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Abstract 

Objective: To review evidence on routinely prescribed drugs in the UK that could up or 
downregulate Angiotensin Converting Enzyme 2 (ACE2) and potentially affect COVID-19 disease 

Design:  Systematic review 

Data source: MEDLINE, EMBASE, CINAHL, the Cochrane Library and Web of Science  

Study selection: Any design with animal or human models examining a currently prescribed UK 
drug compared to a control, placebo or sham group, and reporting an effect on ACE2 level, 
activity or gene expression. 

Data extraction and synthesis: MEDLINE, EMBASE, CINAHL, the Cochrane Library, Web of 
Science and OpenGrey from inception to 1st April 2020. Methodological quality was assessed 
using the SYRCLE’s risk of bias tool for animal studies and Cochrane risk of bias tool for human 
studies. 

Results: We screened 3,360 titles and included 112 studies with 21 different drug classes 
identified as influencing ACE2 activity. Ten studies were in humans and 102 were in animal 
models None examined ACE2 in human lungs. The most frequently examined drugs were 
Angiotensin Receptor Blockers (ARBs) (n= 55) and Angiotensin-Converting Enzyme- Inhibitors 
(ACE-I) (n= 22). More studies reported upregulation than downregulation with ACE-I (n=22), 
ARBs (n=55), insulin (n=8), thiazolidinedione (n=7) aldosterone agonists (n=3), statins (n=5), 
oestrogens (n=5) calcium channel-blockers (n=3) GLP-1 agonists (n=2) and NSAIDs (n=2).  
 
Conclusions: There is an abundance of academic literature and media reports on the potential 
of drugs that could attenuate or exacerbate COVID-19 disease. This is leading to trials of 
repurposed drugs and uncertainty amongst patients and clinicians concerning continuation or 
cessation of prescribed medications. Our review indicates that the impact of currently prescribed 
drugs on ACE2 has been poorly studied in-vivo, particularly in human lungs where the SARS-
CoV-2 virus appears to enact its pathogenic effects. We found no convincing evidence to justify 
starting or stopping currently prescribed drugs to influence outcomes of COVID-19 disease.  
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Strengths and limitations 

• This review addresses a high priority patient and clinician concern 

• Given the limited evidence on the subject, we included human and animal models both in 
vivo and in vitro for a comprehensive review  

• This is the first systematic review specifically focussed on UK prescribed drugs that could 
alter ACE2 in COVID-19 disease 

• The heterogeneity across study designs and models meant meta-analysis was not 
suitable 

• Given the rapidly changing evidence as the pandemic progresses, it is possible that new 
studies have since been published. 
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INTRODUCTION 
 
The coronavirus SARS-CoV-2 which causes the COVID-19 disease is a global public health 
emergency. It has been reported in 190 countries with 4,310,786 confirmed cases and 290,455 
deaths as of 12th May 2020. Walker and colleagues from the World Health Organization 
Collaborating Centre for Infectious Disease Modelling predicted that in the absence of mitigation 
strategies, the virus would infect seven billion people and account for 40 million deaths this year 
alone.1 Efforts to shield the elderly (60% reduction in social contacts) and interrupt transmission 
(40% reduction in social contacts for the wider population) have reduced this number but further 
deaths are still expected.1  There is an urgent need for solutions. In the absence of a vaccination 
or effective treatment, there is growing interest in repurposing existing drugs for mitigation.  
 
In particular, drugs affecting the Renin-Angiotensin System (RAS) have been highlighted as 
potential candidates for further investigation.2,3 This is because the SARS-CoV-2 virus utilises 
Angiotensin-Converting Enzyme 2 (ACE2) receptors within the RAS for entry into lung alveolar 
epithelial cells.4 ACE2 has previously been shown to correlate with susceptibility to the SARS-
CoV-1 virus, and the spike (S) glycoprotein of this new virus binds to ACE2 with even higher 
affinity.5,6 Theoretically, altered ACE2 activity could therefore lead to a greater susceptibility to 
SARS-CoV-2. It could also cause greater severity of the infection.7 Previous studies suggest that 
dysregulation of ACE2 activity in the lungs could promote early neutrophil infiltration and 
subsequent uncontrolled activation of the RAS system.8 In mice models, acute lung injury was 
observed in response to SARS-CoV-1 spike protein, so it is plausible that similar responses will 
be observed with SARS-CoV-2.9This is particularly problematic in organs containing high ACE2 
such as the lungs as it may contribute to cytokine release syndrome (cytokine storm) and the 
subsequent respiratory failure that has been observed in those who have died from the disease.7 
Many prescribed drugs in common use are known to mediate effects through the RAS pathway. 
Over 45 million of these prescriptions were issued in the UK last year alone, and of these, 15 
million were for Angiotensin Converting Enzyme Inhibitors (ACE-I) and Angiotensin Receptor 
Blockers (ARBs). Acting through the RAS pathway, these drugs may impact ACE2 regulation but 
their role in the COVID-19 pandemic is not clear. Given the number of people that are potentially 
on these drugs, it has caused substantial public concern and clinical uncertainty about 
continuation or cessation of prescribed medications during the pandemic. Accordingly, we 
reviewed all existing evidence on routinely prescribed UK drugs that might alter ACE2 regulation. 
Understanding the drug effects on ACE2 given its role in COVID-19 disease could help reassure 
clinicians and the public in these uncertain times, or direct research on drugs that might 
attenuate or exacerbate transmission. 
 
METHODS 

Our review was conducted in accordance with preferred reporting for systematic reviews and 
meta-analyses (PRISMA) guidelines and our protocol was submitted for open-access publication 
prior to commencing our study (in press). We have also made it available in pre-print through the 
medRxiv manuscript processing system. 

