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Abstract

Background:

Efforts to suppress transmission of SARS-CoV-2 in the UK have seen non-pharmaceutical interventions
being invoked. The most severe measures to date include all restaurants, pubs and cafes being ordered
to close on 20th March, followed by a “stay at home” order on the 23rd March and the closure of
all non-essential retail outlets for an indefinite period. Government agencies are presently analysing
how best to develop an exit strategy from these measures and to determine how the epidemic may
progress once measures are lifted. Mathematical models are currently providing short and long term
forecasts regarding the future course of the COVID-19 outbreak in the UK to support evidence-based
policymaking.

Methods:

We present a deterministic, age-structured transmission model that uses real-time data on confirmed
cases requiring hospital care and mortality to provide up-to-date predictions on epidemic spread in ten
regions of the UK. The model captures a range of age-dependent heterogeneities, reduced transmission
from asymptomatic infections and produces a good fit to the key epidemic features over time. We
simulated a suite of scenarios to assess the impact of differing approaches to relaxing social distancing
measures from 7th May 2020 on the estimated number of patients requiring inpatient and critical
care treatment, and deaths. With regard to future epidemic outcomes, we investigated the impact
of reducing compliance, ongoing shielding of elder age groups, reapplying stringent social distancing
measures using region based triggers and the role of asymptomatic transmission.

Findings:

We find that significant relaxation of social distancing measures from 7th May onwards can lead to a
rapid resurgence of COVID-19 disease and the health system being quickly overwhelmed by a sizeable,
second epidemic wave. In all considered age-shielding based strategies, we projected serious demand
on critical care resources during the course of the pandemic. The reintroduction and release of strict
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measures on a regional basis, based on ICU bed occupancy, results in a long epidemic tail, until the
second half of 2021, but ensures that the health service is protected by reintroducing social distancing
measures for all individuals in a region when required.

Discussion:

Our work confirms the effectiveness of stringent non-pharmaceutical measures in March 2020 to sup-
press the epidemic. It also provides strong evidence to support the need for a cautious, measured
approach to relaxation of lockdown measures, to protect the most vulnerable members of society and
support the health service through subduing demand on hospital beds, in particular bed occupancy
in intensive care units.

Introduction 1

In late 2019, accounts emerged from Wuhan city in China of a virus of unknown origin that was leading 2

to a cluster of pneumonia cases [1]. The virus was identified as a novel strain of coronavirus on 7th 3

January 2020 [2] and the first known death as a result of the disease occurred two days later [1]. Over 4

the next few days, cases were reported in several other cities in China and in other countries around 5

the world including South Korea, Japan and the United States of America. On 23rd January, the 6

Chinese government issued an order for Wuhan city to enter “lockdown”, whereby all public transport 7

was suspended and residents were not allowed to leave the city. Over the next 24 hours, these measures 8

were extended to all the major cities in Hubei province in an attempt to prevent further spread of 9

disease. 10

Whilst the introduction of these severe social distancing measures began to have an effect upon re- 11

ducing the growth rate of cases in Wuhan [3–5], reported cases outside China continued to grow and 12

by late February the virus, now designated by the World Health Organisation as SARS-CoV-2, and 13

the disease it causes as coronavirus disease 2019 (COVID-19), had spread to Europe, with a growing 14

number of cases being reported in northern Italy [6]. As more countries in Europe and around the 15

world started to experience a dramatic rise in cases, similar measures were put in place in an effort to 16

protect the most vulnerable members of society and to ensure that health services capacities were not 17

exceeded [6, 7]. 18

In the UK, the first cases of COVID-19 were reported on 31st January 2020, in the city of York in 19

the north of England. In the early stages of the UK outbreak, the government focused on a strategy 20

of containment, to reduce the likelihood of large-scale within-country transmission occurring. This 21

strategy involved rapid identification and isolation of infected individuals, achieved through contact 22

tracing and testing of suspect cases. However, by early March it was evident that sustained community 23

transmission was occurring and there was a growing concern that a large epidemic could rapidly 24

overwhelm the health service, resulting in a significant number of deaths. This led to the government 25

considering the introduction of a range of social distancing measures in order to slow the growth 26

of the outbreak, thus delaying and flattening the epidemic peak and reducing the risk of exceeding 27

hospital capacities owing to an influx of COVID-19 patients. On 12th March, the UK officially entered 28

the “delay” phase, with the government declaring that all individuals with a cough or fever should 29

self-isolate for a period of seven days. Over the following days, several major sporting events were 30

cancelled and the public was advised to avoid all non-essential travel and contact with others. With 31

daily cases and deaths continuing to rise, the government introduced its most severe measures: all 32

restaurants, pubs and cafes were ordered to close on 20th March; schools were also ordered to close 33

on 20th March except for the children of key workers; finally a “stay at home” order was issued on 34

the evening of 23rd March together with the closure of all non-essential retail outlets for an indefinite 35

period. By this time the reported number of deaths in the UK had reached 335. 36
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This paper was originally written in April 2020, and throughout we use the epidemiological data up 37

to 21st April in all figures [8]. The data and science surrounding the SARS-Cov-2 infection is fast 38

moving, so much so that publications can rarely keep pace. We therefore intend this paper to be 39

a record of the state of our predictive modelling in mid-April, just after the peak of the first wave, 40

although we comment more fully in the discussion about later improvements to the model formulation 41

and the implications of the results for controlling the later second wave. 42

Even at the peak of the UK epidemic, it was clear that the stringent lockdown rules imposed could 43

not continue indefinitely. It was apparent that epidemiological modelling was a vital tool for analysing 44

potential “exit strategies”, which could allow some relaxation of social distancing measures, whilst 45

minimising the future impact of the disease on the health service. At the time epidemiologists were 46

critically aware that, should measures be relaxed too rapidly when there were still sufficient susceptible 47

individuals in the population, there was a high risk of a second infection wave that could once again 48

