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Abstract

Motivated by the current COVID-19 epidemic, this work introduces an epidemiological model in which separate com-
partments are used for susceptible and asymptomatic “socially distant” populations. Distancing directives are represented
by rates of flow into these compartments, as well as by a reduction in contacts that lessens disease transmission. The
dynamical behavior of this system is analyzed, under various different rate control strategies, and the sensitivity of the
basic reproduction number to various parameters is studied. One of the striking features of this model is the existence of
a critical implementation delay (“CID”) in issuing separation mandates: while a delay of about two weeks does not have
an appreciable effect on the peak number of infections, issuing mandates even slightly after this critical time results in a
far greater incidence of infection. Thus, there is a nontrivial but tight “window of opportunity” for commencing social
distancing in order to meet the capacity of healthcare resources. However, if one wants to also delay the timing of peak in-
fections –so as to take advantage of potential new therapies and vaccines– action must be taken much faster than the CID.
Different relaxation strategies are also simulated, with surprising results. Periodic relaxation policies suggest a schedule
which may significantly inhibit peak infective load, but that this schedule is very sensitive to parameter values and the
schedule’s frequency. Furthermore, we considered the impact of steadily reducing social distancing measures over time.
We find that a too-sudden reopening of society may negate the progress achieved under initial distancing guidelines, but
the negative effects can be mitigated if the relaxation strategy is carefully designed.

1 Introduction

Early 2020 saw the start of the coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2). Current COVID-19 policy is being largely influenced by mathematical
models [1, 2, 3, 4, 5, 6, 7, 8, 9]. Some of these are classic epidemiological ordinary differential equations (ODE) models.
Such models are suitable for describing initial stages of an infection in a single city, as well as for describing late stages at
which transportation effects are small in comparison to community spread. Besides being simpler to analyze mathemat-
ically, ODE models are also a component of more complex network simulations that incorporate interacting populations
linked by transportation networks as well as social, educational, and workplace hubs. The work described here is in the
spirit of the former, ODE models.

We have developed and analyzed a variation of the classic epidemiological SIR model which incorporates separate “com-
partments” for “socially distanced” healthy and asymptomatic (but infected) populations, as well as for infected (symp-
tomatic) populations. There have been many models proposed in the literature to deal with “quarantined” populations,
see for example [10, 11], but, to the best of our knowledge, no models in which susceptible populations are split into
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non-distanced and distanced sub-classes in such a way that the rates of flow between these are viewed as control variables.
Indeed, key to our model are parameters that reflect the rate at which individuals become “socially distant” and the rate
at which individuals return to the “non-distanced” category. As examples, the latter might represent a “frustration” with
isolation rules, or a personal need to reduce the economic impact of social distancing. The former can be in principle
manipulated by government intervention, through the strength of persuasion, and law enforcement.

How do outcomes depend on such interventions? How does one trade-off various types of other interventions (for example
vaccination, which would affect transmissibility, or curfew rules) against each other? Our modeling work aims to provide
a framework to rigorously formulate and answer such questions.

We will view the rate at which individuals respond to mandates as a control variable, and analyze the impact of different
control policies on the course of an epidemic. A novel aspect of our model lies in the distinction that we make between
rate control and the decrease in contacts between infected and susceptible individuals due to distancing. We call this
latter reduction in transmission the contact rescaling factor (CoRF). One can interpret the CoRF value as reflecting the
effectiveness of social distancing. This number is a function of the stringency of rules (stay at home except for shopping
and emergencies, wash hands frequently, wear masks, stay 6 ft. apart, etc.). Some authors consider tuning what we call the
CoRF as the control “knob” used by authorities, e.g. [12, 13, 14, 15, 16]. Our focus is, instead, on rate control, which has
not been sufficiently explored. Indeed, the objective of our model is to make it possible to formally consider rate control.
In future work, we will study the combination of rate and CoRF control.

In particular, we used our model to answer questions about the dynamics of the disease, and about the value of the
basic reproduction number, R0, which characterizes the initial rise in infections. We rigorously demonstrate, without
simulations, that at sufficiently early stages of the pandemic when there is little immunity in the population, a (possibly
unrealistic) quick implementation of social distancing is required in order for R0 < 1. While it is easy to interpret this as
a hopeless situation, what this actually says is that an initially headline-grabbing infection will begin to move through the
population. However, as time progresses, we show that social distancing can push R0 to a value less than 1.

This conclusion about the impact of social distancing at different stages on the pandemic is dependent on the parame-
terization of the model. As many of the parameter values are still uncertain, we also explored how R0 depends on a
combination of a single model parameter and the social distancing rate parameter. One major uncertainty surrounding
COVID-19 is the fraction of individuals who get infected but never develop symptoms. We find that R0 is sensitive to this
symptomatic fraction, demonstrating the importance of getting a confident measurement on this value before quantitative
model predictions can be trusted.

Another major unknown is how infective asymptomatic individuals are. We find that if asymptomatics are not very
contagious, and if infected individuals automatically self-isolate, then R0 is not greatly influenced by social distancing
measures. However, if asymptomatics are sufficiently infective, there is a much stronger impact of social distancing onR0.
That said, this conclusion depends on the assumption that social distancing reduces the transmission rate of the disease
by the value of the CoRF. Therefore, varying this parameter allows us to quantify how the nature of social distancing
measures impacts R0. If this parameter is very small, meaning one significantly down-scales their contacts (that is, the
stay-at-home directives are extreme), very rapid implementation of social distancing is not required. On the other hand,
if the directives are not as severe and CoRF is larger (meaning the number of contacts is scaled down less significantly),
social distancing will not result in R0 < 1 and we can still expect disease spread despite social distancing.

We also used our model to explore how the timing of when social distancing is enacted influences the spread of the disease
through a population. One of the most striking predictions is that a moderate delay in establishing social distancing
guidelines, which we term a critical implementation delay (CID), does not appreciably increase the peak number of
infected individuals. Keeping this number low (“flattening the curve”) is desirable in order to prevent strain on health
providers and hospital resources. The existence of a CID means that authorities can take some time to plan for guidelines
and announce a closure plan. Another important feature of the CID is that even a few days delay in implementation beyond
the CID can have highly adverse consequences. Once passed, there will be many more (over ten times) the number of sick
people in the population at its worst moment. With our parameters, the CID is roughly two weeks.

That said, there are good reasons both for and against taking advantage of the CID. We find that implementing even faster
than the CID time results in a major postponement of the peak time for infections. For example, a delay of 15 days has a
peak of infection early on in the epidemic, occurring at about 50 days. However, initiating 10 days earlier delays the peak
to almost one year, a huge difference in timing. Such a postponement provides more opportunities to develop vaccines
and treatments, and hence can be seen as highly desirable. On the other hand, extended waiting may also create anxiety.
This trade-off must be carefully considered by policy makers and society at large.
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Related to timing, there has been interest in periodically relaxing distancing guidelines to allow for limited economic
activity. For example, businesses may be allowed to operate normally for one week, while the ensuing week is restricted
to remote operation (or being fully closed, if remote work is not feasible). This two week “periodic” schedule is then
continued either for a fixed period of time, or indefinitely (e.g. the discovery of a vaccine, evidence that sufficient herd
immunity has been obtained, etc.) Using our model with estimated parameters, we simulate such schedules for a variety
of periods, ranging from days to months of sanctioned activity. Our results are quite counter-intuitive, and suggest that
there might be a pulsing period that significantly inhibits the infection dynamics (a 17 day “on/off” schedule with our
parameters). However, this schedule is exceptionally sensitive to parameter values and timing, so that extreme caution
must be taken when designing guidelines that fully relax social distancing, even temporarily. Furthermore, for some
strategies near the optimal 17-day cycle, a subsequent increase in infected individuals may occur after an initial flattening.
Thus, even if a region observes a short-term improvement, the worst may still be yet to come.

Other forms of relaxation relate to gradual easing, as opposed to periods of “normal activity.” Of course, the rate of
easing (e.g. how many people are allowed in a grocery store or in an office) is of great interest, both economically
and psychologically. We numerically investigate how the rate of easing social distancing guidelines affects outbreak
dynamics, and show that relaxing too quickly will only delay, but not suppress, the peak magnitude of symptomatic
individuals. However, a more gradual relaxation schedule will both delay onset and “flatten the curve,” while producing a
largely immune population after a fixed policy window (again, assuming recovery corresponds to immunity, which is still
an open question as of this writing). Hence the rate of relaxation is an important factor in mitigating the severity of the
current pandemic. Similarly, the rate of relaxation during flattening is important to prevent a “second wave” of infected
individuals. As governments develop and implement plans to ease social distancing, carefully considering the rate of
relaxation is extremely important from a policy perspective, so that countries and states do not undo the benefits of their
strict distancing policies by lifting guidelines too rapidly. For example, in our model, a very rapid relaxation schedule
results in a second wave with a larger peak symptomatic proportion than originally experienced (over 27%, compared to
original peak of 3.2%). However, relaxing more gradually once the peak has been obtained prevents a second outbreak,
and allows a sustainable approach to herd immunity.

We close this introduction with the following quote:

“I have skepticism about models [of COVID-19], and they are only as good as the assumptions you put into
them, but they are not completely misleading. They are telling you something that is a reality, that when you
have mitigation that is containing something, and unless it is down, in the right direction, and you pull back
prematurely, you are going to get a rebound of cases.”
Dr. Anthony Fauci, Director, National Institute of Allergy and Infectious Diseases, United States; on CNN,
05 May 2020

It bears emphasizing: ours is one model, with one set of assumptions. We do not in any way believe that the quantitative
predictions of our (or of any other) model of COVID-19 can be accurate, as so much is still unknown about this disease.
However, as in the statistician George Box’s aphorism “All models are wrong, but some are useful”, the correct question
is not if the model is “true” but rather if it is “illuminating and useful.”