Search Strategy 

A systematic search in MEDLINE, EMBASE, CINAHL, the Cochrane Library, Web of Science 
was conducted from inception to the 1st April 2020.  The search strategy is shown in Table 1 
below. The reference lists of recent reviews and included studies were screened. We also spoke 
to topic experts and screened OpenGrey for additional texts. No language limits or study design 
filters were applied. 
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Table 1: Summary of search terms 
  
Terms Database Number of articles 
(ace2[Title/Abstract]) OR ace 
2[Title/Abstract] Filters: English 

Medline 
(PubMed) 

1980 

(ace2 or ace 2).ab. and 
English.lg. 

Embase 2880 

ace2 in Title Abstract Keyword 
OR ace-2 in Title Abstract 
Keyword - (Word variations have 
been searched) 

Cochrane 35 trials and 1 review 

(TS=(ace2 OR ace-2)) AND 
LANGUAGE: (English) AND 
DOCUMENT TYPES: (Article) 

Web of science 1,931 

  
 
Study selection, inclusion and exclusion criteria      
   
The COVID-19 disease is still relative new and there is limited research on drug therapies 
specific to the virus. In the interest of being comprehensive about potential drugs acting through 
ACE2, we were as inclusive as possible within our study selection. We included both animal and 
human models (in vivo and in-vitro). Studies had to meet the following eligibility criteria: i) 
measures ACE2 levels, activity or gene expression, ii) includes a drug that is currently available 
on a UK prescription according to the British National Formulary, and iii) measures the effect of 
that drug against a placebo, control or sham group in an experimental design. Review articles 
were excluded but their reference lists were screened. Conference abstracts were included if 
sufficient detail could be elicited. We did not include studies in children under 18 years, or those 
examining drug effects in utero.  
 

Data extraction 

Four members of the team reviewed titles and abstracts for eligibility (AA, HDM, CW, SH). Full-
text review, data extraction and quality assessment were carried out in duplicate using a piloted 
sheet. Any disagreement between authors was resolved by discussion. Data on the following 
study characteristics were extracted: i) drug class, ii) drug name, iii) duration of treatment, iii) 
effect on ACE2 level (upregulation, downregulation, no effect), iv) model (human/rat etc), v) site 
of ACE2 reception (lung, renal, cardiac etc;), vi) study design, vii) study population, viii) sample 
size and ix) country. Given the urgency of our research question during the current pandemic, we 
extracted information from only what was available to us in the published text. 
 
Quality assessment 
 
Our review includes both animal and human models therefore quality assessment was carried 
out separately for these studies. Human studies were evaluated using the Cochrane risk of bias 
tool which includes the following domains: random sequence generation, allocation concealment, 
blinding of participants and personnel, blinding of outcome assessment, incomplete outcome 
data, selective reporting, and other sources of bias.10 Each domain was scored as low risk, 
unclear risk, or high risk of bias. We classified the overall risk of bias as low if all domains were at 
low risk of bias, as high if at least one domain was at high risk of bias, or as unclear if at least 
one domain was at unclear and no domain was at high risk of bias. Although this tool is specific 
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to trials, all included studies were experimental designs and we therefore felt it appropriate to 
use. The methodological quality of animal studies was assessed using the SYRCLE’s risk of bias 
tool which is based on the Cochrane risk of bias tool.11 SYRCLE’s tool includes selection bias, 
performance bias, detection bias, attrition bias, reporting bias and other biases.  
 
Data analysis 

Owing to the mix of study designs and models, a meta-analysis was not appropriate. Narrative 
synthesis methods were used. We reviewed the meta-data by tabulating the studies according to 
our inclusion/exclusion criteria, human/animal model, drug classes and effects on ACE2. The 
consistency in the number of studies and direction of any effects were considered. Where 
inconsistencies were identified in the effect of a drug between studies, we looked at additional 
data such as methods, quality and outcome measurement for potential explanatory factors.  

Patient and public involvement 

It was not possible to involve patients or the public in the design or conduct of our work due to 
the rapid timelines, but we have invited PPI representatives to help us with drafting a lay 
summary and in the dissemination of our findings.  

 
Results 
 
We retrieved 6821 studies and screened 3,360 after removing duplicates. Following title and 
abstract screening, 233 studies were screened by full text. We included 112 studies in the final 
review. The flow of studies is shown in a PRISMA diagram in figure 1 including the reasons for 
study exclusion at each stage. 
 
Study characteristics 
 
Table 2 shows the characteristics of the included studies. These originated from 17 different 
countries with the most common being China (n= 36), the USA (n= 22) and Japan (n=18). There 
were 10 studies in humans (7 in-vitro and 3 in-vivo) (Table 3) and 102 in animal models (13 in-
vitro and 89 in-vivo). Animal models included rats (n=94), mice (n=7) and canines (n=1). The 
sample sizes for in-vivo animal models ranged from 6 to 117. For in-vivo human studies (Table 
3), sample sizes ranged from 8 to 375 but were not always reported. Participants were 
predominantly male and white with hypertension or diabetes, although the condition was not 
always stated. Most models examined ACE2 receptors in the heart or kidneys, only 5 of the 112 
included studies reporting ACE2 levels in the lungs; these were all in animal models as shown in 
Table 2.  
 