threaten to overwhelm health services. The increasing cases, hospitalisations and deaths observed 49

in the UK (and elsewhere in the world) during September and October of 2020 confirms our earlier 50

predictions, and strengthens the need for a robust and managed exit strategy. 51

In this paper, we present a novel compartmental mathematical model of SARS-CoV-2 transmission 52

tailored to attributes notable to COVID infections, including household saturation of transmission, 53

household quarantining and age-dependent detectability and transmission of SARS-CoV-2. The model 54

uses real-time data on confirmed cases requiring hospital care and mortality to provide short and long 55

term forecasts on epidemic spread in ten regions of the UK. We investigate how compliance with 56

social distancing affects future epidemic outcomes. We compare and contrast different exit strategies, 57

namely: relaxing social distancing by age group, or the regional lifting and imposition of restrictions 58

according to healthcare system capacity. Finally, we explore the sensitivity of our conclusions to a key 59

biological aspect of SARS-CoV2 which remains unknown: whether different age groups differ in their 60

core susceptibility to infection, or their likelihood of displaying symptoms. 61

Methods 62

Transmission model 63

Here, we describe a compartmental model that has been developed to simulate the spread of SARS- 64

CoV-2 virus (resulting in cases of COVID-19) in the UK population. In the ongoing outbreak in the 65

UK, cases of COVID-19 are confirmed based upon testing, with priority for testing throughout the 66

majority of the initial wave given to patients requiring critical care in hospitals [9] - generating biases 67

and under-reporting. There is evidence to suggest that a significant proportion of individuals who are 68

infected may be asymptomatic or have only mild symptoms [10, 11]. These asymptomatic individuals 69

are still able to transmit infection [12], though it remains unclear whether they do so at a reduced level. 70

Our modelling approach has consequently been designed to elucidate the interplay between symptoms 71

(and hence detection) and transmission of SARS-CoV-2. 72

We developed a deterministic, age-structured compartmental model, stratified into five-year age bands. 73

Inclusion of age-structure within the model was considered critically important given the greater num- 74

ber of cases, hospitalisations and deaths amongst older age-groups. Transmission was governed through 75

age-dependent mixing matrices based on UK social mixing patterns [13, 14]. The population was fur- 76

ther stratified according to current disease status, following a susceptible-exposed-infectious-recovered 77

(SEIR) paradigm, as well as differentiating by symptoms, quarantining and household status (Fig. 1). 78

Susceptibles (S) infected by SARS-CoV-2 entered a latent state (E) before becoming infectious. Given 79

that only a proportion of individuals who are infected are tested and subsequently identified, the infec- 80

tious class in our model was partitioned into symptomatic (and hence potentially detectable), D, and 81
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asymptomatic (and likely to remain undetected) infections, U . We assumed both susceptibility and 82

disease detection were dependent upon age, although the partitioning between these two components is 83

largely indeterminable (additional details are given in Table 1 and Supporting Text S1). We modelled 84

the UK population aggregated to ten regions (Wales, Scotland, Northern Ireland, East of England, 85

London, Midlands, North East and Yorkshire, North West England, South East England, South West 86

England), with each region modelled independently (i.e. we assumed no interactions occurred between 87

regions). 88

A drawback of the standard SEIR ordinary differential equation (ODE) formation in which all individ- 89

uals mix randomly in the population is that it cannot readily account for the isolation of households. 90

For example, if all transmission outside the household is set to zero in a standard ODE model, then 91

an outbreak can still occur as within-household transmission allows infection between age-groups and 92

does not account for local depletion of susceptibles within the household environment. We addressed 93

this limitation by extending the standard SEIR models such that first infections within a house- 94

hold (EF , DF , UF ) are treated differently from subsequent infections (ES , DS , US). To account for 95

the depletion of susceptibles in the household, we made the approximation that all within house- 96

hold transmission was generated by the first infection within the household (for further details, see 97

Supporting Text S1). 98

Table 1: Key model parameters

Parameter Description Value Source

βba Age-dependent transmission from age group b to-
wards age group a, split into household, school,
work and other

POLYMOD matrices [14]

ε Rate of progression to infectious disease (1/ε is the
duration in the exposed class)

∼ 0.2 Fitted as part of MCMC
process

γ Recovery rate, changes with τ , the relative level of
transmission from undetected asymptomatics com-
pared to detected symptomatics

∼ 0.5 Fitted from early age-
stratified UK case data

α Scales whether age-structure case reports are based
on age-dependent symptoms (α = 0) or age-
dependent susceptibility (α = 1)

0 − 1 Fitted as part of MCMC
process

τ Relative level of transmission from asymptomatic
compared to symptomatic infection

0 − 0.5 Fitted as part of MCMC
process

da Age-dependent probability of displaying symptoms
(and hence being detected), changes with α and τ

Fitted from early age-
stratified UK case data

σa Age-dependent susceptibility, changes with α and
τ

Fitted from early age-
stratified UK case data

φ Impact of adherence with restrictions 0 − 1 Fitted as part of MCMC
process or varied according
to scenario

H Household quarantine proportion 0 − 1 Can be varied according to
scenario

Na Population size of a given age By region ONS

Case severity parameterisation 99

The model is concerned with epidemiological processes and so predicts the number of symptomatic 100

and asymptomatic infections on each day. However, in order to provide evidence regarding the future 101
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Fig. 1: Disease states and transitions. We stratified the population into susceptible, exposed, detectable
infectious, undetectable infectious, and removed states. Solid lines correspond to disease state transitions, with
dashed lines representing mapping from detectable cases to severe clinical cases that require hospital treatment,
critical care (ICU), or result in death. The model was partitioned into five-year age bands. See Table 1 for a
listing of model parameters. Note, we have not included quarantining and household status on this depiction
of the system.

impact of the outbreak in the UK, it is crucial to be able to predict the number of severe cases that may 102

require hospital or critical care. We utilised two processes in order to estimate hospitalisation rates: 103