2 Models

The SIR model proposed by W.O. Kermack and A.G. McKendrick in 1927 [17] has been applied in many ways over the
last century to study infectious diseases, and recently has been extended to study COVID-19. For example, a recent model
for COVID-19, called the SIDARTHE model [12], partitions individuals as susceptibles, asymptomatic and undetected in-
fected, asymptomatic detected, symptomatic undetected, symptomatic detected, detected with life-threatening symptoms,
recovered, and deceased. There are also several papers that deal with timing of interventions as well as periodic strategies
to prevent the spread of epidemics, modeled through periodic vaccination [18] or through the periodic or other switching
of the infectivity parameter in SIR and related models [12, 14, 15, 16].

In this work we propose a different extension of the SIR model, one that includes socially distanced (labeled with a D
sub-index) and non-socially distanced (labeled with an N sub-index) classes for susceptible (SD and SN ), asymptomatic
(AD and AN ), and symptomatic (ID and IN ) individuals. Class R refers to “Recovered” who are presumed to have
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developed at least temporary immunity. More details about the interpretation of each variable together with the meaning
of the variables and parameters used in this model can be found at Table 1. Next, we explain the dynamics of our model
(please refer to Fig. 1 for a graphical explanation).

1. A socially distanced susceptible individual (SD) may become infected with rate:

� εSβAAN when in contact with a non-socially distanced asymptomatic individual. Here, βA is the transmis-
sion rate between an asymptomatic non-socially distanced individual and a non-socially distanced susceptible;
and the term εS accounts for the reduction of infectivity by socially distancing the susceptible. We call εS a
contact rescaling factor (CoRF).

� εSεAβAAD when in contact with a socially distanced asymptomatic individual. The term εSεA refers to the
reduction of infectivity by socially distancing both the susceptible and the asymptomatic individuals.

� εSβIIN when in contact with a non-socially distanced symptomatic individual. The term βI denotes the
transmission rate between non-socially distant symptomatic and non-socially distanced susceptible individu-
als.

� εSεIβIID when in contact with a non-socially distanced symptomatic individual. The term εSεI denotes
the reduction of infectivity by socially distancing both the susceptible and the symptomatic individuals. We
expect that socially distanced symptomatic individuals are still capable of transmitting infections, be it through
contact with hospital personnel or caregivers, or the pressure to work despite being sick.

2. Similarly, a non-socially distanced susceptible individual (SN ) may become infected with rate:

� βAAN when in contact with a non-socially distanced asymptomatic individual.

� εAβAAD when in contact with a socially distanced asymptomatic individual.

� βIIN when in contact with a non-socially distanced symptomatic individual.

� εIβIID when in contact with a socially distanced symptomatic individual.

3. If a susceptible individual that has been social distancing (an individual in class SD) gets infected, they will con-
tinue social distancing (will transfer to class AD); and a non-social distanced individual will continue non-social
distancing right after getting infected (will transition from the SN to the AN class).

4. Susceptible individuals transition from social distancing to non-social distancing behavior with rate h1. Likewise
for asymptomatic individuals.

5. Susceptible individuals transition from non-social distancing to social distancing behavior with rate h2. Likewise
for asymptomatic individuals.

6. After the incubation period, an asymptomatic individual may or may not become symptomatic. Thus, an individual
may transition from the asymptomatic class into the symptomatic class, or directly to the recovered class. The
parameter f represents the fraction of the asymptomatic individuals that transition into the symptomatic class. Thus
(1− f) is the fraction of individuals who are asymptomatic and transition directly to the recovered group.

7. The transition rate out of asymptomatic, γAI , is independent of whether one was socially distancing or not.

8. A fraction p of non-socially distanced asymptomatic start social distancing after becoming symptomatic. Thus,
(1 − p) is the fraction of non-socially distanced asymptomatic individuals that remain non-social distancing after
becoming symptomatic.

9. A social distancing asymptomatic that becomes symptomatic remains socially distancing (transfers from AD into
ID).

10. If an individual becomes symptomatic, they will either recover (transfer to the R class with rate γIR) or die with
rate δ.

11. Recovery assumes that the individual will acquire temporary immunity.
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12. Recovered individuals lose immunity at a rate ρ.

13. A fraction q of recovered individuals who lost immunity remain socially distanced, and a fraction (1− q) will stop
social distancing.

δ

h2

SD

R

SN

I D

I N

AD

AN

h1 h1

h2

f γ AI

(1−f ) γAI

(1−p) f γ AI

δ

γ IR

γ IR

(1−f ) γAI

p f γ AI

qρ

(1−q)ρ

ϵSβI I N ,ϵS ϵI βI ID

βI I N , ϵI βI ID

ϵSβ A AN , ϵS ϵAβA AD

βA AN ,ϵAβA AD

Figure 1: Illustration of the seven compartment SIR model in equations (1)-(7).
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Symbol Interpretation

SN Fraction of population that are non-socially distant suceptibles.

SD Fraction of population that are socially distant suceptibles.

AN Fraction of population that are non-socially distant asymptomatics.

AD Fraction of population that are socially distant asymptomatics.

IN Fraction of population that are non-socially distant symptomatics.

ID Fraction of population that are socially distant symptomatics.

R Fraction of population that are recovered and presumed to have developed at least temporary
immunity.

εS CoRF: Effect of socially distancing susceptibles on disease transmission.

εA CoRF: Effect of socially distancing asymptomatics on disease transmission.

εI CoRF: Effect of socially distancing symptomatic infectives on disease transmission.

βA Transmission rate between asymptomatic non-socially distanced individual and non-socially
distanced susceptible.

βI Transmission rate between non-socially distanced symptomatic and non-socially distanced
susceptible.

δ Mortality rate of disease.

f Fraction of individuals who become symptomatic (as opposed to never showing symptoms
and recovering).

h1 Return to socializing rate.

h2 Rate of social distancing (control).

γAI Rate of transition out of the asymptomatic class.

γIR Rate of recovery.

p Fraction of non-socially distanced asymptomatics who socially distance upon showing
symptoms.

q Fraction of recovered individuals who lose immunity but continue social distancing.

ρ Rate at which recovered individuals lose immunity and become susceptible again.

Table 1: List of all the variables and parameters used in both models: the seven-compartment model in equation (1)-(7),
and the six-compartment model in equations (8)-(13).

The differential equation system representing this seven-compartment model is as follows:
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dSD
dt

= −εSβI (SDIN + εISDID)− εSβA (SDAN + εASDAD)− h1SD + h2SN + qρR (1)

dSN
dt

= −βI (SNIN + εISNID)− βA (SNAN + εASNAD)− h2SN + h1SD + (1− q)ρR (2)

dAD
dt

= εSβI (SDIN + εISDID) + εSβA (SDAN + εASDAD)− γAIAD − h1AD + h2AN (3)

dAN
dt

= βI (SNIN + εISNID) + βA (SNAN + εASNAD)− γAIAN + h1AD − h2AN (4)

dID
dt

= fγAI(AD + pAN )− γIRID − δID (5)

dIN
dt

= (1− p)fγAIAN − γIRIN − δIN (6)

dR

dt
= (1− f)γAI (AD +AN ) + γIR(ID + IN )− ρR. (7)

Although very little is known about immunity in regards to COVID-19, it is known that for other types of coronaviruses
such as the severe acute respiratory syndrome (SARS), antibodies are maintained for an average of two years [19, 20, 21].
At present, pharmaceutical companies around the world are working to develop a vaccine for COVID-19, and it is hoped
that one will be widely deployed in less than two years. For this reason, we are currently interested in understanding the
dynamics that will occur during the waiting period for a vaccine. It seems reasonable then, under the assumption that a
recovered individual will acquire immunity for an average period of two years, to start by studying the simplified model
where immunity is not temporary. Further, given the widespread understanding of the contagious nature of SARS-CoV-2,
it is also reasonable to assume that symptomatic individuals self-isolate.

2.1 A simplified version (A six compartment SIR Model)

In this simplified model we assume permanent immunity for the recovered class, and that all symptomatics (IN and ID)
can be merged into just one class I (see Fig. 2). The differential equation system representing this model is given below:

dSD
dt

= −εSβISDI − εSβA (AN + εAAD)SD − h1SD + h2SN (8)

dSN
dt

= −βISNI − βA (AN + εAAD)SN + h1SD − h2SN (9)

dAD
dt

= εSβISDI + εSβA (AN + εAAD)SD + h2AN − γAIAD − h1AD (10)

dAN
dt

= βISNI + βA (AN + εAAD)SN + h1AD − γAIAN − h2AN (11)

dI

dt
= fγAI(AD +AN )− δI − γIRI (12)

dR

dt
= (1− f)γAI (AD +AN ) + γIRI. (13)

2.2 Parameter estimation from currently available data

We first note that the variables in our model system (8)- (13) should be interpreted in terms of fractions of the population,
and not as absolute population numbers. Of course, a direct translation is possible by fitting to a region of interest, and
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δ

h2

SD

R

SN

I

AD

AN

h1 h1

h2

f γAI

(1− f )γAI

f γAI

γIR

(1− f )γAI

ϵSβ I I

βI I

ϵSβ A AN ,ϵS ϵA βA AD

βA AN ,ϵAβA AD

Figure 2: Illustration of the six compartment SIR model in equations (8)-(13).

multiplying by the total population size at the time of disease outbreak. Note that since the initial conditions are all
non-negative and satisfy

SD(0) + SN (0) +AD(0) +AN (0) + I(0) +R(0) = 1, (14)

then all variables remain in the interval [0, 1] for future times t > 0, and can hence be interpreted as a fraction of the initial
population. Note that if δ > 0 (a strictly positive death rate) and (14) is satisfied, the total population fraction N defined
by

N(t) := SD(t) + SN (t) +AD(t) +AN (t) + I(t) +R(t) (15)

will satisfy

N(0) = 1 (16)

0 ≤ N(t) < 1 (17)

for all t > 0. In fact, the difference 1 − N(t) measures the fraction of deaths of the initial population by time t. Births
are ignored, since we consider time-scales on the order of 1 year, and newborns are not significant contributors to the
susceptible populations.

