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1 Introduction

In this article the mortality data from four European countries arising from the Covid-19
pandemic is modelled using logistic functions. The countries chosen for examination are
Spain, Italy, France and the UK. They have been selected because in each the pandemic
is advanced, mortality high and any prospect of containment has passed. They have also
been selected because in each social distancing has been used in an attempt to reduce
peak daily mortality with relatively strict enforcement following a defined date. The
choices of data set and model type is justified. The impact, if any, of social distancing is
examined.

2 The Selection of a Covid-19 Pandemic Model

It is probable Covid-19 infection has a high proportion of asymptomatic or minimally
symptomatic[1][2] persons and is infectious before symptom development.[3] This has
allowed the disease to spread widely amongst the population in countries where early
containment was not successful or not attempted. In these circumstances it is reasonable
to use a simple pandemic model to provide an overview of pandemic progress. This is in
contradistinction to the complex numerical modelling with geographic inputs and outputs
that provide detailed local morbidity data to inform logistics and planning. Mechanistic
epidemiological models are often founded on unknown or imprecisely known parameters
and in this sense are not precisely dynamic. They do however inform the mathematical
form of kinetic models.

2.1 The Kermack and McKendrick Model

As this disease is of short duration in relation to population life expectancy we might use
the SIR compartmental model of Kermack and McKendrick.[4] This is a three compart-
ment model in which N represents the size of the population of interest, S represents the
number of susceptible people, I those on their infective journey to R, the recovered or
dead. In the following equations [ represents the product of the average contact rate ¢
and p; the probability of transmitting infection in a single contact between an infected
and a susceptible person. 7 is the rate of transition from I to R. It is defined by three
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On reflection however, the assumption present in equation 3 is only valid if illness duration
is uniformly distributed within /. This is only true if [ is constant over time, which in
general is not the case.

2.2 A Modified Kermack and McKendrick Model

An alternative STR model can be developed in which R is a time delayed convolution of
N — S with a normalized mask M with its peak shifted forward in time by A, the latency
in I, and representing the probability over time of leaving I after entry into I.

R@pi/?N—Sﬁ»M@—T—mm- (@)
I=N—-S—-R (5)
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This has been solved numerically using a computerised algebra system (Maxima). If
this is done with a broad skewed mask, the kinetic pattern described by the original STR
model is recreated with a skewed I. If convolved with a Kronecker delta, N —.S and R can
be shown to be an identical time shifted logistic functions such that R(t) = N —S(t —\).
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Figure 1: Plots of S,I and R from a numerical solution to a modified version of the
tri-compartmental SIR model of Kermack and McKendrick

The original SIR model was used to model diseases that might well have a broad skewed
probability distribution of latency in travelling between S and R. Many viral illnesses
will have a more predictable \. We should in the first instance attempt to model R with
a simple logistic function.

It should be noted that, although logistic in shape, the model does not exhaust all
of the susceptible population over time. In this way it differs dynamically from Ver-
hulst’s original concept.[5] The limiting value of cumulative mortality is therefore not
fixed, increasing with increasing § and A\ though must be less than the initial susceptible
population. This will allow for further smaller peaks of infection should 8 subsequently
increase while [ is not zero.
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3 Modelling The Covid-19 Pandemic using a Logistic
Curve

The development of suitable serological and PCR tests and the rolling out of testing
has understandably trailed the rapid evolution of the Covid-19 pandemic.[6][7] Morbidity
data is bound to be influenced by testing bias. Mortality data is likely to be more reliable
because the probability of testing will be highest in those recently deceased following the
exhibition of symptoms of the illness. Mortality D(t) to be proportional to R(t), related
by an as yet unknown case fatality probability. We should, therefore, study mortality
data to inform our pandemic modelling. Of course we need to be aware that mortality
data will lag behind morbidity data.

Cumulative mortality is an increasing monotone. The daily geometric increase in
mortality D is the growth factor G or alternatively (1 + g) and so D,.; = GD,, =
(14 g)D,, = D,, + gD,,. We therefore have a window on the day to day value of g using
the equation

D

The logistic function is the solution to an ordinary differential equation % = go-(1— %) -D
where gg is the growth factor when D = 0, L is the limiting value of D. We can see that
A—DD:g:go(l—%) and so

AD K
2 . —-2Dp
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If the mortality data is modelled by a logistic we should expect a plot of ATD vs. D to
be a straight line. The D intercept is the predicted total mortality of the pandemic. The
AD

=5~ intercept is the value of go.