(i) we estimated the proportion of clinical cases in each age group that would require hospitalisation 104

by comparing the age distribution of hospital admissions to the age structure of early detected cases 105

— assuming these detected cases were an unbiased sample of symptomatic individuals; (ii) we used 106

age independent distributions to determine the time between onset of symptoms and hospitalisation. 107

A similar process was repeated for admission into intensive care units. Both of these distributions 108

were drawn from the COVID-19 Hospitalisation in England Surveillance System (CHESS) data set that 109

collects detailed data on patients infected with COVID-19 [15] (for further information, see Supporting 110

Text S2). 111

Information on the distributions of length of stay in both intensive care units (ICUs) and hospital 112

was used to translate admissions into bed occupancy — which adds a further delay between the 113

epidemiological dynamics and quantities of interest. 114

In terms of matching the available data and quantities of interest, we also use the prediction of 115
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symptomatic infections to drive the estimated daily number of deaths within hospitals. The risk of 116

death is again captured with an age-dependent probability, while the distribution of delays between 117

hospital admission and death is assumed to be age-independent. These two quantities are determined 118

from the Public Health England (PHE) death records. 119

Model fitting 120

We fit the model framework to each of the ten UK regions independently, on a region-by-region basis, 121

to four timeseries: (i) new hospitalisations; (ii) hospital bed occupancy; (iii) ICU bed occupancy; (iv) 122

daily deaths (using data on the recorded date of death, where-ever possible). 123

The relative transmission rate from asymptomatic cases (τ) and the scaling of whether age-structure 124

case reports were based on age-dependent susceptibility or age-dependent symptoms (α) were treated 125

as free parameters. These allowed us to define an age-dependent susceptibility (σa) and an age- 126

dependent probabilities of displaying symptoms (da), through the next-generation relationship: 127

R0Ca = daσa
∑

βb,a(Cb + τ
1 − db
db

Cb)/γ

which linked observed cases in the next generation to the number of observed and unobserved infections 128

in the previous week. By assuming that the two age-dependent probabilities were linked by: 129

da = 1/κQ1−α
a σa = 1/kQαa

we were able to obtain the probabilities that were consistent with the age-distribution of observed 130

cases, and the required basic reproductive ratio R0 (see Supporting Text S1 for further details and 131

[16] for more information on the inference scheme). 132

We performed parameter inference using the Metropolis-Hastings algorithm, computing likelihoods 133

assuming the daily count data for the four quantities to be independently drawn from Poisson dis- 134

tributions, with a mean equal to the value derived from the model [16]. After a burn-in of 250,000 135

iterations, the algorithm was run for a further 250,000 iterations. We thinned the generated parameter 136

sets by a factor of 100, giving 2,500 parameter sets representing samples from the parameter posterior 137

distributions. Example posterior distributions for key parameters are given in Supporting Text S3; 138

in all cases we use relatively uninformative priors and observe substantial departure from the prior 139

distributions. 140

Modelling intervention scenarios 141

In order to capture the impact of social distancing measures that were introduced in the UK (on 142

23rd March) to reduce transmission, we scaled down the mixing matrices associated with schools, 143

work and other activities while increasing the within household transmission matrix (see Supporting 144

Text S4). This approach allowed us to flexibly vary the effectiveness of different social distancing 145

measures and investigate the impact of compliance with social distancing (φ) upon the future spread 146

of disease. We considered a range of compliance levels, scaling from zero (no-compliance) to one 147

(maximal compliance), as well as inferring the compliance parameter from the available data (φ = 148

0.53(0.36 − 0.70) across all regions). 149

Another prominent intervention measure to reduce the spread of infection has been household quaran- 150

tining, whereby an entire household is instructed to self-quarantine when any member of that household 151

starts to show symptoms of infection. To incorporate household quarantining measures into the ODE 152

formulation, we added a quarantined class into our model, whereby a fraction (H) of the first de- 153

tectable infection in any household (and therefore by definition a symptomatic case) is quarantined 154
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as are all their subsequent household infections. Accounting for the effect of household saturation 155

also ensures that subsequent household infections do not contribute to further transmission. For a 156

complete description of the model equations, see Supporting Text S1. 157

We used this model framework to perform a series of analyses assessing the impact of social distancing 158

strategies on the future spread of infection. Unless otherwise stated, all interventions shown represent 159

the mean dynamics from the posterior parameters inferred by a Monte Carlo Markov Chain (MCMC) 160

fitting scheme, rather than the combination of the mean plus the sampling distribution; where practical 161

credible intervals are also shown. 162

Short term projections under current lockdown measures 163

To provide a baseline for comparison of our intervention scenarios, we initially simulated our model 164

to investigate the impact of the current intervention policies, continuing from their introduction on 165

23rd March 2020. We simulated the model from 1st March 2020 to 30th April 2020 and compared 166

the results to a scenario where no lockdown measures were ever introduced. To quantify prediction 167

uncertainty, a total of 200 simulations were run for each scenario (lockdown activated or no lockdown 168

imposed) using distinct parameter sets produced by the MCMC procedure, representing samples from 169

the posterior parameter distributions. We focused our attention on estimates of deaths as well as 170

hospitalisation and ICU bed occupancy, as key public-health considerations. 171

Age-independent relaxation of lockdown measures 172

To investigate the longer term impact of the epidemic, we explored several scenarios in which control 173

measures are relaxed on 7th May. The first scenario investigated a policy whereby social distancing 174

measures were relaxed on 7th May for all individuals, regardless of age. To reflect the uncertainty 175

in the degree of relaxation of the lockdown at this point, we varied our social distancing compliance 176

parameter (φ = 0, 0.25, 0.5, 0.75, 1), which allowed us to consider how the epidemic trajectory may be 177

affected for a range of relaxation policies. In these simulations we assumed that any remaining social 178

distancing measures were fully removed at the end of 2020. 179

Age-dependent relaxation of lockdown measures 180

Given the far higher fatality levels observed in the elderly, we next investigated policies imposing age- 181

dependence upon the relaxation criteria. Specifically, we allowed all social distancing measures to be 182

lifted from 7th May for any individual below a certain age (this age threshold was varied between 45 to 183