It is easy to verify (see Appendix C) that all the infective populations,AN (t),AD(t), and I(t) converge to zero as t→∞.

One contribution of this work is to make the distinction between rate control and decrease in contacts due to social distanc-
ing. Hence, we need to explicitly define rate control (h1 and h2) in our model. To this end, recall that h1 is interpreted as a
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socializing rate, while h2 is a controlled level of social distancing. Intuitively, we expect that increasing social distancing
guidelines will at the same time inhibit individuals from socializing. That is, h1 and h2 are not independent, but are rather
inversely correlated to one another. To make this mathematically precise, we define

h1 :=
A

1 +Bh2
. (18)

That is, increasing distancing mandates (h2) at the same time decreases the rate at which individuals socialize (h1). Other
functional relationships are possible, but for the remainder of this work we fix h1 as in equation (18). Furthermore, we fix

A = 1

B = 10,
(19)

so that

h1 :=
1

1 + 10h2
. (20)

It is difficult to estimate such rates directly, as they correspond to sociological responses to unprecedented self-isolation
guidelines. However, our rationale is as follows. Consider first a policy such that h2 = 1 per day, which implies that
(interpreting the ODE system as the expected value of the corresponding Poisson process) that the average time to socially
distance is

〈tD〉 =
1

h2
(21)

= 1 day (22)

Assuming that the population is initially non-distanced, so that SN (0) ≈ 1, SD(0) ≈ 0, and ignoring the infection
dynamics over a period of 1 day, we have the estimate

SN (1) ≈ e−1 (23)
≈ 0.37. (24)

In the above, we ignored transitions from SD into SN , as SD is assumed small. Hence, after 1 day, approximately 63%
of the population socially distances. Equation (20) then yields h1 = 1

11 , so that of the (assumed small) socially distanced
population,

SD(1) ≈ e− 1
11SD(0) (25)

≈ 0.91SD(0). (26)

That is, about 9% of the population disobeys the distancing mandate per day. Similarly, when h2 = 0, i.e. there are no
social distancing directives, equation (20) yields h1 = 1, so that

SD(1) ≈ e−1SD(0) (27)
≈ 0.37SD(0), (28)

i.e. about 63% of the population re-socializes in 1 day; others may be too scared, or simply not prone to leave their house
every day. The above reasoning seems at least reasonable to the authors. Of course, the focus on the subsequent analysis
will not be on precise predictions, but rather general phenomenon, which are robust to parameter values. This should be
considered for the remainder of this section (and the remainder of the work) as we discuss other estimates.

We can also interpret h1 and h2 in terms of the equilibrium fractions of socially distanced individuals. Indeed, in the
absence of any infection (assuming no recovery has yet taken place), we have that the equilibrium fractions of SN and SD
are given by

S̄N =
h1

h1 + h2
(29)

S̄D =
h2

h1 + h2
. (30)
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If as above, h2 = 1, then h1 = 1
11 , and we have that

S̄N ≈ 0.08 (31)
S̄D ≈ 0.92. (32)

Hence, in the long-term, with very strict distancing guidelines, approximately 92% of the susceptible population will
distance, while 8% do not. This also seems reasonable with very strict mandates, as of course some jobs remain essential
and hence not all workers can become isolated (nurses, doctors, grocery workers, first responders, etc.).

Recall that fγAI is the transition rate from the asymptomatic (but infected) populations AD and AN . Again interpreting
as the expected value of a Poisson process, we can relate fγAI to the expected time until asymptomatic individuals shows
symptoms

fγAI =
1

〈tA〉
. (33)

That is, fγAI is inversely proportional the incubation period of the disease. There are different estimates of this incubation
period. The original analysis based on 88 confirmed cases in Chinese provinces outside Wuhan, using data on known travel
to and from Wuhan, gave an estimate of 6.4 days [22]. Later estimates of community spread have been closer to 5.1 days,
with a 95% confidence interval of 4.1 to 7.0 days [23, 24]. We picked the number 〈tA〉 = 6.2 in this interval, to account
for about a day earlier exposure that would account for an adjustment for travel, but our results do not change substantially
if a slightly smaller value is used. Thus at our chosen value of f , this yields

γAI = 0.296 per day. (34)

We fix this value in the remainder of the work. Note that all rates will be measured in days.

In a similar manner, we estimate the parameter γIR, the transition rate from infected to recovered. The February 2020
joint WHO-China report [25] found an average recovery time of 2 weeks at the time of the onset of symptoms for mild
cases, and 3−6 weeks for severe cases. In our model, we do not distinguish between the types of symptomatic individuals,
and hence we roughly estimate an average 3 week recovery period. Hence

γIR =
1

21
(35)

= 0.048 per day. (36)

The parameter f represents the fraction of SARS-CoV-2 infections that become symptomatic. Current reports suggest
that this parameter is highly variable, with analyses on different data sets yielding between 20%− 95% of positive tested
cases being symptomatic (so that f ∈ [0.2, 0.95]) [26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. As of May 2020, the CDC
estimates the asymptomatic proportion of positive cases to be 35% [36], so we fix f as

f = 0.65. (37)

Finally, we can estimate δ, the disease mortality rate, using the fraction of reported deaths with respect to the total disease
numbers. Using global data reported on the John Hopkins dashboard [37] on 03/29/2020, there were a total of 33876
deaths and 717656 reported cases, so that

δ

δ + γIR
=

33876

717656
. (38)

Using the above value of γIR in (36), we thus have that

δ = 2.4× 10−3. (39)

The remaining parameters are βA, βI , εA, and εS . For simplicity, we assume that the effect of social distancing the
susceptible, asymptomatic, and symptomatic individuals is symmetric, so that

ε := εI = εA = εS . (40)
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The values of βA and ε are calibrated to reported R0 values. Using data from PolicyLab at CHOP for the Bronx, NY, we
use an R0 = 5.6 when h2 = 0 (corresponding to 3/23/20), and R0 = 1.4 when h2 = 0.5 (corresponding to one week
later on 3/30/20) [38]. βI is calibrated from βA using:

βI = (2βA)ε. (41)

This assumes that symptomatics are twice as infective as asymptomatics [39]. The scaling by ε indicates that symptomatic
individuals are assumed to socially distance.

Parameter Value Reference

βA Calibrated to 0.86 so that R0 = 1.4 when h2 = 0.5 and R0 = 5.6
when h2 = 0.

See Section 3.1

εA [0, 1] as social distancing decreases contacts. Calibrated, as de-
scribed for βA, to 0.12.

See Section 3.1

εS [0, 1] as social distancing decreases contacts. Calibrated, as de-
scribed for βA, to 0.12.

See equation (40)

βI βI = 2εβA, assuming symptomatics stay at home (so distancing
them has same impact as distancing asymptomatics) and are twice
as infective as asymptomatics. Recall ε := εA = εS .

[39]

h2 Varied in manuscript. Units are per day. See Section 2.2

γAI 0.296 (per day). [2]

γIR 0.048 (per day). [25]

f [0, 1], using 0.65. [26]

δ 2.4× 10−3 (per day). Worldwide mortality figures
on 03/29/2020 from [37]

Table 2: A list of estimated parameters values to be used in our simulations.
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3 Results

3.1 Basic Reproduction Number, R0

A central subject in the analysis of epidemiological models concerns the stability of a “disease free steady state” (abbre-
viated DFSS from now on), in which all infective populations are set to zero. Stability of the DFSS means that small
perturbations of the DFSS, that is to say, the introduction of a small number of infectives into the population, results in
exponential convergence back to the DFSS. In other words, the infection does not take hold in the population. Mathemat-
ically, this means that the linearization at the DFSS is described by a matrix in which all eigenvalues have negative real
part (a “Hurwitz matrix”). Conversely, if the DFSS is unstable, then the infection will initially expand exponentially. It
is important to realize, however, a very subtle and often misunderstood fact. Instability of the DFSS does not necessarily
imply that the infection will keep increasing forever. Linearized analysis is only local, and says nothing about behavior
over long time horizons, because nonlinear effects can dominate once the system is away from the DFSS; indeed, we will
show that we find this phenomenon in our model (provided that social distancing directives are introduced).

A fundamental and beautiful mathematical result is that the DFSS is exponentially stable if and only if the basic repro-
duction number R0 is less than one. Intuitively, R0 is the average number of new infections that is caused by a typical
individual during the period that this individual is infective. Mathematically, R0 is defined as the dominant eigenvalue of
a certain positive matrix, called the next generation matrix [40, 41]. We briefly explain this method in Appendix A, and
therein derive that for our six-compartment SIR model in equations (8)-(13):

R0 =
(g11 + g22) +

√
(g11 − g22)2 + 4g12g21

2
, (42)

where gij represents the (i, j)−entry of the next generation matrixG evaluated at the DFSS. As we derive in Appendix A:

g11 =

(
εSεAβA(h2 + γAI)h2
γAI(γAI + h1 + h2)h1

+
εSβAh2

γAI(γAI + h1 + h2)
+

εSβIfh2
(δ + γIR)h1

)
S̄N (43)

g12 =

(
εSεAβAh

2
2

γAI(γAI + h1 + h2)h1
+

εSβA(h1 + γAI)h2
γAI(γAI + h1 + h2)h1

+
εSβIfh2

(δ + γIR)h1

)
S̄N (44)

g13 =
εSβIh2

(δ + γIR)h1
S̄N (45)

g21 =

(
εAβA(h2 + γAI)

γAI(γAI + h1 + h2)
+

βAh1
γAI(γAI + h1 + h2)

+
βIf

δ + γIR

)
S̄N (46)

g22 =

(
εAβAh2

γAI(γAI + h1 + h2)
+

βA(h1 + γAI)

γAI(γAI + h1 + h2)
+

βIf

δ + γIR

)
S̄N (47)

g23 =
βI

δ + γIR
S̄N (48)

g31 = g32 = g33 = 0, (49)

where S̄N represents the value of SN at the DFSS.