Effects of drugs 
 
There were 21 different drug classes examined in the included studies as shown in Table 2. 
Table 3 tabulates only those that have been examined in human models. The mean drug 
exposure period ranged from 30 mins for in-vitro studies, to 15 weeks for in-vivo studies. The 
most common drug classes were ARBs (n= 55) and ACE-I (n= 22). Of the 55 studies that 
examined ARBs, 43 reported upregulation of ACE2 levels. Most of these studies were in rat 
models (n= 34) and examined cardiac ACE2 levels (n= 27). For ACE-I, 17 out of 22 studies 
reported upregulation of ACE2. These were also mainly in rat models (n= 16) and measured 
cardiac ACE2 levels (n= 14). Of the five studies that assessed statins, these were all within rat 
models; 3 reported upregulation of ACE2, 1 reported downregulation and 1 reported no effect. 
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Similarly, oestrogens were examined in 5 studies; 3 reported upregulation, 1 reported 
downregulation and 1 reported no effects. For calcium channel blockers; 2 out of the 3 studies 
reported upregulation of ACE2 levels and these were both in-vivo rodent models. The third study 
was an in-vitro human model that showed downregulation of ACE2 with a calcium channel 
blocker. There were 3 studies on aldosterone antagonists; all reporting increases in renal ACE2 
levels within rat models.  
 
Several diabetes drugs were evaluated and found to increase ACE2. For insulin, 6 out of 8 
studies reported upregulation of ACE2 (in mice and rat models). For thiazolidinediones, 5 out of 7 
studies reported upregulation (6 mice/rate models and 1 of cerebral human cells in-vitro). For 
GLP-1 agonists both included studies reported increases in ACE2. Similarly, for the one study 
examining DPP4 inhibitors, it also reported an increase in ACE2. The only study measuring the 
effect of SGLT2 inhibitors reported a decrease in ACE2.  
 
Quality assessment 
 
Figure 2 shows the risk of bias across the studies using the SYRCLE's risk of bias tool. In 
general, studies lacked blind allocation and outcome assessor blinding. They also frequently 
omitted information needed to make a thorough judgement on the risk of bias. 
  
Discussion 
 

To our knowledge, this is the most comprehensive review of drugs prescribed in the UK that 
could act on ACE2 receptors and thus potentially affect COVID-19 disease. The ACE2 receptor 
is reported to be an essential contributor to SARS-CoV-2 entry into the nasopharynx and lungs 
and the subsequent inflammation that leads to severe acute respiratory distress syndrome.12,13 
Our review examined drugs across human and animal models, and we found a number of 
studies reporting upregulation of ACE2 levels in response to ACE-I (n=22), ARBs (n=55), insulin 
(n=8), thiazolidinedione (n=7) aldosterone agonists (n=3), statins (n=5), oestrogens (n=5) 
calcium channel-blockers (n=3) GLP-1 agonists (n=2) and NSAIDs (n=2).  However, these drugs 
were poorly studied in vivo within the lungs or nasopharynx of humans, where they are likely to 
matter most in influencing severity of outcomes of COVID-19 disease.  

We observed that the most frequent drugs to upregulate ACE2 are also those prescribed in 
people with diabetes or cardiovascular disease. Mortality rates from COVID-19 have been high in 
this group.12,14–16 Notably, these are also conditions with a high prevalence amongst  Black, 
Asian and Minority Ethnic (BAME) groups who have had disproportionally high mortality rates 
from COVID-19 disease.17 To date, much of this evidence has been limited to clinical 
commentaries or case reports. Larger cohorts are emerging but have not yet adequately 
considered a range of potential confounders including co-morbidities, age, sex, deprivation or 
household numbers which might be more important than prescribed medication in the spread, 
susceptibility and severity of the disease. For example, in a cohort of 191 people who were 
infected with the virus in Wuhan, 87% of those who died had coronary heart disease and 47% 
had diabetes.18 These conditions are associated with an increased risk of death but were not 
considered as covariates in the analysis. Irrespective of ACE2, people with diabetes are more 
susceptible to worse infection as the low-grade chronic inflammation and hyperglycaemia 
associated with the condition results in impaired immune responses with lower IL-1, IL-6, TNF-a, 
and delayed mobilisation of immune cells in response to pathogens.19 This comorbidity like many 
other confounders, are highly relevant when examining the risk of death with COVID-19 disease. 
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This lack of adequate adjustment for existing conditions is highlighted by Sommerstein and 
colleagues in their editorial on ACE-I and ARBs in COVID-19.15 They also propose that existing 
co-morbidities such as heart failure may be independently linked to SARS-CoV-2 transmission 
and severity, and the subsequent poor pulmonary outcomes that are observed in these patients. 
Indeed, in mice models, arterial hypertension, atrial fibrillation and type 2 diabetes have been 
shown to upregulate ACE2 levels irrespective of medications.20,21 Moreover, ACE2 levels have 
been shown to be higher in men and with increasing age.22 Most of the published data on deaths 
in COVID-19 disease report that males of increasing age are particularly susceptible to poor 
outcomes.12,23  

Our review has also highlighted the variable ACE2 levels in different parts of the body with most 
of the existing literature focussing on renal and cardiac levels. Responses to drugs may vary 
depending on cell type and location. Although the lung ACE2 is important to COVID-19, it is 
unclear if overall COVID-19 mortality might be attenuated by cardiovascular ACE-2 activity 
levels. We also observed variations in ACE2 levels with drug exposure duration which was 
relatively short amongst included studies in our review. It is uncertain how dysregulation might 
continue after starting or stopping these medications. It is also unclear how the observed effects 
amongst included studies would translate in-vivo in humans and what the net effect on receptor 
access to the COVID-19 virus is; access to the receptor by the virus may be competitively 
inhibited by the presence of  drugs which also attach to the receptor, so whether upregulation is 
the key factor in practice is unclear. This is particularly challenging to understand as we found a 
paucity of data demonstrating the effect of prescribed drugs on ACE2 in the lungs or 
nasopharynx, where the SARS-CoV-2 virus appears to enact its pathogenic effects. Our results 
therefore, do not provide convincing evidence on the role of any currently prescribed UK drugs 
acting through ACE2 regulation that could affect COVID-19 disease. Finally, we found a 
disproportionate number of studies reporting upregulation or ‘positive effects’ of drugs on ACE2, 
compared to studies reporting no effect or downregulation. This may reflect a publication bias 
that is well-established in the literature, especially amongst animal models. 24,25  