75 year old). For those above the age threshold, we assumed that social distancing measures remained 184

in place until the end of 2020. Simulations were then run to the end of 2021, to capture any subsequent 185

waves of infection. For each age threshold under consideration, we again considered the cumulative 186

deaths, as well as cumulative hospital and ICU bed occupancy. We differentiated between these health 187

impacts that occurred when age-specific restrictions were in place and when all restrictions were lifted. 188

We also focused on the number of days in which ICU bed occupancy exceeded 4,000, as a measure of 189

the immediate severity of the outbreak and the pressure on the health services. 190

Full relaxation of lockdown measures with region-based reintroduction 191

Our penultimate set of simulations considered an adaptive intervention strategy, whereby lockdown 192

measures were fully relaxed on 7th May, but then reintroduced when occupancy of intensive care 193

units exceeded a given capacity and relaxed again when ICU occupancy declines. To account for 194

regional variation in the outbreak and local hospital capacities, we assumed that control measures 195

would operate locally (using the ten regions). We therefore used a pro-rata threshold, which equated 196
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to 3,000 occupied beds on a nationwide scale, as a trigger for reintroducing or relaxing controls (see 197

Table S2). Given the sizeable delay between the implementation of controls and their effects on ICU 198

occupancy, the dynamics only predicted a low number of switches between control and relaxation. We 199

gathered regional predictions of daily deaths, ICU bed occupancy and hospital bed occupancy, with 200

simulations run to the end of 2023. 201

Sensitivity analysis 202

When evaluating the impact of lockdown measures, we are reliant upon recorded data on confirmed 203

cases, hospital admissions and ICU occupancy in order to infer parameters of our model. However, 204

there is still ongoing uncertainty in the relative level of transmission from asymptomatic individuals 205

(τ) and the mechanisms driving age-specific detection rates (α). A range of α and τ parameter values 206

are all able to generate predictions that closely match the available data. We therefore carried out a 207

sensitivity analysis to these two parameters, investigating the impact of applying lockdown measures 208

for specific age groups, as these parameters vary. We allowed τ , the relative level of transmission from 209

asymptomatic individuals, to vary between 0 and 0.5; while α varied between 0 and 1. For large α, 210

higher proportions of confirmed cases in a particular age group is as a result of greater susceptibility; 211

whereas low vales of α indicate that a higher proportions of confirmed cases is due to greater severity of 212

symptoms. This key parameter interacts with the relative transmission from asymptomatic infection 213

(τ), although τ plays a minimal role when α is small. To assess the impact of these parameters on the 214

effectiveness of lockdown measures, we computed the early epidemic growth rate under restrictions 215

that target four specific age-groupings: (i) pre-school children under 5 (PS), (ii) school-aged children 216

and young adults, 5-20 (S), (iii) adults between the age of 20 and 70 (A) and (iv) the elderly over 70 217

(E). 218

Results 219

Reductions in clinical case burden under current lockdown measures versus no 220

intervention 221

Our model predicts that, should the current lockdown policies be continued, the number of daily deaths 222

would peak in April across all regions before starting to decline (Fig. 2). England and Wales are found 223

to be most severely affected, with the highest number of predicted deaths per capita, whilst we predict 224

a lower number of deaths per capita in Scotland and Northern Ireland (noting that though our regional 225

model fits generally had strong correspondence with the data, the fit to Scotland was weaker). All 226

English regions show similar behaviour, other than the South East and South West, where we predict 227

a lower number of deaths (Fig. 2). We observe similar behaviour in the levels of hospital and intensive 228

care unit occupancy throughout this period (Fig. S2 and Fig. S4). Our model predicts that, under 229

continued total lockdown, the average total deaths would be approximately 39,000 (Table 2). 230

The fit to the available data is imperfect, which may be due to multiple factors. The data for the 231

individual nations (top row) is by date of reported death, which introduces a number of reporting 232

delays into the system. In addition, we are striving for a model that matches death, hospitalisations, 233

hospital occupancy and ICU bed occupancy - the fits therefore represent a balance of fitting to all 234

four measures (see the Supporting Information). Given the far greater numbers that are hospitalised, 235

we find that these dominate the fitting procedure. 236

If the epidemic in the UK had been allowed to progress with no introduction of lockdown measures, 237

our model predicts that the epidemic would have continued to grow throughout April, with deaths 238

exceeding 200,000 by the end of 2021 (Table 2). This provides strong evidence to support the necessity 239
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of the social distancing measures that were introduced in order to reduce the growth rate of the 240

epidemic and ensure that the health service was not overwhelmed with admissions. 241
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Fig. 2: Regional projections for deaths per 100,000 with and without imposition of lockdown.
In each panel: filled markers correspond to observed data (squares are for deaths by date of reporting, circles
are for when date of death is available), solid lines correspond to the mean outbreak over a sample of posterior
parameters; shaded regions depict prediction intervals, with darker shading representing stricter confidence (dark
shading - 50%, moderate shading - 90%, light shading - 99%); red dashed lines illustrate the mean projected
trajectory had no lockdown measures being introduced. We stress that the sample distribution around the
expected value is not included in these plots, but would significantly increase the width of the distributions
shown. (Prediction were produced on 23rd April, using data up to 21st April).