We begin here by studying the value of R0 under various scenarios of disease progression. We distinguish these scenarios
by a number we call R∗ that gives the percent of the population that has “recovered” from the disease1. Herein we assume

1The use of the letter “R” for “recovered” and for “R0” is an unfortunate coincidence.

12

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.05.11.20098335doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.11.20098335


all recovered have developed immunity, though that assumption could easily be removed. One can interpret R∗ = 0 as
the very earliest stage of the pandemic, when there are no recovered individuals in the population. On the other extreme,
R∗ = 1 indicates every individual has recovered. Because we are assuming all recovereds stay recovered, increasing
values of R∗ correspond to increasing values of time.

In Fig. 3, we show howR0 predicted by our model changes as a function of the fraction recoveredR∗ and the rate of social
distancing h2. We observe that at sufficiently early stages of the pandemic (R∗ < 0.3), R0 > 1 unless social distancing is
implemented at a rate faster than h2 = 0.5, which is already a very rapid rate. (The contact rescaling factor CoRF is kept
constant, as explained in the Introduction). While it is easy to interpret this as saying controlling the disease is hopeless
unless society could act unrealistically quickly, this is not the case. As discussed above, instability of the DFSS does not
characterize global temporal behavior. It does tell us that an “overshoot” and headline-grabbing infection will initially
take hold. Thus, social distancing directives will initially appear to have failed in their intended effect. But, as time goes
on and individuals limit their contacts and more individuals recover, social distancing can eventually result in R0 < 1,
which would result in the epidemic dying out exponentially.

Even though it is based on linearization, we found out that analysis based onR0 is in excellent agreement with simulations,
and hence we use formulas for R0 as a function of R∗ (and of other parameters in the model as well) to understand how
sensitive R0 is to different social distancing rates, the point in time when such directives are introduced (as quantified by
R∗), and other parameters. Also note that, even when R0 > 1, social distancing can still “flatten the curve”, as we show
in Section 3.2. This means that the peak infection levels will be lower, which reduces the stress on the healthcare system.

(a) (b)

Figure 3: Basic reproduction number as a function of the social distancing rate parameter h2 and R∗, the fraction of the
population that is immune. All other parameters as in Table 2.

To explore the sensitivity to h2 further, we note that the limit of R0 as h2 →∞ can be written as
√
p/q, where

p = 10000ε2Sβ
2
I f

2γ2AI + 20000εAε
2
SβIβAδfγAI + 20000εAε

2
SβIβAfγAIγIR + 10000ε2Aε

2
Sβ

2
Aδ

2

+ 20000ε2Aε
2
Sβ

2
AδγIR + 10000ε2Aε

2
Sβ

2
Aγ

2
IR + 100εAεSβAδ + 100εAεSβAγIR + 100εSβIfγAI

q = 2 (100δγAI + 100γAIγIR) .

The formulas follow from the explicit calculation of R0 given in Appendix A. We show in Fig. 4 plots of R0 as a function
of h2 for R∗ = 0 (on the interval h2 ∈ [0, 1]), as well as its derivative and its differential sensitivity, defined intuitively
as “dR0/R0

dh2/h2
” and formally as d logR0

d log h2
= dR0

dh2
· h2

R0
. The fact that this sensitivity rapidly approaches zero means that after

a threshold rate of social distancing, small relative changes in the rate of social distancing have essentially no effect on
relative changes in R0.

Mathematically, it is interesting that the derivative of R0 (and also the sensitivity) has a local minumum, in other words
d2R0/dh

2
2 can change sign. This is necessary because d2R0/dh

2
2 ≈ −114.3 < 0 at h2 = 0, but this second derivative
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Figure 4: Plots of R0, derivative dR0/dh2, and differential sensitivity d logR0

d log h2
= dR0

dh2
· h2

R0
, all as functions of h2 at

R∗ = 0. Different ranges picked for clarity. dR0/dh2 and differential sensitivity converge to zero.

cannot stay negative since R0 is bounded below. Taken together, these plots further confirm that increasing the rate of
social distancing beyond a certain threshold does not result in significant changes to R0.

(a) (b)

Figure 5: Basic reproduction number as a function of the social distancing rate parameter h2 and fraction of individuals
who become symptomatic (f ) at different pandemic stages. All other parameters as in Table 2.

We proceed by exploring the sensitivity of R0 to various combinations of parameters, all including the social distancing
rate h2. The first parameter we consider is f , which determines the fraction of asymptomatic individuals that progress
to having disease symptoms. Varying this parameter is important, as different studies have reached different conclusions
about its value. As Fig. 5 indicates, the value of R0 is sensitive to the fraction of individuals that develop symptoms,
whether we are at an earlier (R∗ = 0) or later (R∗ = 0.25) stage of the pandemic. In particular, a larger likelihood
of transitioning from asymptomatic to symptomatic increases R0. This occurs because both asymptomatics and symp-
tomatics spread the disease, so spending time in both A and I means an individual has more time to spread the disease
than if an individual transitions directly from the asymptomatic pool to the recovered pool. If instead of using the CDC
estimate that f ≈ 0.65 [36], we used earlier data from the Diamond Princess cruise ship [26] of f ≈ 0.821, without any
social distancing directives, this increase in f would increase R0 from 5.6 to 6.3 at our baseline parameters. Yet another
data set out of Italy suggested f may be closer to 0.57 [35]. Without any social distancing directives, this reduction in f
would reduce R0 from 5.6 to 5.3 at our baseline parameters. While these changes are not drastic, we do note that R0 is
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more sensitive to f as h2 increases, as can be seen in Fig. 5 by observing the increasing steepness of the contours as h2
increases. Further, the possibility that there may be different strains of SARS-CoV-2 could mean that f varies depending
on the dominant strain in a region [42].

Another uncertainty surrounding COVID-19 is how infectious the asymptomatic individuals are, which we call βA in our
model. In Fig. 6, we explore how the contagion level of the asymptomatics influences R0 under varying rates of social
distancing. We observe that if asymptomatics are not very contagious (βA is small), then R0 is not very sensitive to
social distancing directives as measured by h2 (R0-clines are almost vertical). This can be explained by our assumption
that symptomatic individuals are assumed to socially distance themselves, and therefore have minimal interaction in our
model with susceptibles. When this is the case, the disease is mainly spread by non-socially distanced asymptomatics.
And, if the transmission rate from these individuals is small, socially distancing the asymptomatics and susceptibles has
little impact on the progression of the disease. If, on the other hand, βA is sufficiently large, then asymptomatics can fairly
readily spread the disease, and we see a much stronger impact of social distancing on R0 (R0-clines get much less steep
as βA increases).

(a) (b)

Figure 6: Basic reproduction number as a function of the social distancing rate parameter h2 and infectivity rate of
asymptomatics βA at different pandemic stages. All other parameters as in Table 2.

Another major assumption of our model is that social distancing reduces the transmission rate of the disease by a factor
called the contact rescaling factor (CoRF). We formulate our model so that socially distancing the susceptibles and the
asymptomatics (note, infectives are assumed to be socially distanced) are described by different CoRF values of εS and
εA, respectively. However, in all calculations and simulations, we assume that the extent that social distancing reduces the
transmission rate is the same independent of whether an individual is susceptible, asymptomatic, or infected. That is, we
take ε := εS = εA. The value of the CoRF ε is another way to measure social-distancing directives. While h2 describes
rate of social distancing, ε describes the severity of the measures. While not realistic for a disease like COVID-19, if
socially distancing meant an individual was exposed to nobody else, the contact rescaling factor ε would be 0. Intuitively,
and as we quantitatively demonstrate in Fig. 7, at very small ε, the rate of social-distancing h2 is less important. Social-
distancing is still needed in order for R0 to be less than 1, as it reduces the transmission from the distanced symptomatic
individuals to susceptibles. In particular, R0 drops below 1 at the rate of h2 = 0.3 when there are no recovered in the
population, and at h2 = 0.24 when 25% of the population has recovered.

Increasing the CoRF ε can be thought of as increasing the number of contacts socially-distanced individuals have. With
all other parameters fixed as specified in Table 2, we see that the social distance rate h2 can only result in an R0 < 1 at
the early stages of the pandemic (for h2 ≤ 1) if the CoRF ε is less than 0.15. Beyond this value, even socially-distanced
individuals have too many contacts, and R0 > 1. Intuitively, we see that R0 quickly increases as the CoRF increases.
This shows that, even if individuals act very quick to socially distance (there is a large h2), if they have too many contacts
while social distancing, social distancing will not be sufficient to drive R0 < 1.
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(a) (b)

Figure 7: Basic reproduction number as a function of the social rate distancing parameter h2 and the contact rescaling
factor (CoRF) ε at different pandemic stages. CoRF measures the impact of social distancing on infectivity rate. All other
parameters as in Table 2.

3.2 Time-varying social distancing (h2(t))

We now investigate how dynamic social distancing protocols affect the spread of the epidemic in the six equation SIR
model introduced in Section 2.1.

3.2.1 No distancing dynamics

We begin with the predicted outbreak dynamics in the case of no implemented social distancing. As discussed in Sec-
tion 3.1, with parameters estimated from data, we expect

R0 ≈ 5.6, (50)

so that we expect the disease to spread rapidly throughout the population. No social distancing implies that

h2(t) ≡ 0 (51)

h1(t) =
1

1 + 10h2(t)
(52)

≡ 1 (53)

Initial conditions consist of all susceptible individuals socially non-distanced, no population immunity, and a small number
of symptomatic individuals (100 in 10 million). More precisely,

SD(0) = 0

SN (0) = 1− I(0)

AD(0) = 0

AN (0) = 0

I(0) = 10−5

R(0) = 0.

