  

 
HR = 0.97 [0.67 - 1.39] 

Case PGS Distribution = 
0.15 (1.03) 

 
HR = 1.17 [0.89 - 1.54] 

Jeon J et al. 
Gastroenterology 

(2018) 
63 

PGS000149 
Case PGS Distribution = 

0.25 (1.00)  
 

HR = 1.28 [1.25 - 1.32] 

Case PGS Distribution = 
0.01 (0.95) 

 
HR = 1.03 [0.72 - 1.47] 

Case PGS Distribution = 
0.10 (1.10) 

 
HR = 1.12 [0.85 - 1.48] 

Smith T et al. Br J 
Cancer (2018) 41 

PGS000150 
Case PGS Distribution = 

0.26 (1.00) 
 

HR = 1.3 [1.27 - 1.34] 

Case PGS Distribution = 
0.05 (0.91) 

 
HR = 1.08 [0.76 - 1.55] 

Case PGS Distribution = 
0.08 (0.95) 

 
HR = 1.09 [0.83 - 1.44] 

Weigl K et al. 
Gastroenterology 

(2018) 
48 

PGS000151 Case PGS Distribution = 
0.00 (1.02)  

 
HR = 1 [0.97 - 1.03] 

Case PGS Distribution = 
-0.10 (0.88) 

 
HR = 0.89 [0.63 - 1.27] 

Case PGS Distribution = 
0.12 (1.07) 

 
HR = 1.13 [0.87 - 1.48] 

Xin J et al. Gene 
(2018) 14 

PGS000154 
Case PGS Distribution = 

0.20 (1.00) 
 

HR = 1.23 [1.2 - 1.26] 

Case PGS Distribution = 
-0.06 (0.93) 

 
HR = 0.96 [0.67 - 1.36] 

Case PGS Distribution = 
0.21 (1.05) 

 
HR = 1.25 [0.95 - 1.64] 

Shi Z et al. Cancer 
Med (2019) 30 
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