Measured age-independent relaxation protocols to reduce health system burden 242

Evaluating a policy whereby social distancing measures were relaxed to different degrees from 7th May 243

for all individuals, we found that for a significant relaxation of lockdown the epidemic rapidly resurges 244

with a peak in daily deaths of over 4,000 occurring in late June (Fig. 3, top panel). We project 245

intensive care unit occupancy to near 10,000 by the end of June (Fig. 3, second panel), implying 246

that significant release of lockdown measures would not be advisable. For more measured relaxation 247

protocols, we found that, whilst there may be a slight resurgence in cases in the short term, hospital 248

and ICU occupancy remained within capacity. However, whilst the forecasts from these simulations 249

suggest that keeping most lockdown measures in place can have a positive impact upon reducing cases 250

and deaths in the short-term, we note that, when lockdown measures are subsequently released in 251

2021 a large second infection wave is predicted. These results imply that should the outbreak have to 252

be contained by non-pharmaceutical interventions alone, then a second wave of infections is somewhat 253

inevitable as isolation measures are reduced. Of the scenarios investigated here, intermediate levels of 254
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relaxation (φ = 0.5) until 2021 followed by complete cessation of lockdown generates the least deaths 255

(approximately 152,000 over both years). 256

Assessment of age-based shielding strategies 257

We next analysed the lifting of social distancing measures on 7th May for all individuals below a 258

certain age, with social distancing measures remaining in place for the remainder of the population 259

until the end of 2020. We observe that continuing lockdown for anyone over the age of 45 for the 260

duration of 2020 results in the lowest number of deaths and number of admissions into hospital and 261

ICU wards during that year (Fig. 4, first column). However, upon release of these lockdown measures 262

we observed a significant second wave in 2021 as a substantial number in the over 45 age group were 263

susceptible allowing a new outbreak (Fig. 4, second column). When isolation is only in place for 264

older age groups (for example the over 70s), a large initial wave of infection occurs during 2020, but 265

a subsequent secondary wave is not observed. Considering the combined impact from 2020-2021, we 266

find that a strategy of continuing lockdown measures for anyone over the age of 65 minimises the total 267

number of deaths, while hospital and ICU occupancy is minimised by continuing lockdown for anyone 268

over the age of 60 although the overall effect of this is marginal (Fig. 4, third column). We predict 269

that continuing lockdown for the over 60s throughout 2020 whilst relaxing measures of the remainder 270

of the population results in, on average, 138,000 deaths by the end of 2021 (Table 2). Finally, we 271

note that the total number of days for which ICU bed occupancy exceeds 4,000 increases with the 272

age-threshold; this implies that while the elderly are the most vulnerable and the most likely to need 273

critical care, an uncontrolled outbreak in the younger population can still place severe demands upon 274

the health service (Fig. 4, third row). 275

Utility of reintroducing lockdown measures regionally with ICU occupancy triggers 276

Relaxing the lockdown from 7th May allows subsequent secondary waves of infection to begin, but a 277

local increase in ICU occupancy triggers the reintroduction of social distancing measures on a region- 278

by-region basis (Fig. 5). This results in multiple regional waves of infection, gradually becoming smaller 279

and more asynchronous over time. The consequence of this adaptive strategy is that the total number 280

of deaths and confirmed cases gradually reduce over a long period of time (Fig. 5, top and bottom 281

panels), with the epidemic reaching low levels in mid 2021. As a result this policy balances the overall 282

demand on the health services against the need to exit the epidemic without a substantive second wave. 283

284
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Fig. 3: Clinical case projections for differing strengths of relaxing lockdown measures, φ. We
assume social distancing measures were relaxed on 7th May for all individuals. The different line types (and
shades) correspond to the dynamics using differing levels of relaxation (φ = 0, 0.25, 0.5, 0.75, 1), with φ = 0
corresponding to a total removal of social distancing measures, and φ = 1 representing a continuation of
lockdown measures until 1st January 2021. Shaded regions represent the 95% posterior prediction intervals. We
display daily counts of (Row one) deaths; (Row two) ICU occupancy; (Row three) hospital occupancy. At
the start of 2021, all remaining social distancing measures are removed (the “no control” phase).
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Fig. 4: Impact of age-based shielding strategies on outbreak burden. In these simulations, social
distancing measures were lifted on 7th May for all individuals below an age threshold, with social distancing
measures remaining in place for the remainder of the population until the end of 2020. No interventions were
applied post-lockdown release, with simulations continued until the end of 2022. Box plots for each statistic give
median values (circles), interquartile range (box) and 95th percentiles (whiskers). Solid lines depict the profile
of median estimates across age threshold space. The following statistics were computed for the period 23rd
March 2020 to the end of 2021: (Row one) cumulative deaths; (Row two) cumulative ICU bed occupancy;
(Row three) amount of days ICU occupancy exceeded 4000; (Row four) cumulative hospital bed occupancy.
We stratify the outputs occurring across the considered time horizon in three ways: (Column one) during
lockdown; (Column two) after lockdown; (Column three) combined (entire time horizon).
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Fig. 5: Clinical case projections under an adaptive intervention strategy with regionally activated
lockdowns (responding to ICU occupancy). In all simulations we assumed social distancing measures were
relaxed on 7th May for all individuals, with subsequent reintroduction of lockdown measures at a regional level
(in the seven English regions, Scotland, Wales, and Northern Ireland) if ICU occupancy exceeded 45 ICU cases
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two) ICU bed occupancy; (Row three) hospital bed occupancy.
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Role of asymptomatics crucial in determining the effect of age-based lockdown relaxation 285

measures 286

Finally, we investigate the impact of applying lockdown measures for specific age groups, whilst varying 287

τ , the relative level of transmission from asymptomatic individuals, and α, the scaling determining 288

whether the age-dependence in cases comes from susceptibility (α = 1) or symptoms (α = 0). We 289

observe that, regardless of the values of τ and α, applying control on only a single age group (PS, 290

S, A or E) results in large-scale epidemics (Fig. 6). Similarly ineffective strategies are observed when 291

combining PS control with one of S, A or E. However, control of school aged children, adults and the 292

elderly, results in epidemics that are under control for all values of τ and α. 293