(54)

Of course, in reality it is likely that a number of asymptomatic people also exist in the population at this time (t = 0), but
for simplicity we ignore them. Note that I(0) was taken to be consistent (as an order of magnitude) with the reported cases
in New York City (NYC) before a state of emergency was declared (89 cases on March 7, with a total NYC population of
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approximately 8.4 million). These will be the initial conditions used throughout the remainder of the manuscript, as we
compare intervention strategies based on responses to the above infection data at day t = 0.

The results of simulating the model in equations (8)- (13) for 180 days are provided in Fig. 8. This will serve as a
baseline for the severity of the outbreak in a “worst-case scenario.” Social distancing strategies will be compared to these
worst-case figures, some of which we highlight below:

1. The symptomatic infected population (I) reaches a peak value of 40%.

2. The time to this symptomatic peak is approximately 30 days.

3. The model predicts that a peak of 60% of the total infected population (symptomatic and asymptomatic) will occur
at day 24. As a reminder, these numbers are based on parameters calibrated to the outbreak in the Bronx NY, a
locale hit very hard by the virus.

4. By day 70, 90% of the original the population will be recovered (assuming recovered individuals do not lose
immunity).

5. Over 3% of the population will die during the outbreak (3.11%).

6. Compartments SD and AD never comprise any percentage of the population. This is because of the initial condi-
tions, and because no distancing guidelines have been issued in this “worst-case scenario”.
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Figure 8: Population responses in the absence of treatment. Here h2(t) ≡ 0, i.e. no social distancing has been imple-
mented. We simulated the model introduced in Section 2.1 for 180 days. Note that the infected symptomatic population
(I , solid red curve) comprises about 40% of the population by day 30. Units of vertical axes are percentage of initial
population.

3.2.2 Delayed response

We first investigate disease dynamics in response to delayed social distancing protocols. We assume that h2(t) takes the
following form:

h2(t) =

{
0, 0 ≤ t ≤ tc
h2, tc < t ≤ tf .

(55)
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Figure 9: Social distancing control as a function of the delay tc. Functional form for h2 used in Figs. 10, 11. See also
equation (55).

That is, we assume that social distancing does not occur until an implementation time tc, after which h2(t) is kept at a
constant value h2. For a visualization, see Fig. 9.

Since many policies are implemented in a 48 hour (2 day) window, we set

h2 = 0.5 . (56)

Fixing all other parameters as in Table 2, we simulate the model for a range of policy activation days tc; results are shown
in Fig. 10. Here we observe an apparent “flattening of the curve,” if the distancing was enacted quickly enough. That is,
if policies were enacted too late, social distancing has little effect on the course of the outbreak. This can be observed
by noticing that the response to a delay of 25 days is nearly identical to one with no distancing imposed. This is hardly
surprising, since if a society waits too long to start socially distancing, the disease will have already spread through much
of the population. However, if the delay is short enough (i.e. the response quick enough), we see a significant reduction in
the peak of the infected population (3% at the peak for a tc = 5 days, compared to the worst-case of 40%). Furthermore,
there seems to be a critical “window of opportunity” for commencing social distancing: the difference between waiting
15 and 20 days is quite striking (peak of 7% in the former, up to 30% in the latter). Notice that this window of opportunity
ends at a time (about 15 days) that is much earlier than the time at which infections would have peaked in the absence of
control measures (about 30 days). We think of (roughly) 15 days as a critical implementation delay (CID).

We investigate this further by plotting both the peak symptomatic population and the time to this peak in Fig. 11, where
social distancing is begun at t = tc days, for tc = 0, 1, 2, . . . , 35. This provides a quantification of what we saw in
Fig. 10: if the delay is relatively small or large, the response (measured as peak infected percentage) is robust to the
delay. However, there is a critical window about which a “bifurcation” occurs. For our parameters, the bifurcation value
appears to be approximately 2 weeks. In those first two weeks, if social distancing is begun, the outbreak will be sharply
inhibited. However, near this critical value, delaying even a few extra days could drastically increase the total number of
symptomatic individuals. For example, waiting 17 days yields a peak of 14% symptomatic, while waiting an extra week
increases the peak to over 35%. Thus we see that policies will be effective in a certain window, and that it is critical to
implement them within that window. Indeed, delaying even by a few days outside of that window could severely increase
the total number of infections.

We also note that the time to peak number of symptomatic individuals (right panel, Fig. 11) increases the sooner the
distancing procedure is implemented. This is intuitive, and combined with the previous result says that the more quickly
social distancing is enacted, the longer you will have to deal with a smaller number of sick individuals. However, the
number of sick individuals is relatively constant up until a certain time delay, where once passed, there will be many
more (over ten times) the number of sick people in the population at its worst moment. Hence, on the policy level, if the
existence of the infection is known sufficiently early, it is okay to take some time to plan a strategy, but once decided,
it must be implemented quickly and efficiently. On the other hand, implementing even faster than the CID time results
in the peak infections being postponed by a huge margin, thus giving more time for the development of vaccines and
treatments. For example, a delay of 15 days has a peak infection early on in the epidemic (at about 50 days), while
implementing the same distancing policy 10 days earlier delays the peak until approximately 1 year. In both cases, the
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Figure 10: Population response for a treatment window of 360 days with varying start time tc of social-distancing protocol
(see Fig. 9). Left panel denotes the symptomatic (I) temporal response; right indicates the recovered percentages for each
policy. Red curves correspond to no social distancing (see Fig. 8). Note that a delay of 25 days is hardly discernible from
no social distancing, while a significant response transition occurs for delays shorter than 15 days.

peak infected populations are similar (7% compared to 3%, still both substantially smaller than the predicted 40% non-
distanced dynamics), but the time scales over which the peak occurred are much different. Thus, one must take into
account both factors (peak, and time-to-peak) when designing distancing strategies.
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Figure 11: Peak infected population percentage (left) and time to this peak (right) when social distancing is delayed. Here
the horizontal axis represents the delay (from time t = 0), i.e. the value tc in equation (55). The dotted red line denotes the
corresponding values when no social distancing is enacted (Section 3.2.1). Note the rapid increase in peak symptomatic
population beginning around 15 days, which we term a critical implementation delay (CID).
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3.2.3 Periodic relaxation

We next investigate the effects of periodically relaxing social distancing protocols. Consider a protocol where social
distancing measures are implemented for a fixed time window ∆ton followed by a relaxation ∆toff. The above is then
repeated until a final time tf is reached. We envision a situation where the population is allowed to interact normally for
(say) one week, but must then isolate for the following week. Such policies may lessen the economic and psychological
impact of extended complete isolation by allowing limited windows in which individuals may work, socialize, etc. For a
visualization of a simplified version of such a policy, see Fig. 12. Note that we consider total relaxation (h2 = 0) during
∆toff, but of course this could be adjusted; here we consider the simplest possible periodic (i.e. metronomic) policy.

𝒕

𝒉𝟐

Δ𝑡on

𝑡𝑓

തℎ2

Δ𝑡off

Figure 12: Pulsing of socially distancing protocol. Social distancing is enacted for a time length of ∆ton days, followed
by a full relaxation for ∆toff days. This schedule is then repeated until a time window tf has been reached.

In Fig. 13, we investigate the dynamical response to several schedules with varying number of weeks of distancing. We
assume that the lengths of activation and relaxation are equal, so that

∆ton = ∆toff =: ∆t (57)

Note that this restriction allows a relatively unbiased comparison between distancing protocols, since all will have dis-
tancing enacted for the same total amount of time. There is a slight discrepancy based on tf , since the schedules may end
at different points of their respective cycles, but this effect is minimal. Hence we conclude that each schedule will have
approximately the same economic impact, and hence in the following we only examine the disease response. Note that
we fix h̄2 = 0.5 as in Section 3.2.2.

The results presented in Fig. 13 are quite surprising and non-intuitive. Note that they all have delayed the onset of the
peak of the epidemic by a similar length of time (all around 45 − 65 days, whereas the epidemic would have originally
peaked at around 30 days). However, the degree to which the peak has been suppressed is different among the relaxation
schedules. It appears that high frequency pulsing (small ∆t) does better than some extended strategies (compare ∆t = 7
to ∆t = 14, 21, 28), but worse than others (compare ∆t = 7 to ∆t = 17). This seems to indicate that there is some
optimal pulsing period. Furthermore, the curve for ∆t = 17 days is quite interesting; we see a significant reduction in
peak population infection (22%, compared to 30% for ∆t = 7 days, and approximately 40% for no social distancing)
together with an extended “flattening of the curve”, which does not appear in the others. We also note that all strategies
end with similar recovery rates (all above 93%, top right panel, Fig. 13).

To understand the behavior near ∆t = 17, we simulate a series of strategies with ∆t near this value, and observe how
the symptomatic response varies. Results are provided in Fig. 14 for ∆t = 16, 17, 17.6, 18, 19 days. Note that the peak
infected proportion appears to interact with a concavity change near ∆t = 17.6, and this interaction causes a significant
decrease in the peak together with an extended “flattening” period. However, it is relatively sensitive to the timing, so that
a slight error in timing (or a slight variation in parameters) will cause a large increase in peak infected numbers. Another
interesting property is apparent in the curve with ∆t = 17: we see an initial flattening and even reduction of infections,
followed by an increase in the number of symptomatic individuals. Hence for some strategies, the progression may yet
worsen even after an apparent downward trend. Phenomenologically, we see a “bifurcation” between two “unimodal”
behaviors in time (earlier vs. later peak) that happens through a “bimodal” (two maximal) time behavior (centered around
a period of approximately 35 days corresponding to 17.5 days of distancing and 17.5 days of non-distancing).
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Figure 13: Population response to strategies based on periodic relaxation of social distancing; see Fig. 12. Top left panel
denotes temporal dynamics of symptomatic population (I) for pulsing strategies with ∆ton = ∆toff = ∆t. Non-socially
distanced dynamics (red curves) are provided for comparison. Top right panel is recovered population in time, and bottom
panels are total susceptible individuals (left) and socially-distanced susceptible individuals (right). Initial conditions are
described in Section 3.2.1.
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Figure 14: Symptomatic population response to strategies based on periodic relaxation of social distancing (similar to
Fig. 13), but for policies with ∆t near 17 days.