Strengths and limitations  

We carried out a comprehensive and systematic search of the literature. To our knowledge, this 
is the first review on the subject. We did not include language restrictions but non-English 
language studies in the international literature might not have been indexed in the databases we 
searched. Given the rate of new publications on COVID-19, it is also possible that our search 
and results may not be up to date. Owing to the limited research on this novel virus, it was 
necessary to be as inclusive as possible and we therefore considered both animal and human 
models to look for any drugs acting through ACE2 with potential to affect COVID-19 outcomes. 
While this inclusive approach may offer insights, the heterogeneity across models makes it hard 
to interpret findings or translate them directly to patients. Although we were robust in our 
methodological approach to this review, we were also aware of the urgency to report our findings 
in the current pandemic. We therefore did not contact authors for more information about their 
studies beyond what was published. We observed frequent omission of information that would 
have allowed us to carry out a more detailed quality assessment. Had we pursued this 
information; the quality assessment of included papers may well have been higher.  

Conclusion: 

We reviewed the evidence on routinely prescribed drugs in the UK that could up or down-
regulate ACE2 and thus potentially affect COVID-19 disease. Our review indicates that currently 
prescribed drugs have been poorly studied in-vivo within the lungs of humans. Until there is 
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better evidence, we cannot recommend starting or stopping prescribed medications during the 
COVID-19 pandemic. 
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Table 2: Characteristics and key findings of included studies 
 
*Studies reporting on multiple sites or in multiple models have been listed separately and appear more than once in the table 

 
Drug class Sample size, 

median (range) 
Exposure to 
treatment, 
mean (SD) 

Effect on ACE2 
expression, levels or 
activity (number of 
studies) * 

Model tested (number 
of studies)* 

Site of ACE2 receptor 
measurement 
(number of studies)* 

Condition of subjects (number of 
studies)* 

ACE inhibitors 
26,27,36–45,28,46,47,29–

35 

32 (7 to 375) 4 weeks (3) Increase (n= 17)  
Decrease (n= 1)  
No effect (n= 4) 

Rats, in vivo (n= 16) 
Humans, in vivo (n= 2) 
Other (n =4) 

Cardiac (n= 14) 
Hepatic (n= 2) 
Renal (n= 2) 
Not stated (n= 2)  
Other (n= 3) 
 

Heart disease/heart failure (n= 7) 
Hypertension (n= 3) 
Diabetes (n= 3) 
Healthy (n=2) 
Other (n= 1)  
Not stated (n= 6) 

Aldosterone 
antagonists 48–50 

63 (28 to 75) 4 weeks (4) 
 

Increase (n= 3)  
Decrease (n= 0)  
No effect (n= 0) 

Rats, in vivo (n = 3) 
 

Renal (n= 3) 
 

Diabetes (n= 1) 
Renal disease (n= 1) 
Hepatic dysfunction (n= 1)  

ARBs 27,28,53–

62,29,63–72,31,73–

82,36,83–92,37,93–

96,39,42,51,52 

36 (6 to 180) 6 weeks (6) Increase (n= 43)  
Decrease (n= 7)  
No effect (n= 3) 
Unclear/mixed findings (n 
=2) 

Rats, in vivo (n= 34) 
Mice, in vivo (n = 11) 
Humans - in vivo (n= 4) 
Other (n= 6) 

Cardiac (n= 27) 
Hepatic (n= 2) 
Renal (n= 12) 
Lung (n = 2) 
Not stated (n= 1)  
Other (n= 7) 
 

Hypertension (n= 13) 
Heart disease/heart failure (n= 10) 
Diabetes (n= 5) 
Healthy (n=6) 
Not stated (n= 13) 
Other (n= 5)  . 
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Beta Blockers 79,97 52 (44 to 62) 4 weeks (2) Increase (n= 0)  
Decrease (n= 0)  
No effect (n= 2) 

Rats, in vivo (n = 1) 
Rats, in vitro (n = 1) 
 

Cardiac (n= 2) 
 

Hypertension (n= 2) 
 

Calcium channel 
blockers 68,98,99 

117 (N/A) 3 weeks (1) Increase (n= 2)  
Decrease (n= 1)  
No effect (n= 0) 

Rats, in vivo (n = 2) 
Human, in vitro (n = 1 

Hepatic (n= 1) 
Cardiac (n= 1) 
Cerebral (n =1) 
 

Healthy (n= 2) 
Hypertension (n= 1) 
 

Centrally-acting 
vasodilators 53 

6 (N/A) 8 weeks (N/A) Increase (n= 0)  
Decrease (n= 0)  
No effect (n= 1) 

Mice, in vitro (n= 1) Cardiac (n= 1) 
 

Other (n= 1) 

DPP4 inhibitor 100 24 (N/A) 4 weeks (N/A) Increase (n= 1)  
Decrease (n= 0)  
No effect (n= 0) 

Rats, in vivo (n = 1) 
 

Cardiac (n= 1) 
 

Healthy (n=1)  
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GABA analogues 
101 