Should we exempt the elderly from lockdown we find that, for high levels of α, large epidemics are 294

observed, whereas if the true value of τ is high and α is small, applying control on the younger age 295

groups and releasing lockdown on the elderly can result in epidemics that will rapidly die out. In 296

contrast, if we relax lockdown on school children but keep it in place for other age groups, we note 297

that this only has a positive effect upon the epidemic if the true value of α is high, or the true value of τ 298

is low. If α is low and τ is high, then this implies that the age-dependence of reported cases is primarily 299

as a result of clinical symptoms rather than susceptibility and the transmission rate of asymptomatic 300

cases is high. Therefore, school children will play a much larger role in transmission, implying that a 301

policy of re-opening school would cause a much larger epidemic. These results reinforce the need to 302

resolve uncertainty regarding the role of asymptomatic individuals in the infection process in order to 303

establish the optimal intervention strategy. 304

Potential exit strategies comparison 305

Our findings are summarised in Table 2, where we focus on deaths (and the associated Quality Adjusted 306

Life Year (QALY) losses), hospital occupancy and the scale of the lockdown as a measure of potential 307

economic burden. QALYs are a standard measure in health economics which accounts for the number 308

of life years lost due to an illness or disease, while also taking into account quality of life. Hence, 309

under the QALY framework deaths in younger individuals have greater impact than deaths of older 310

individuals due to the additional years of life lost (for further details, see the Supporting Text S5). 311

Our lockdown scale measures the pro rata number of days the population is under lockdown; so if 50% 312

of the population is under lockdown for 200 days, we report a value of 100 (50% of 200). 313

A completely uncontrolled outbreak is predicted to lead to around 200,000 deaths, approximately 2 314

million QALY losses but no lockdown impacts. If the current controls are maintained until the end of 315

2020, then we predict 39,000 deaths this year, but a further 159,000 if controls were then completely 316

removed. Regional switching and age-dependent strategies provide alternative exit strategies in the 317

absence of pharmaceutical interventions. Of these, the age-dependent shielding of those age 60 or over 318

generates the lowest mortality and also the lowest lockdown scale, thereby minimising socio-economic 319

disruption. However, it is unclear if a protracted lockdown of this age-group would be practical, ethical 320

or politically acceptable. 321
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Fig. 6: Sensitivity of intervention measures to τ and α. Each panel represents the application of
lockdown measures to combinations of specific age groups (PS - PreSchool (0-4yrs), S - School (5-20yrs), A
- Adults (21-70yrs), E - Elderly (over 70 yrs). The colour of each square represents the growth rate of the
epidemic under the specified age-specific policies. Growth rates less than 0 (blue) imply that the epidemic is
under control; the red line separates regions that are under control from regions where we expect exponential
growth. Columns distinguish inclusion or exclusion of PS and S groupings in lockdown coverage: (Column
one) coverage includes PS, not S; (Column two) coverage includes S, not PS; (Column three) coverage
includes both PS and S; (Column four) neither PS or S included in lockdown.

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2020. ; https://doi.org/10.1101/2020.05.10.20083683doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.10.20083683
http://creativecommons.org/licenses/by-nc-nd/4.0/


T
a
b

le
2
:

S
u

m
m

ar
y

of
M

o
d

el
O

u
tp

u
ts

.
*=

ep
id

em
ic

w
ou

ld
co

n
ti

n
u

e

T
im

e
fr

am
e

T
ot

al
d

ea
th

s
T

ot
al

Q
A

L
Y

lo
ss

IC
U

o
cc

u
p

a
n

cy
H

o
sp

it
a
l

o
cc

u
p

a
n

cy
L

o
ck

d
ow

n
sc

a
le

C
on

tr
ol

(t
h

ou
sa

n
d

s)
(t

h
ou

sa
n

d
s)

(t
h

ou
sa

n
d

b
ed

d
ay

s)
(t

h
o
u

sa
n

d
b

ed
d

ay
s)

(d
ay

s
/

p
o
p

u
la

ti
o
n

si
ze

)

N
o

C
on

tr
ol

1/
1/

20
20

-
20

1
19

97
47

6
3
0
0
0

0
1/

1/
20

21
(1

45
-2

38
)

(1
14

0-
26

58
)

(2
04

-6
7
1
)

(1
5
6
6
-4

1
6
1
)

O
b

se
rv

ed
lo

ck
d

ow
n

*
1/

1/
20

20
-

39
31

5
6
9

4
6
2

2
8
5

1/
1/

20
21

(3
6-

42
)

(2
88

-3
46

)
(6

2
-7

5
)

(4
2
2
-5

0
1
)

O
b

se
rv

ed
lo

ck
d

ow
n

u
n
ti

l
1/

1/
20

20
-

19
8

19
76

47
7

2
9
6
6

2
8
5

1/
1/

20
21

th
en

n
o

co
n
tr

ol
1/

1/
20

22
(1

31
-2

34
)

(9
74

-2
58

9)
(1

80
-6

5
7)

(1
3
8
9
-4

0
0
9
)

R
eg

io
n

al
sw

it
ch

in
g

1/
1/

20
20

-
15

5
13

52
28

0
1
9
3
3

2
4
2

b
as

ed
on

IC
U

o
cc

u
p

an
cy

1/
1/

20
23

(1
06

-1
87

)
(7

42
-1

81
7)

(1
22

-4
1
6)

(1
0
2
9
-2

6
4
2
)

(1
2
1
-3

4
7
)

L
o
ck

d
ow

n
of
>

60
s

1/
1/

20
20

-
13

8
12

45
36

8
1
6
7
7

1
3
2

u
n
ti

l
20

21
1/

1/
20

22
(1

11
-1

65
)

(7
21

-1
69

2)
(1

5
1-

5
30

)
(8

8
6
-2

2
4
9
)

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2020. ; https://doi.org/10.1101/2020.05.10.20083683doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.10.20083683
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion 322