We also globally investigate the response to different pulsing frequencies (different ∆t) on the critical infection measures,
namely peak symptomatic individuals and the corresponding time of this peak. A simulation of pulsing strategies with
periods ranging from ∆t = 1 day to ∆t = 70 days is presented in Fig. 15. The left panel denotes a clearly non-monotone
global response to different periodic relaxation schedules. Furthermore, we observe a global minimum near ∆t = 17.6
days, as discussed previously. Note also the sensitivity to the period: ∆t = 17.6 days yields a peak of only 22%, while
a slightly longer relaxation schedule of ∆t = 20 days produces a peak of over 33%. Hence, designing such strategies is

21

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.05.11.20098335doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.11.20098335


inherently risky, and should be done only when parameter values are precisely known.
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Figure 15: Response of infection dynamics to periodic relaxation for a range of frequencies. Policy period is assumed for
360 days. Left panel denotes peak symptomatic population (percentage) at any one time. Right panel is the corresponding
time (in days) when this peak occurs. Initial conditions are described in Section 3.2.1.

3.2.4 Relaxing social distancing

We next investigate the rate at which social distancing policies are eased after a fixed period of time. Such control
strategies may be important to prevent a second wave of infection arising soon after policies are relaxed. In this section,
we model the effects of a controlled relaxation on outbreak dynamics. The control we consider takes the form of a linear
decrease in regulations after a fixed isolation period (t1 days). The rate of decrease is determined by an end time te, after
which social distancing is no longer encouraged. Thus, a larger value of te corresponds to a slower easing of restrictions.
For a visualization, see Fig. 16. We fix

t1 = 60 days, (58)

to capture conditions as of May 2020.

𝒕

𝒉𝟐

𝑡1 𝑡𝑓

തℎ2

𝑡𝑒

Figure 16: Relaxing social distancing measures after an initial period of strict regulations for t1 days. Rate is decreased
linearly from h̄2 at day t1 to 0 at day te. After day te, no distancing regulations are in place.
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Results of simulation data for select relaxation rates appear in Fig. 17, while a global characterization is provided by
Fig. 18. Note that te = 60 days corresponds to immediately turning social distancing off (a step, i.e. infinite slope),
while te = 360 corresponds to a relaxation rate of slope 0.0017. Results indicate that gradual relaxation does have a
significant effect on “flattening the curve” in that it results in a lower peak infected population over a larger time interval
(compare te = 60 to te = 360 in Fig. 17). Fig. 18 further supports this claim, as we compute little variation in the peak for
small relaxation times (corresponding to more quickly ending protocols), but that a substantial decrease in symptomatic
burden is obtained as te is increased. Indeed, for a gradual relaxation over a one year period (360 days), we see a peak
symptomatic population of only 19%, which is down significantly from immediate re-openings after 60 days (40%).
Note that the latter schedule does not result in any significant peak mitigation when compared to the policy of no social
distancing: it merely delays the same peak by approximately 56 days. Hence it seems crucially important to gradually
relax social distancing guidelines, as gently as is economically feasible, to help mitigate the outbreak.

We also see that, as in Section 3.2.3, all strategies result in a significant fraction of the surviving population being immune
by tf = 360 days; the most gradual relaxation policy has the lowest immune population of just under 90%. In other
words, under the assumption that infection confers immunity that lasts at least a year, herd immunity has been largely
achieved in all protocols.

Figure 17: Symptomatic (left) and recovered (right) populations for policies which relax social distancing at a rate de-
termined (inversely) by te, the day at which distancing policies are completely removed. The response for no social
distancing implemented is included for reference (red curves). Note that te = 60 corresponds to immediate relaxation,
and has a similar peak to the non-distanced curve. However, gradual relaxation protocols appear to both decrease the peak
number of symptomatic individuals, while also spreading out their distribution.

3.2.5 Relaxation and a second outbreak

In Section 3.2.4, we saw that the rate of relaxation of social distancing was related to the overall peak symptomatic
population: relax too quickly, and the peak is delayed but not inhibited, but gradually lift polices and this peak is both
reduced and delayed to a substantial degree. (Figs. 17 and 18). In that analysis, we assumed a fixed distancing period of
60 days, after which relaxation protocols are implemented. In reality however, policies are not designed utilizing artificial
timelines, but instead rely on measured data relating to the epidemiology of the outbreak. A question many states and
countries now face is the following: once we observe a “flattening of the curve” (e.g. a plateau of new reported cases),
how should relaxation be implemented? In this section, we use our model to address this question.

Consider an initial outbreak as discussed in Section 3.2.1 (specifically initial conditions in equation (54)), assuming that
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Figure 18: Response of infection dynamics to different relaxation rates after 60 days of social distancing. Policy period is
assumed for 360 days. Left panel denotes peak symptomatic population (percentage) at any one time. Right panel is the
corresponding time (in days) when this peak occurs. Initial conditions are described in Section 3.2.1.

an immediate strict social distancing protocol is enforced. Mathematically, this means that

h2(t) ≡ h̄2. (59)

As in the previous sections, we fix

h̄2 = 0.5, (60)

which implies that

h1(t) ≡ 1

6
. (61)

The above policies are applied until the outbreak, here measured as the growth of the symptomatic population, dissipates.
That is, we apply the above until a time td such that

dI

dt
(td) = 0. (62)

According to our model, once the peak is achieved at time td, we see that the “worst is over”. This is confirmed by
the decrease in the infective population when extreme social distancing is continued beyond the peak infection time, as
shown in Fig. 19(a). Therefore, it is a reasonable policy decision to start to relax social distancing measures once the peak
has been obtained. However, the plot of the recovered individuals suggests we need to be careful about how relaxation
is implemented. If we completely relaxed all measures immediately at day td = 395, only 23% of the population is
recovered (and assumed to be immune). According to our calculations of R0 in Section 3.1 (in particular Fig. 3), R0 > 1
when h2 = 0, R∗ = R(td) = 23% and the number of infectives will increase. This highlights the need to carefully design
relaxation policies in order to avoid a second wave. Here, we now explore how to design such a relaxation strategy.

We thus consider a relaxation policy similar to that shown in Fig. 16, with td taking the role of t1, and investigate the
response to different relaxation policies (different te). From Fig. 19, we see that td is given by

td = 395 days. (63)

24

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.05.11.20098335doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.11.20098335


0 200 400 600 800 1000

time (days)

0

10

20

30

40

50

60

70

80

90

100
Infected populations

I

A
D

A
N

total infected

0 200 400 600 800 1000

time (days)

0

10

20

30

40

50

60

70

80

90

100
Susceptible populations

S
D

S
N

total susceptible

0 200 400 600 800 1000

time (days)

0

10

20

30

40

50

60

70

80

90

100
Recovered population

Figure 19: Response to 1080 days of social distancing, with h2 as in equation (60) for t ∈ [0, 1080] days. Note the peak
of the symptomatic population is approximately 3.2% of the population, occurring at around day 395. As suggested by
the right panel, the population is still largely susceptible, and one may suspect that a second epidemic will occur if social
distancing protocols are immediately abandoned.

The dynamical response of our model to selected relaxation rates appears in Fig. 20, while a more global characterization
is provided in Fig. 21. Note in the left panel of Fig. 20, all protocols have the same response until time t = td (black
curve); this is because social distancing is identically enforced for 0 ≤ t ≤ td. After td, we see a different infection
response based upon the rate at which distancing policies are relaxed. Note that if the rate of relaxation is too large
(te = 400, 500, 600 days in Fig. 20), we see a second wave of infections, larger than the original peak. For example, if
social distancing policies are concluded by day 400 (a very small relaxation period, since relaxing begun on day 395), we
see a second peak of symptomatic individuals of over 26% of the population by day 417; compare this with the original
peak of 3.2%. However, if relaxation is relatively slow (for example, te = 800 days), we see no second wave of infection.
Hence in designing policy, we must carefully consider the manner in which social distancing policies are removed; if it is
too fast, then we risk undoing the results achieved in the first td = 395 days.

In Fig. 21, we provide a plot of the peak of the infected population as a function of both the full relaxation time (left) and
the relaxation rate (right). Note that the rate is the speed (magnitude) of the relaxation schedule, and corresponds to the
absolute value of the slope in Fig. 16. The time te and rate are thus related via

rate =
h̄2

te − td
. (64)

All relaxation policies are initiated at day td = 395, where the symptomatic population has reached a peak value of 3.2%.
If no second wave occurs (by second wave we mean a peak value of symptomatic individuals larger than the original
peak at day td), then the maximum value of I corresponds to this 3.2%, indicated with a dashed red line in both panels of
Fig. 20. Hence we compute a critical relaxation rate rc, such that if social distancing is relaxed faster than rc, a second
outbreak will occur (right panel of Fig. 21). However, if distancing restrictions are eased slowly enough (i.e. slower than
rc), a second peak never occurs, and herd immunity is largely achieved after 1080 days (again, assuming it exists). For
our parameters, we find that this critical rate is

rc ≈ 1.65× 10−3. (65)

Hence we may provide an estimate of the degree to which social distancing may be relaxed. Of course, this value
depends critically on parameter values and other assumptions which remain (as of writing) unknown. Indeed, the main
conclusion should not be the exact value given in equation (65), but rather the phenomenon that the “speed” of relaxation
has significant consequences for subsequent outbreaks, which we believe is robust with respect to parameter values.
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Figure 20: Relaxation that was started during flattening. Symptomatic (left) and recovered (right) populations for policies
which relax social distancing at a rate determined (inversely) by te, the day at which distancing policies are completely
removed. The response for no social distancing implemented is included for reference (red curves). All curves besides
the red curve are identical for the first td = 395 days of treatment, when social distancing is implemented with h2(t) ≡
h̄2 = 0.5 per day for t ∈ [0, td]. Note that a second wave occurs for relaxation protocols that end too quickly (te =
400, 500, 600 days). However, if relaxation is slow enough (larger te), a second wave of infection is completely mitigated.
All simulations are taken over 1080 days.
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Figure 21: Magnitudes of peak of symptomatic individuals (percentage of total population) as a function of end time te
(left) and rate (right). Note that te and relaxation rate are inversely proportional; see equation (64). Relaxation is begun
when the symptomatic population first “flattens,” which is indicated by the dashed red line in the figure, and occurs for
all schedules at day td = 395. A peak equal to the dashed red line thus indicates that no second wave of infections
occurs, i.e. there was never a day when the number of infected individuals was greater than the peak when relaxation was
commenced. All simulations are taken over 1080 days.
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4 Discussion & Conclusion

In this work, we have introduced a novel epidemiological model of the COVID-19 pandemic which incorporates explicit
social distancing via separate compartments for susceptible and asymptomatic (but infectious) individuals. We believe
that this is the first model which characterizes social distancing protocols as rates of flow between these compartments,
with the rates determined by guidelines implemented by regional governmental intervention. In particular, we view these
rates as controls, and one of our primary focuses of study is disease response (measured by peak symptomatic proportion)
to different mandated social distancing controls.