8 (N/A) 3 weeks (N/A) Increase (n= 0)  
Decrease (n= 1)  
No effect (n= 0) 

Rats, in vivo (n= 1) Cerebral (n= 1) Heathy (n= 1) 

GLP-1 agonists 
100,102 

38 (24 to 54) 3 weeks (1) Increase (n= 2)  
Decrease (n= 0)  
No effect (n= 0) 

Rats, in vivo (n = 2) 
 

Cardiac (n= 1) 
Lung (n= 1) 

Diabetic (n=1) 
Healthy (n=1)  
 

Insulin 103–110 57 (8 to 84) 6 weeks (6) Increase (n= 6)  
Decrease (n= 1)  
No effect (n= 1) 

Mice, in vivo (n = 4) 
Mice, in vitro (n = 1) 
Rats, in vivo (n = 2) 
Rats, in vitro (n = 1) 
 

Renal (n= 5) 
Cardiac (n= 2) 
 

Diabetes (n= 7) 
Healthy (n= 1) 

Ivabridine 111 24 (N/A) 12 weeks (N/A) Increase (n= 1)  
Decrease (n= 0)  
No effect (n= 0) 

Canine, in vivo (n= 1) Cardiac (n= 1) 
 

Heart failure (n= 1) 
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NSAIDs 112,113 18 (N/A) 8 weeks (0) Increase (n= 2)  
Decrease (n= 0)  
No effect (n= 0) 

Rats, in vivo (n = 2) 
 

Cardiac (n= 2) 
 

Diabetic (n=2) 
 

Oestrogens 62,114–

118 
27 (17 to 75) 3 weeks (3) Increase (n= 3)  

Decrease (n= 1)  
No effect (n= 1) 

Human, in vitro (n = 2) 
Human, in vivo (n = 1) 
Rats, in vivo (n = 2) 
Mice, in vivo (n = 1)  

Cardiac (n= 2) 
Ovarian (n= 1) 
Cerebral (n= 1) 
Not stated (n= 2) 

Heart disease (n= 1) 
Hypertension (n= 1) 
Hypertension + ovariectomy (n= 1) 
Healthy (n= 1) 
Not stated (n= 1) 
Alzheimers (n=1) 

PDE-5 inhibitors 
119 

32 30 minutes 
(N/A) 

Increase (n= 0)  
Decrease (n= 0)  
No effect (n= 1) 

Rats, in vitro (n = 1) 
 

Cardiac (n= 1) 
 

Healthy (n=1)  
 

SGLT2 inhibitors 
120 

Not stated 15 weeks (N/A) Increase (n= 0)  
Decrease (n= 0)  
No effect (n= 1) 

Mice, in vitro (n= 1) Renal (n= 1) Diabetic (n= 1) 
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Statins 99,110,121–123 62 (36 to 87) 5 weeks (3) Increase (n= 3)  
Decrease (n= 1)  
No effect (n= 1) 

Rats, in vivo (n = 4) 
Rats, in vitro (n = 1) 
 

Cardiac (n= 4) 
Renal (n= 1) 
 

Diabetes (n= 2) 
Hypertension (n= 1) 
Unclear (n= 1) 
Unclear (n= 1) 

Thiazide and 
thiazide-like 
diuretics 124 

48 (N/A) 1 week (N/A) Increase (n= 1)  
Decrease (n= 1)  
No effect (n= 0) 

Rats, in vivo (n = 1) 
 

Cardiac (n= 1) 
 

Hypertension (n=1) 
Healthy (n=1) 

Thiazolidinedione 
112,125–130 

21 (8 to 60) 6 weeks (8) Increase (n= 5)  
Decrease (n= 1)  
No effect (n= 1) 

Rats, in vivo (n = 4) 
Rats, in vitro (n = 1) 
Human, in vitro (n = 1) 
Mice, in vivo (n = 1) 

Renal (n= 3) 
Cardiac (n= 2) 
Hepatic (n= 1) 
Cerebral (n =1) 
 

Hypertension (n= 1) 
Heart disease/heart failure (n= 1) 
Diabetes (n= 1) 
Healthy (n=1) 
Renal disease (n= 1)  
Not stated (n= 2) 

Vitamin D 130–132 47 (33 to 60) 6 weeks (6) Increase (n= 2)  
Decrease (n= 0)  
No effect (n= 1) 

Rats, in vivo (n= 3) 
 

Cardiac (n= 1) 
Renal (n= 1) 
Not stated (n= 0) 
 

Hypertension (n= 1) 
Renal disease (n= 1) 
Not stated (n= 1) 
 

Vitamin D 
analogues 133,134 

28 (25 to 30) 8 weeks (11) Increase (n= 1)  
Decrease (n= 0)  
No effect (n= 1) 

Rats, in vivo (n= 1) 
Rats, in vitro (n= 1) 
 

Renal (n= 1) 
Lung (n = 1) 
 

Diabetes (n= 5) 
Lung injury (n=1) 

Zinc 135 Not staed Not stated Increase (n= 0)  
Decrease (n= 1)  
No effect (n= 0) 

Rats, in vitro (n= 1) Renal (n= 1) 
Lung (n= 1) 

Not stated (n= 1) 

 . 
C

C
-B

Y
-N

C
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

ay 26, 2020. 
; 

https://doi.org/10.1101/2020.05.19.20106856
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2020.05.19.20106856
http://creativecommons.org/licenses/by-nc/4.0/


22 
 

Table 3: Summary of study characteristics with human models 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Drug Class Sample 
size, 
median 
(range) 

Exposure 
to 
treatment, 
mean (SD) 

Effect on ACE2 
expression, levels 
or activity (number 
of studies) 