In this paper, we have developed an age-structured compartmental SARS-CoV-2 transmission model 323

that has been used to make short-term predictions and analyse the effectiveness of the strict social 324

distancing measures that were implemented in the UK during April. The paper reflects the state of 325

the model in April and our predictions at that time. We have not used the advantages of hindsight to 326

improve the fits nor to change the scenarios considered [8]; instead, we use this discussion to consider 327

what these results imply for the unfolding second wave and long-term exit strategies. 328

Our model shows that, without the introduction of the large scale social distancing measures that 329

were introduced on 23rd March, the epidemic in the UK would have continued to grow exponentially 330

and hospital and ICU occupancy would have rapidly exceeded capacity. However, under the enacted 331

policies, the epidemic was predicted to peak in April for all regions of the UK, before starting to 332

decline (Figure 2). 333

One of the most important questions postulated in April was when and how social distancing measures 334

might be relaxed; a question that is still pertinent in late 2020. We consistently found that any 335

relaxation of control measures in the short term leads to a rapid resurgence of COVID-19 disease 336

with the health system potential being overwhelmed by a sizeable second epidemic wave (Fig. 3). 337

In contrast, moderate or no adjustments to current social distancing measures allows hospital and 338

ICU occupancy to remain within capacity over the duration of the outbreak, although this leaves 339

dangerously high numbers of susceptible individuals in the population (Figure 3). It was apparent 340

from the data on confirmed cases and deaths as a result of COVID-19 disease available in early April 341

that the risks associated with infection increase with age [17–19]. We therefore also investigated the 342

impact of age-specific control policies, whereby lockdown measures remained in place for all individuals 343

over a certain age until the end of 2020 (Figure 4). We found that, whilst some marginal gains can 344

be made should everyone over the age of 60 be put under isolation measures, extending this policy to 345

include younger age groups increases the risk of a second wave occurring when measures are relaxed. 346

Furthermore, we projected critical care to be stretched and ICU bed occupancy to exceed 4,000 during 347

the course of the pandemic in all but the most wide-ranging age-specific lockdown policies (Fig. 4). 348

This extreme form of shielding has since been advocated as a potential exit strategy [20, 21] but there 349

are ethical issues as well as practical problems with isolating the most vulnerable from the rest of 350

society. 351

Our sensitivity analysis shows that the effectiveness of any age-specific intervention policy is critically 352

dependent upon the precise role of asymptomatic individuals in the epidemic. Even in April, undocu- 353

mented infection has been inferred to have facilitated the spread of SARS-CoV-2 in China [22], suggest- 354

ing the potential of asymptomatic transmission. At the time government advice for self-quarantining 355

focused upon individuals who showed symptoms of COVID-19 (primarily a fever and a dry persis- 356

tent cough) and therefore, our predictions for asymptomatic (or pre-symptomatic) infections playing 357

a significant role in the transmission process, weaken such a policy. Asymptomatic transmission and 358

transmission before symptom onset are now well recognised phenomena [23], which emphasises the 359

need for efficient test-trace-and-isolate policies. 360

In practice, to minimise the risk of a second large epidemic wave occurring in the UK, adaptive policies 361

may need to be considered that react to local health pressures. To that end, we examined a more 362

bespoke intervention policy whereby measures were relaxed and re-introduced on a regional basis, 363

with a defined trigger for the reintroduction of interventions when ICU occupancy exceeded a certain 364

level. This results in a longer epidemic tail, until the second half of 2021, but ensures that the health 365

service is protected by reintroducing social distancing measures for all individuals in a region when 366

required. 367
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In mid-April many countries around the world had now seen significant epidemics of COVID-19 and 368

many had implemented severe lockdown policies in an effort to contain the disease. In China and 369

other countries in East Asia, once the epidemic was regarded to be under control, in seeking to 370

prevent the occurrence of a large second wave the relaxation of isolation measures was implemented 371

in a gradual fashion, and was tightly reimposed if new cases were detected. Our model findings 372

support the need for this form of relaxation policy. We recognise that there is a need for certain 373

measures to be lifted as soon as is feasible, for a range of practical, social and economic reasons. 374

However, government agencies should be prepared to resume lockdown if needed, based upon the the 375

progression of the epidemic following relaxation. Identifying triggers, such as ICU occupancy exceeding 376

a certain threshold, may be beneficial in allowing decision makers to follow a clear set of guidelines for 377

controls to be reintroduced. The identification of such triggers need be based upon the objective of an 378

intervention measure and the ability to resolve epidemiological uncertainty as the outbreak progresses. 379

To this end, formal adaptive management approaches may help to facilitate the establishment of state 380

dependent intervention strategies [24]. 381

The model described is necessarily a simplified representation of reality based on several assumptions 382

and has various limitations. Data informing contact structure for the UK were measured histori- 383

cally [13]. Were contact patterns in early 2020 (pre-lockdown) to substantially differ from the preex- 384

isting data, the influence of projected intervention effects may be impacted. Similarly, while we can 385

infer the compliance to the currently imposed rules, we had limited understanding of how people would 386

behave when the controls are released — would they remain wary of potentially infectious situations, 387

or would they compensate for the time in lockdown. This still remains an open question [25] and is a 388

key policy consideration as restrictions are varied. Throughout, we have assumed that when controls 389

are lifted mixing patterns would return to their pre-pandemic norm. 390

Heterogeneities in compliance and in infection patterns, such as increased transmission in hospitals 391

and institutions, may affect the outcome of the measures considered. We note that these early es- 392

timates of deaths resulting from an individual strategy does not take into account the potential for 393

increased deaths due to exceeding hospital or ICU capacities, and so may underestimate deaths from 394

strategies resulting in high occupancies. However, our April estimate of around 39,000 deaths from 395

the first wave of COVID-19 infections in the UK compares well with the true figure of 41,265 from 396