Our major contributions and results are described below:

1. In model formulation, we decouple the rate of social distancing (h2) with the decrease in contact due to social
distancing (εS , εA, εI ). The latter we term the contact rescaling factor (CoRF), which should be interpreted as an
effectiveness of social distancing. Hence we explicitly account for both the rate at which individuals distance, and
how effective distancing is as a means of suppressing viral transmission.

2. The basic reproduction number, R0, is explicitly calculated for our model system. For parameters obtained from
data, we show that at sufficiently early stages of the pandemic, R0 > 1 unless the rate of social distancing is
quite large. This implies that under most realistic circumstances there will be an initial outbreak of the COVID-19
pandemic. However, the situation is not hopeless, as social distancing policies are able to push R0 < 1 as the
disease spreads throughout the population.

3. R0 is sensitive to the fraction of infective individuals that are asymptomatic, and to the infectivity of these asymp-
tomatic individuals. Hence understanding this population (through, for example, widespread testing) is critical for
making informed policy decisions.

4. There is a critical time to implement social distancing guidelines (what we label the critical implementation delay
(CID)), after which social distancing will have little effect on mitigating the percent of symptomatics at the peak
of the outbreak. Surprising, the CID occurs well before the peak symptomatic proportion would have originally
appeared under non-distanced protocols (CID is approximately two weeks for our parameter values, while the non-
distanced peak occurs at about 30 days).

5. While implementing distancing faster than the CID does not significantly change the number infected at the peak,
it does significantly alter when this peak occurs. For example, implementing social distancing at day 5 instead of
day 15 pushes the peak forward by nearly a year, which allows time for the development of a therapeutic.

6. Periodic relaxation strategies, where normal behavior is allowed for certain periods of time, can significantly reduce
the symptomatic burden. However, such scheduling is not robust, and small errors (either in timing, or via parameter
estimation) may have catastrophic repercussions.

7. Gradual relaxation can substantially improve the overall symptomatic response, but the rate of relaxation is im-
portant to prevent a “second wave” of virus outbreak. Prolonged relaxation, or sufficiently slow relaxation upon
flattening, can significantly “flatten the curve.”

As noted throughout the manuscript, exact predictions rely on estimated parameter values, which currently vary widely
throughout the literature. On the other hand, we believe that the qualitative phenomenon observed are robust, and should
be considered during policy design.

There are several directions for future work. First, our model has shown that the effectiveness of social distancing policies
is sensitively dependent on when measures are implemented. By calibrating the model to the dynamics of a particular
locale, we could determine a threshold case load at which the population is at high risk of a second wave of infection.
Knowledge of this threshold could help policy makers determine if/when social distancing recommendations need to be
strengthened. Second, we will conduct a more systematic control analysis involving both the rate of social distancing (h2)
and the stringency of distancing (CoRF, i.e. ε terms). Ideally, we would like to minimize the peak of the symptomatic
population (I) while simultaneously maximizing the time to reach this peak; we view such an objective as a precise
quantification of “flattening the curve.” This must be done with distancing constraints imposed, to reflect the fact that a
certain percentage of the population must remain active to maintain a functional society (healthcare workers, food supply,
emergency responders, etc.). Using optimal control and feedback laws, our model can help inform policy makers as they
make difficult decisions about how to adapt to the ongoing pandemic.
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A The Basic Reproduction Number R0

The next generation matrix algorithm, proposed by Diekmann at. al. in 1990 [40], is a technique used to calculate the
basic reproduction number R0. We explain it briefly, for more details see [41, 43].

Here are the steps to compute the next generation matrix G:

1. Let X = {x1, x2, . . . , xn} represent the n infected host compartments, and Y = {y1, y2, . . . , ym} represent the m
other host compartments.

2. Write your ODE system as:

dxi
dt

= Fi(X,Y )− Vi(X,Y ) for i = 1, . . . , n

dyj
dt

= Mj(X,Y ) for j = 1, . . . ,m

where Fi represents the rate at which new infectives enter compartment i, and Vi represents the transfer of individ-
uals out of and into the i-th compartment.

3. Let FX and VX represent the Jacobian matrices evaluated at the DFSS of the vector fields

F =


F1(X,Y )
F2(X,Y )

...
Fn(X,Y )

 and V =


V1(X,Y )
V2(X,Y )

...
Vn(X,Y )


respectively.

4. The next generation matrix G is defined by

G = FXV
−1
X .

G is a non-negative matrix with an eigenvalue which is real, positive, and strictly greater than all the others. This largest
eigenvalue is R0.

A.1 R0 for the six-compartment SIR model (equations (8)-(13))

We compute the basic reproduction number R0 of the six-compartment SIR model with the Next Generation Matrix
Algorithm [40, 41, 43].
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Let

X =


AD

AN

I

 , F =


εSβISDI + εSβA (AN + εAAD)SD

βISNI + βA (AN + εAAD)SN

0

 and V =


−h2AN + γAIAD + h1AD

−h1AD + γAIAN + h2AN

−fγAI(AD +AN ) + δI + γIRI


Thus, Ẋ = F − V and

FX =


εSεAβASD εSβASD εSβISD

εAβASN βASN βISN

0 0 0

 , VX =


h1 + γAI −h2 0

−h1 h2 + γAI 0

−fγAI −fγAI δ + γIR

 (66)

where FX and VX denote the Jacobian matrices of F and V respectively; and

V −1X =


h2+γAI

γAI(γAI+h1+h2)
h2

γAI(γAI+h1+h2)
0

h1

γAI(γAI+h1+h2)
h1+γAI

γAI(γAI+h1+h2)
0

f
δ+γIR

f
δ+γIR

1
δ+γIR

 . (67)

Let gij represent the (i, j)−entry of the next generation matrix G. At the DFSS (where we must satisfy the equation
S̄D = h2

h1
S̄N ) we have that,

g11 =

(
εSεAβA(h2 + γAI)h2
γAI(γAI + h1 + h2)h1

+
εSβAh2

γAI(γAI + h1 + h2)
+

εSβIfh2
(δ + γIR)h1

)
S̄N (68)

g12 =

(
εSεAβAh

2
2

γAI(γAI + h1 + h2)h1
+

εSβA(h1 + γAI)h2
γAI(γAI + h1 + h2)h1

+
εSβIfh2

(δ + γIR)h1

)
S̄N (69)

g13 =
εSβIh2

(δ + γIR)h1
S̄N (70)

g21 =

(
εAβA(h2 + γAI)

γAI(γAI + h1 + h2)
+

βAh1
γAI(γAI + h1 + h2)

+
βIf

δ + γIR

)
S̄N (71)

g22 =

(
εAβAh2

γAI(γAI + h1 + h2)
+

βA(h1 + γAI)

γAI(γAI + h1 + h2)
+

βIf

δ + γIR

)
S̄N (72)

g23 =
βI

δ + γIR
S̄N (73)

g31 = g32 = g33 = 0, (74)

where S̄N represents the value of SN at DFSS. The characteristic polynomial of G is:

P (λ) = −λ3 + (g11 + g22)λ2 − (g11g22 − g12g21)λ
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with roots (eigenvalues of G):

λ1 = 0 (75)

λ2 =
(g11 + g22)−

√
(g11 + g22)2 − 4(g11g22 − g12g21)

2
(76)

=
(g11 + g22)−

√
(g11 − g22)2 + 4g12g21

2
(77)

λ3 =
(g11 + g22) +

√
(g11 + g22)2 − 4(g11g22 − g12g21)

2
(78)

=
(g11 + g22) +

√
(g11 − g22)2 + 4g12g21

2
(79)

Therefore, λ3 is the basic reproduction number, R0.

A.1.1 Conditions for R0 < 1. The case h2 = 0 for the six-compartment SIR model:

If h2, the rate of social distancing, is equals to zero (which implies S̄N = 1−R∗). The basic reproduction number reduces
to:

R0 =
secondary infections caused by the
interaction between the AN and SN
populations.

+
secondary infections caused by the
interaction between the I and SN
populations.

In other words,

R0 =
βAS̄N
γAI

+
βIfS̄N
δ + γIR

. (80)

For R0 to be less than 1 we must satisfy the equation:

(δ + γIR)S̄NβA + fγAI S̄NβI < γAI(δ + γIR) (81)

or equivalently,

S̄N <
γAI(δ + γIR)

(δ + γIR)βA + fγAIβI
. (82)

A.1.2 Conditions for R0 < 1. The general case for the six-compartment SIR model:

Let S̄N > 0, and consider the polynomial
Q(λ) = λ2 − bλ+ c, (83)

where b and c are the trace and determinant of the matrix

G =

g11 g12

g21 g22

 , (84)

respectively.
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Remark 1. 1. b = tr(G) > 0

2. The discriminant Λ = b2 − 4c = tr(G)2 − 4 det(G) = (g11 − g22)2 + 4g12g21 > 0.

3. The eigenvalues of G are:

λ1 =
b−
√
b2 − 4c

2
and λ2 =

b+
√
b2 − 4c

2
, (85)

where λ1 < λ2 and λ2 > 0.