Model tested Site of ACE2 
receptors 

Condition of 
subject 

Angiotensin-
Receptor Blockers  

46.5 (8 to 
80) 

15 weeks (6) Increase (n= 2)  
Decrease (n= 1)  
No effect (n= 1) 

In vivo (n= 3) 
In vitro (n= 1) 

Urinary (n= 1) 
Serum (n= 1) 
Renal (n= 1)  
Not stated (n= 1) 
 
 

Diabetes (n= 1) 
Hypertension 
(n= 1) 
Hypertension + 
Diabetes (n= 1) 
Diabetic + 
Chronic Kidney 
Disease (n= 1) 

Angiotensin 
Converting 
Enzyme- Inhibitors  

228 (80 to 
375) 

12 weeks 
(N/A) 

Increase (n= 1)  
Decrease (n= 1)  
 

In vitro (n= 2) Renal (n= 1)  
Unclear (n= 1)  
 

Diabetic + 
Chronic Kidney 
Disease (n= 1) 
Unclear (n= 1) 

Calcium Channel 
Blockers 

N/A Unclear Increase ACE2 in 
the membrane 
surface (decreased 
in the cytosol) (n= 1) 

In vitro (n= 1) Cardiac Healthy cells 

Oestrogen 36 (N/A) 1 day (N/A) Increase (n= 2)  
No effect (n= 1) 

In vitro (n= 3) Cardiac (n= 1) 
Umbilical (n= 1) 
Not stated (n= 1) 

Heart problems 
(n= 1) 
Healthy (n= 1) 
Not stated (n= 1) 

Thiazolidinedione  Not stated 1 day Increase (n= 1) In vitro (n= 1) Cerebral (n= 1) Not stated 
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Figure 1: PRISMA flow chart explaining the study inclusion process 
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database searching 

(n = 6,821) 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.19.20106856doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.19.20106856
http://creativecommons.org/licenses/by-nc/4.0/


 

Study

W
a
s 

th
e
 a

ll
o

ca
ti

o
n

 s
e
q

u
e
n

ce
 a

d
e
q

u
a
te

ly
 g

e
n

e
ra

te
d

 a
n

d
 a

p
p

li
e
d

? 

W
e
re

 t
h

e
 g

ro
u

p
s 

si
m

il
a
r 

a
t 

b
a
se

li
n

e
 o

r 
w

e
re

 t
h

e
y
 a

d
ju

st
e
d

 f
o

r 
co

n
fo

u
n

d
e
rs

 i
n

 t
h

e
 

a
n

a
ly

si
s?

W
a
s 

th
e
 a

ll
o

ca
ti

o
n

 a
d

e
q

u
a
te

ly
 c

o
n

ce
a
le

d
? 

W
e
re

 t
h

e
 a

n
im

a
ls

 r
a
n

d
o

m
ly

 h
o

u
se

d
 d

u
ri

n
g

 t
h

e
 e

xp
e
ri

m
e
n

t?

W
e
re

 t
h

e
 c

a
re

g
iv

e
rs

 a
n

d
/o

r 
in

v
e
st

ig
a
to

rs
 b

li
n

d
e
d

 f
ro

m
 k

n
o

w
le

d
g

e
 w

h
ic

h
 

in
te

rv
e
n

ti
o

n
 e

a
ch

 a
n

im
a
l 
re

ce
iv

e
d

 d
u

ri
n

g
 t

h
e
 e

xp
e
ri

m
e
n

t?

W
e
re

 a
n

im
a
ls

 s
e
le

ct
e
d

 a
t 

ra
n

d
o

m
 f

o
r 

o
u

tc
o

m
e
 a

ss
e
ss

m
e
n

t?

W
a
s 

th
e
 o

u
tc

o
m

e
 a

ss
e
ss

o
r 

b
li
n

d
e
d

?

W
e
re

 i
n

co
m

p
le

te
 o

u
tc

o
m

e
 d

a
ta

 a
d

e
q

u
a
te

ly
 a

d
d

re
ss

e
d

?

A
re

 r
e
p

o
rt

s 
o

f 
th

e
 s

tu
d

y
 f

re
e
 o

f 
se

le
ct

iv
e
 o

u
tc

o
m

e
 r

e
p

o
rt

in
g

?

W
a
s 

th
e
 s

tu
d

y
 a

p
p

a
re

n
tl

y
 f

re
e
 o

f 
o

th
e
r 

p
ro

b
le

m
s 

th
a
t 

co
u

ld
 r

e
su

lt
 i
n

 h
ig

h
 r

is
k
 o

f 

b
ia

s?