1st August 2020 before cases began to rise again. In addition, though there have been recorded in- 397

stances of superspreading events for COVID-19 [26], our model does not explicitly account for such 398

highly stochastic dynamics. Such stochastic effects will be important at times of low infection (such 399

as troughs between waves) and could influence the timing of a second wave. However, beyond the 400

early stages of the outbreak the dynamics at the population-level are generally driven by the average 401

pattern of social mixing, rather than individual level variation, meaning a deterministic framework is 402

a justifiable approximation. 403

Since these results were produced in April, there have been multiple changes to the methodology 404

precipitated largely by additional data, and the need to match to these new sources [16]. Three 405

key additional data sets have shaped the model development. From mid-June age-structured data 406

became available on antibody seroprevalence from weekly blood donor samples from different regions 407

of England (approximately 1000 samples per region) [27]. Matching to serology allowed us to set an 408

independent scaling between infections and epidemiological observations (such as hospitalisations and 409

deaths), particularly important given that a significant proportion of infections are asymptomatic. The 410

age-structured nature of this data also helps to refine the key parameter α in our model that determines 411

the contribution of age-dependent susceptibility and age-dependent symptomatic probability. This has 412

since been surpassed by serological data from the REACT2 study [? ], which was a carefully designed 413

sample of 100,000 individuals to gain a representative sample across England. Finally, community swab 414

testing (through the Pillar 2 arm of the Test and Trace scheme), provides the most rapid assessment 415
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of current infection levels across the UK, without the delays associated with hospitalisation or death. 416

Each of these requires a restructuring of the model framework to account for the new data stream. 417

There have also been significant improvements in fitting the model to the data: integer quantities are 418

assumed to be drawn from a negative binomial distribution, while proportions are drawn from a beta 419

binomial — both leading to increased variance for a given mean. Finally, the impact of restrictions 420

(φ) is allowed to vary slowly on a weekly time scale to account for the multiple changes in both policy 421

and compliance. 422

All the strategies we have considered here assume that an exit strategy will have to rely on non- 423

pharmaceutical interventions. In this case, a second (or subsequent) wave of infections follows any 424

return to normality while there is sufficient susceptibility in the population. We are therefore faced 425

with three potential exit solutions: 1) Seek a measured reduction in restrictions that minimises the 426

impact of the unfolding outbreak, but acknowledging that a significant proportion of the population 427

will become infected (although not necessarily symptomatic); 2) Accept a substantial and long-term 428

change to our social interactions (practising far better prevention of transmission), such that the 429

reproductive ratio of the virus is constantly held below one — electronic and traditional methods of 430

tracing and isolation [28] fall into this category; or 3) rely on the development of an effective vaccine, in 431

which case the best approach may be to extend the lockdown, reducing infection until mass vaccination 432

can occur. 433

In conclusion, the COVID-19 pandemic has resulted in the introduction of multiple levels of social 434

distancing measures in the UK and many other countries around the world. Following the strict 435

lockdowns to mitigate the first wave, public-health agencies are continually analysing how best to 436

develop an exit strategy that balances the epidemiological consequences against impacts on mental 437

health and the economy. Our work provides strong evidence to support the need for a cautious, 438

measured approach to relaxation of any controls, in order to provide necessary support for the health 439

service and to protect the most vulnerable members of society. 440
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Supporting information items

Supporting Text S1

Description of the complete system of model equations.

Supporting Text S2

Information on the data streams informing public health measurable quantities.

Supporting Text S3

Distributions of key parameters from the MCMC process.

Supporting Text S4

Details on the mechanisms underpinning social distancing measures within the model framework.

Supporting Text S5

Explanation of the QALY losses computation.

Table S1

EQ-5D index population norms for England.

Table S2

UK population aggregated to ten regions (rounded to nearest 10,000). With regard to our
intervention scenario in which regional ICU occupancy triggered the reintroduction and relaxation
of social distancing measures within that region, the final column lists each of the regional ICU bed
occupancy thresholds (equating to 45 occupied ICU beds per one million population).

Fig. S1

Key parameters inferred by the MCMC process. The top two figures show the frequency
distribution of α and τ which control the age-structured dynamics; the red line shows the uninformative
prior ([0, 1] and [0.0.5] respectively. The middle row shows the results of the inferred α value, giving
the distributions of da and σa. The lower figure shows the impact of control measures φ in each of
the ten regions. Throughout, error bars give the 95% credible interval, the box is the 50% credible
interval and the line is the median value. (Predictions were produced on 23rd April, using data until
21st April).

Fig. S2

Regional projections for hospital admissions per 100,000 with and without imposition of
lockdown. In each panel: filled markers correspond to observed data, solid lines correspond to the
mean outbreak over a sample of posterior parameters; shaded regions depict prediction intervals, with
darker shading representing stricter confidence (dark shading - 50%, moderate shading - 90%, light
shading - 99%); dashed lines illustrate the mean projected trajectory had no lockdown measures being
introduced (predictions were produced on 23rd April, using data until 21st April).
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Fig. S3

Regional projections for hospital occupancy per 100,000 with and without imposition of
lockdown. In each panel: filled markers correspond to observed data, solid lines correspond to the
mean outbreak over a sample of posterior parameters; shaded regions depict prediction intervals, with
darker shading representing stricter confidence (dark shading - 50%, moderate shading - 90%, light
shading - 99%); dashed lines illustrate the mean projected trajectory had no lockdown measures being
introduced (predictions were produced on 23rd April, using data until 21st April).

Fig. S4

Regional projections for ICU bed occupancy per 100,000 with and without imposition
of lockdown. In each panel: filled markers correspond to observed data (squares are for reported
deaths, circles are for death of death), solid lines correspond to the mean outbreak over a sample
of posterior parameters; shaded regions depict prediction intervals, with darker shading representing
stricter confidence (dark shading - 50%, moderate shading - 90%, light shading - 99%); dashed lines
illustrate the mean projected trajectory had no lockdown measures being introduced.
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