4. Let

x2 =
b0 +

√
b20 − 4c0
2

(86)

where

b0 ≡
b

S̄N
=
εSεAβA(h2 + γAI)h2 + εSβAh2h1 + εAβAh2h1 + βA(h1 + γAI)h1

γAI(γAI + h1 + h2)h1
+
βIf(εSh2 + h1)

(δ + γIR)h1
(87)

c0 ≡
c

S̄2
N

=
h2

γAI(γAI + h1 + h2)h1

(
fγAI
δ + γIR

(
(εA − 1)εSβAβI + (1− εA)εSβIβA

))
. (88)

Thus, R0 ≡ λ2 = x2S̄N .

5. At the disease-free equilibrium, the following equations are satisfied:

S̄D + S̄N +R∗ = 1 (89)

S̄D =
h2
h1
S̄N . (90)

which gives the relation

S̄N = (1−R∗) h1
h1 + h2

. (91)

Therefore,

R0 = (1−R∗)x2
h1

h1 + h2
. (92)

6. From equation (92), it follows that R0 < 1 if and only if

R∗ >
h1x2 − (h1 + h2)

h1x2
. (93)

7. For h1 = A
1+Bh2

, equation (93) is equivalent to

R∗ > 1− A+ x2h2(1 +Bh2)

Ax2
. (94)

A.2 R0 for the seven-compartment SIR model (equations (1)-(7))

Let

X =



AD

AN

ID

IN


,
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F =



εSβI(IN + εIID)SD + εSβA (AN + εAAD)SD

βI(IN + εIID)SN + βA (AN + εAAD)SN

0

0


, V =



−h2AN + γAIAD + h1AD

−h1AD + γAIAN + h2AN

−fγAI(AD + pAN ) + δI + γIR(ID + IN )

−(1− p)fγAIAN + γIRIN + δIN


Thus, Ẋ = F − V and

FX =



εSεAβASD εSβASD εSεIβISD εSβISD

εAβASN βASN εIβISN βISN

0 0 0 0

0 0 0 0


, VX =



h1 + γAI −h2 0 0

−h1 h2 + γAI 0 0

−fγAI −pfγAI δ + γIR 0

0 −(1− p)fγAI 0 γIR + δ


where FX and VX denote the Jacobian matrices of F and V respectively; and

V −1X =



h2+γAI

γAI(γAI+h1+h2)
h2

γAI(γAI+h1+h2)
0 0

h1

γAI(γAI+h1+h2)
h1+γAI

γAI(γAI+h1+h2)
0 0

x31 x32
1

δ+γIR
0

x41 x42 0 1
δ+γIR


. (95)

with

x31 =
f(h2 + γAI)

(δ + γIR)(γAI + h1 + h2)
+

pfh1
(δ + γIR)(γAI + h1 + h2)

(96)

x32 =
fh2

(δ + γIR)(γAI + h1 + h2)
+

pf(h1 + γAI)

(δ + γIR)(γAI + h1 + h2)
(97)

x41 =
(1− p)fh1

(δ + γIR)(γAI + h1 + h2)
(98)

x42 =
(1− p)f(h1 + γAI)

(δ + γIR)(γAI + h1 + h2)
. (99)

is the inverse matrix of VX .

Let gij represents the (i, j)−entry of the next generation matrix G. At the DFSS (where we must satisfy the equation
S̄D = h2

h1
S̄N ) we have that,
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g11 =

(
εSεAβA(h2 + γAI)h2
γAI(γAI + h1 + h2)h1

+
εSβAh2

γAI(γAI + h1 + h2)
+
εSβI(εIx31 + x41)h2

h1

)
S̄N (100)

g12 =

(
εSεAβAh

2
2

γAI(γAI + h1 + h2)h1
+

εSβA(h1 + γAI)h2
γAI(γAI + h1 + h2)h1

+
εSβI(εIx32 + x42)h2

(δ + γIR)h1

)
S̄N (101)

g13 =
εSεIβIh2

(δ + γIR)h1
S̄N (102)

g14 =
εSβIh2

(δ + γIR)h1
S̄N (103)

g21 =

(
εAβA(h2 + γAI)

γAI(γAI + h1 + h2)
+

βAh1
γAI(γAI + h1 + h2)

+ εIβIx31 + βIx41

)
S̄N (104)

g22 =

(
εAβAh2

γAI(γAI + h1 + h2)
+

βA(h1 + γAI)

γAI(γAI + h1 + h2)
+ εIβI3x32 + βIx42

)
S̄N (105)

g23 =
εIβI

δ + γIR
S̄N (106)

g24 =
βI

δ + γIR
S̄N (107)

g31 = g32 = g33 = g34 = g41 = g42 = g43 = g44 = 0. (108)

Thus,

P (λ) = λ4 − (g11 + g22)λ3 + (g11g22 − g12g21)λ2

is the characteristic polynomial of G with roots:

λ1 = 0 with multiplicity 2 (109)

λ2 =
(g11 + g22)−

√
(g11 − g22)2 + 4g12g21

2
(110)

λ3 =
(g11 + g22) +

√
(g11 − g22)2 + 4g12g21

2
(111)

Therefore, λ3 is the basic reproduction number, R0.
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B Heatmaps Corresponding to Contour Plots of R0

(a) (b)

Figure 22: Basic reproduction number as a function of the social distancing rate parameter h2 and fraction of individuals
who become symptomatic (f ) at different pandemic stages. All other parameters as in Table 2.

(a) (b)

Figure 23: Basic reproduction number as a function of the social distancing rate parameter h2 and infectivity rate of
asymptomatics βA at different pandemic stages. All other parameters as in Table 2.
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(a) (b)

Figure 24: Basic reproduction number as a function of the social distancing rate parameter h2 and the contact rescaling
factor (CoRF) ε at different pandemic stages. CoRF measures the impact of social distancing on infectivity rate. All other
parameters as in Table 2.

C Convergence of infectives to zero

It is a routine exercise to show that, in our model, I(t) → 0 as t → ∞, and similarly for AN (t) and AD(t). Indeed,
consider the total population fractionN defined byN := SD+SN+AD+AN+I+R and observe that dN/dt = −δI ≤ 0.
The function N is continuously differentiable. The LaSalle Invariance Principle [44] implies that all solutions converge to
an invariant set Ω included in dN/dt = 0, meaning in particular that all solutions have I(t)→ 0, as claimed. Furthermore,
the equation dI/dt = fγAI(AD + AN )− δI − γIRI when restricted to Ω says that 0 = fγAI(AD(t) + AN (t)), which
means that, in this set to which all solutions converge, both AD and AN are identically zero.

As dR/dt = 0 on this set Ω, R(t) converges to a limit r (which is in general nonzero). The equations for susceptibles
become, in Ω:

dSD
dt

= −h1SD + h2SN

dSN
dt

= h1SD − h2SN .

Thus SD and SN equilibrate to constant values under the constraint that SD + SN = n − r, where n = limt→∞N(t),
i.e. SN = h1

h1+h2
(n− r), SD = h2

h1+h2
(n− r).

D Approximation of 6 compartment model as an SAIR system

Here, we remark that, in some cases, the model introduced in Section 2.1 can be approximated by a four-compartment
SAIR (Susceptible-Asymptomatic-Infected-Recovered) model with combined socially distanced and non-distanced popu-
lations. Specifically, we proceed under the assumption that there exists a time-scale separation, so that the social distancing
dynamics occur much faster than dynamics governed by infection-specific parameters. That is, at any given instant of time
t, we assume that distancing instantly calibrates to its equilibrium distribution, i.e. that

SD(t) =
h2(t)

h1(t) + h2(t)
S(t), (112)
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where S(t) is the total susceptible population:

S(t) = SD(t) + SN (t). (113)

Denoting the fraction in equation (112) as,

p(t) :=
h2(t)

h1(t) + h2(t)
, (114)

we thus have that at any time t,

SD(t) = p(t)S(t) (115)
SN (t) = (1− p(t))S(t). (116)

Similarly,

AD(t) = p(t)A(t) (117)
AN (t) = (1− p(t))A(t), (118)

where

A(t) = AD(t) +AN (t) (119)

is the total asymptomatic population. The above assumption thus allows us to convert to a four-compartment SAIR model,
with S and A given by the total susceptible and asymptomatic populations, respectively. For instance, we can calculate
dS
dt as

dS

dt
= ṠD + ṠN

= −εS(βII + βAAN + εAβAAD)SD − (βII + βAAN + εAβAAD)SN

= −(βII + βA(1− p)A+ εAβApA)(εSpS + (1− p)S)

= −(βII + βA(1− (1− εA)p)A)(1− (1− εS)p)S.

(120)

Note that the above takes the form of a more standard SEIR model, with A = E and the E compartment being infectious.
Recall that the control appears in p(t):

p(t) =
h2(t)

h1(t) + h2(t)
. (121)

However, in the Ṡ equation above, the p term is simply altering the transmission rates β (decreasing βI and βA by
increasing h2). Hence we see that manipulating h2 (as we do in this manuscript) is analogous to manipulating β (as
is often done in recent works related to controlling COVID-19), at least in the case where a fast response to distancing
mandates is assumed. The derivation makes explicit how the β depends on the rates of distancing.

For completeness, the simplified SAIR model takes the below form (calculations for other compartments are similar):

dS

dt
= −(βII + βA(1− (1− εA)p(t))A)(1− (1− εS)p(t))S (122)

dA

dt
= (βII + βA(1− (1− εA)p(t))A)(1− (1− εS)p(t))S − γAIA (123)

dI

dt
= fγAIA− (δ + γIR)I (124)

dR

dt
= (1− f)γAIA+ γIRI. (125)
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