Abdel-Fattah 2018

Abdelkader 2020

Abe 2015

Abuohashish 2017

Agata 2006

Anderson, 2015

Araujo 2018

Arumigan 2010

Awwad 2019

Awwad 2019

Badae 2019

Bernadi 2015

Bukowska 2017

Burchill 2008

Chen 2015

Chodavarapu 2013

Dong 2019

Fangyas 2011

Feng 2020

Fuchs 2018

Furuhashi 2014

Furuhashi 2015

Gallagher 2008

Gebska 2013

Graus-Nunes 2019

Guo 2016

Gupta 2012

Hao 2013

Hermenegil 2018

Hermenegildo 2015

Hiroi 2014

Ibarra-Lara 2016

Ichikawa 2018

Igase 2005

Igase 2008

Ishiyama 2004

Iwanami 2013

Jeong 2018

Jessup 2006

Jessup 2008

Kaiqiang 2009

Kidoguchi 2019

Kong 2019

Li 2011

Li 2013

Liang 2015

Lin 2016

Lizuka 2009

Ma 2018

Machado 2014

Malek 2019

Mao‐liang Huang 2009

Marquez 2014

Ocaranza 2006

Ohshima 2014

Qiao 2015

Riera 2014

Romani-Perez 2015

Sabry 2018

Salem 2012

Salem 2013

Salem 2014

Sanchez Aguilar 2018

Sanchez-Aguilar 2019

Scroggin 2012

Senador 2010

Shenoy 2009

Shimada 2011

Shin 2017

Soler 2009

Song 2012

Speth 2014

Suh 2019

Sukumaran 2012

Takai 2013

Tanno 2016

Thanekar 2019

Varagic 2012

Varagic 2012b

Vuille-dit-Bille 2010

Wang 2012

Wang 2015

Wang 2016

Wang 2016

Wang 2018

Weili 2014

Wosten-van-Asperen 2011

Wu 2015

Xu 2017

Yang 2013

Yang 2018

Yisireyili 2018

Yonghong 2016

Zhang 2011

Zhang 2013

Zhang 2014

Zhang 2014

Zhang 2015

Zhao 2015

Zhao 2019

Zhong 2010

Zhong 2011

Zhonghua 2013

Figure 2: Risk of bias assessment 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.19.20106856doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.19.20106856
http://creativecommons.org/licenses/by-nc/4.0/


Study

W
a
s 

th
e
 a

ll
o

ca
ti

o
n

 s
e
q

u
e
n

ce
 a

d
e
q

u
a
te

ly
 g

e
n

e
ra

te
d

 a
n

d
 a

p
p

li
e
d

? 

W
e
re

 t
h

e
 g

ro
u

p
s 

si
m

il
a
r 

a
t 

b
a
se

li
n

e
 o

r 
w

e
re

 t
h

e
y
 a

d
ju

st
e
d

 f
o

r 
co

n
fo

u
n

d
e
rs

 i
n

 t
h

e
 

a
n

a
ly

si
s?

W
a
s 

th
e
 a

ll
o

ca
ti

o
n

 a
d

e
q

u
a
te

ly
 c

o
n

ce
a
le

d
? 

W
e
re

 t
h

e
 a

n
im

a
ls

 r
a
n

d
o

m
ly

 h
o

u
se

d
 d

u
ri

n
g

 t
h

e
 e

xp
e
ri

m
e
n

t?

W
e
re

 t
h

e
 c

a
re

g
iv

e
rs

 a
n

d
/o

r 
in

v
e
st

ig
a
to

rs
 b

li
n

d
e
d

 f
ro

m
 k

n
o

w
le

d
g

e
 w

h
ic

h
 

in
te

rv
e
n

ti
o

n
 e

a
ch

 a
n

im
a
l 
re

ce
iv

e
d

 d
u

ri
n

g
 t

h
e
 e

xp
e
ri

m
e
n

t?

W
e
re

 a
n

im
a
ls

 s
e
le

ct
e
d

 a
t 

ra
n

d
o

m
 f

o
r 

o
u

tc
o

m
e
 a

ss
e
ss

m
e
n

t?

W
a
s 

th
e
 o

u
tc

o
m

e
 a

ss
e
ss

o
r 

b
li
n

d
e
d

?

W
e
re

 i
n

co
m

p
le

te
 o

u
tc

o
m

e
 d

a
ta

 a
d

e
q

u
a
te

ly
 a

d
d

re
ss

e
d

?

A
re

 r
e
p

o
rt

s 
o

f 
th

e
 s

tu
d

y
 f

re
e
 o

f 
se

le
ct

iv
e
 o

u
tc

o
m

e
 r

e
p

o
rt

in
g

?

W
a
s 

th
e
 s

tu
d

y
 a

p
p

a
re

n
tl

y
 f

re
e
 o

f 
o

th
e
r 

p
ro

b
le

m
s 

th
a
t 

co
u

ld
 r

e
su

lt
 i
n

 h
ig

h
 r

is
k
 o

f 

b
ia

s?

Abdel-Fattah 2018

Abdelkader 2020

Abe 2015

Abuohashish 2017

Agata 2006

Anderson, 2015

Araujo 2018

Arumigan 2010

Awwad 2019

Awwad 2019

Badae 2019

Bernadi 2015

Bukowska 2017

Burchill 2008

Chen 2015

Chodavarapu 2013

Dong 2019

Fangyas 2011

Feng 2020

Fuchs 2018

Furuhashi 2014

Furuhashi 2015

Gallagher 2008

Gebska 2013

Graus-Nunes 2019

Guo 2016

Gupta 2012

Hao 2013

Hermenegil 2018

Hermenegildo 2015

Hiroi 2014

Ibarra-Lara 2016

Ichikawa 2018

Igase 2005

Igase 2008

Ishiyama 2004

Iwanami 2013

Jeong 2018

Jessup 2006

Jessup 2008

Kaiqiang 2009

Kidoguchi 2019

Kong 2019

Li 2011

Li 2013

Liang 2015

Lin 2016

Lizuka 2009

Ma 2018

Machado 2014

Malek 2019

Mao‐liang Huang 2009

Marquez 2014

Ocaranza 2006

Ohshima 2014

Qiao 2015

Riera 2014

Romani-Perez 2015

Sabry 2018

Salem 2012

Salem 2013

Salem 2014

Sanchez Aguilar 2018

Sanchez-Aguilar 2019

Scroggin 2012

Senador 2010

Shenoy 2009

Shimada 2011

Shin 2017

Soler 2009

Song 2012

Speth 2014

Suh 2019

Sukumaran 2012

Takai 2013

Tanno 2016

Thanekar 2019

Varagic 2012

Varagic 2012b

Vuille-dit-Bille 2010

Wang 2012

Wang 2015

Wang 2016

Wang 2016

Wang 2018

Weili 2014

Wosten-van-Asperen 2011

Wu 2015

Xu 2017

Yang 2013

Yang 2018

Yisireyili 2018

Yonghong 2016

Zhang 2011

Zhang 2013

Zhang 2014

Zhang 2014

Zhang 2015

Zhao 2015

Zhao 2019

Zhong 2010

Zhong 2011

Zhonghua 2013

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.19.20106856doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.19.20106856
http://creativecommons.org/licenses/by-nc/4.0/


 

Study

W
a
s 

th
e
 a

ll
o

ca
ti

o
n

 s
e
q

u
e
n

ce
 a

d
e
q

u
a
te

ly
 g

e
n

e
ra

te
d

 a
n

d
 a

p
p

li
e
d

? 

W
e
re

 t
h

e
 g

ro
u

p
s 

si
m

il
a
r 

a
t 

b
a
se

li
n

e
 o

r 
w

e
re

 t
h

e
y
 a

d
ju

st
e
d

 f
o

r 
co

n
fo

u
n

d
e
rs

 i
n

 t
h

e
 

a
n

a
ly

si
s?

W
a
s 

th
e
 a

ll
o

ca
ti

o
n

 a
d

e
q

u
a
te

ly
 c

o
n

ce
a
le

d
? 

W
e
re

 t
h

e
 a

n
im

a
ls

 r
a
n

d
o

m
ly

 h
o

u
se

d
 d

u
ri

n
g

 t
h

e
 e

xp
e
ri

m
e
n

t?

W
e
re

 t
h

e
 c

a
re

g
iv

e
rs

 a
n

d
/o

r 
in

v
e
st

ig
a
to

rs
 b

li
n

d
e
d

 f
ro

m
 k

n
o

w
le

d
g

e
 w

h
ic

h
 

in
te

rv
e
n

ti
o

n
 e

a
ch

 a
n

im
a
l 
re

ce
iv

e
d

 d
u

ri
n

g
 t

h
e
 e

xp
e
ri

m
e
n

t?

W
e
re

 a
n

im
a
ls

 s
e
le

ct
e
d

 a
t 

ra
n

d
o

m
 f

o
r 

o
u

tc
o

m
e
 a

ss
e
ss

m
e
n

t?

W
a
s 

th
e
 o

u
tc

o
m

e
 a

ss
e
ss

o
r 

b
li
n

d
e
d

?

W
e
re

 i
n

co
m

p
le

te
 o

u
tc

o
m

e
 d

a
ta

 a
d

e
q

u
a
te

ly
 a

d
d

re
ss

e
d

?

A
re

 r
e
p

o
rt

s 
o

f 
th

e
 s

tu
d

y
 f

re
e
 o

f 
se

le
ct

iv
e
 o

u
tc

o
m

e
 r

e
p

o
rt

in
g

?

W
a
s 

th
e
 s

tu
d

y
 a

p
p

a
re

n
tl

y
 f

re
e
 o

f 
o

th
e
r 

p
ro

b
le

m
s 

th
a
t 

co
u

ld
 r

e
su

lt
 i
n

 h
ig

h
 r

is
k
 o

f 

b
ia

s?

Abdel-Fattah 2018

Abdelkader 2020

Abe 2015

Abuohashish 2017

Agata 2006

Anderson, 2015

Araujo 2018

Arumigan 2010

Awwad 2019

Awwad 2019

Badae 2019

Bernadi 2015

Bukowska 2017

Burchill 2008

Chen 2015

Chodavarapu 2013

Dong 2019

Fangyas 2011

Feng 2020

Fuchs 2018

Furuhashi 2014

Furuhashi 2015

Gallagher 2008

Gebska 2013

Graus-Nunes 2019

Guo 2016

Gupta 2012

Hao 2013

Hermenegil 2018

Hermenegildo 2015

Hiroi 2014

Ibarra-Lara 2016

Ichikawa 2018

Igase 2005

Igase 2008

Ishiyama 2004

Iwanami 2013

Jeong 2018

Jessup 2006

Jessup 2008

Kaiqiang 2009

Kidoguchi 2019

Kong 2019

Li 2011

Li 2013

Liang 2015

Lin 2016

Lizuka 2009

Ma 2018

Machado 2014

Malek 2019

Mao‐liang Huang 2009

Marquez 2014

Ocaranza 2006

Ohshima 2014

Qiao 2015

Riera 2014

Romani-Perez 2015

Sabry 2018

Salem 2012

Salem 2013

Salem 2014

Sanchez Aguilar 2018

Sanchez-Aguilar 2019

Scroggin 2012

Senador 2010

Shenoy 2009

Shimada 2011

Shin 2017

Soler 2009

Song 2012

Speth 2014

Suh 2019

Sukumaran 2012

Takai 2013

Tanno 2016

Thanekar 2019

Varagic 2012

Varagic 2012b

Vuille-dit-Bille 2010

Wang 2012

Wang 2015

Wang 2016

Wang 2016

Wang 2018

Weili 2014

Wosten-van-Asperen 2011

Wu 2015

Xu 2017

Yang 2013

Yang 2018

Yisireyili 2018

Yonghong 2016

Zhang 2011

Zhang 2013

Zhang 2014

Zhang 2014

Zhang 2015

Zhao 2015

Zhao 2019

Zhong 2010

Zhong 2011

Zhonghua 2013

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.19.20106856doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.19.20106856
http://creativecommons.org/licenses/by-nc/4.0/