We would expect the effect of social distancing to be a stepwise function modulating

g so:
D
g=5-90 l_f

where s = 1 before the impact of social distancing and s < 1 thereafter. s is a stepwise
function of time but as cumulative mortality vs. time is an increasing monotone the step
also occurs at a particular cumulative mortality.

For any line segment in the space of ATD vs. D there is an equivalent logistic function
segment in the space of D vs. Date. *

!There are actually an infinite number of identically shaped time shifted logistic segments in D vs.
Date which would transform under this operator to a single line segment, the kernel, in ATD vs. D. The

choice of time shift has been selected algorithmically to minimise RMSE
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Figure 2: Plots of Predicted % vs. D using a Logistic Function

4 Testing the Model Fit

If we look at the plots of mortality data[8] we are initially confronted by the considerable
variation in the day to day reporting from each country. This is presumably related to
national testing and recording procedures. For this reason the author has chosen to focus
initially on the mortality data from Italy as it appears the least erratic.

4.1 TItaly

On looking at the ATD vs. D plot for Italy as in figure 3 we see that the data points
appear to fall into two separate groups which appear highly correlated to their distinct
regression lines. The segmentation into these two “phases” of the pandemic was per-
formed algorithmically so as to avoid subjective bias, splitting the data into two at each
possible location and finding a break, if present, where the 95% confidence intervals for
gradient did not overlap.

As previously stated, for any line segment in the space of ATD vs. D there is an
associated logistic function segment in the space of D vs. Date (which minimises the

sum of residual errors).
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Figure 3: Italy, Linear Regression, Daily Mortality / Cumulative Mortality vs. Cumula-
tive Mortality:.

From figures 3, 4 and 5 we can see that the cumulative mortality data for Italy is modelled
by two logistic functions spliced together in a piecewise fashion:

True and Predicted Cumulative Mortality for ltaly
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Figure 4: Italy, True and Modelled Cumulative Mortality vs. Date.
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Figure 5: Italy, True and Modelled Daily Mortality vs. Date.

The date of peak mortality for each logistic is marked on the date axis in orange (the
“natural peak”) and green (the modified peak).

An exponential growth curve is attached to the data point on the day of implemen-
tation of “lockdown” with a growth factor based on the gradient of the regression line
of the preceding week’s log mortality data. It is labelled Exponential Growth from So-
cial Distancing Start Date (SDSD). It is evident that in the period encompassing social
distancing implementation, mortality growth was not exponential but rather a logistic
function, which unperturbed by any other factor, would naturally flatten (and daily mor-
tality reach its peak).

The date of the start of social distancing through “lockdown” has been marked on the
plot with a purple T bar between it and the date of the natural juncture of the two logistic
curves. This marks the point at which social distancing appears to have produced an
abrupt stepwise reduction in g. For Italy this date occurs 25 days after the start of social
distancing. We must assume that in Italy the average duration of time from contracting
Covid-19 to death for those unfortunate enough to succumb is around 3.5 weeks.

4.2 Plots for Italy, Spain, France and The UK

The plots for Spain, Italy, France and the UK follow for side by side comparison:

The overall pattern of a “natural” peak followed by the remains of a modified peak
is present in the data from both Italy and Spain. In the UK this pattern is just about
discernible though the data has much more day to day variability. France appears to have
a single phase to its pandemic with daily mortality climbing and descending a sharper
“natural” peak.
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Figure 7: Cumulative Mortality, Actual and Predicted
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Figure 8: Daily Mortality, Actual and Predicted
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5 Model Predictions

The data for Italy, Spain and the UK appear biphasic. It is not possible to discern a
clearly biphasic pattern in the mortality data from France. The following tables contain

the model predictions compared with true values.

Spain Phase 1 Phase 2

Epoch Before 10 Apr 2020 | After 10 Apr 2020
R -0.962 -0.811

90 0.257 0.080

(0.237 to 0.277)

(0.060 to 0.100)

Predicted Total Mortality and (95% CI)

16618
(15789 to 17701)

28407
(26668 to 31909)

Predicted Peak Daily Mortality and (95%
CI)

1067
(936 to 1223)

567
(397 to 800)

Peak Daily Mortality Recorded 961 961
Predicted Date of Peak Daily Mortality 31 Mar 2020 07 Apr 2020
Date of Highest Recorded Daily Mortality | 02 Apr 2020
Social Distancing Latency 27 days
Table 1: Details for Spain
Italy Phase 1 Phase 2
Epoch Before 06 Apr 2020 | After 06 Apr 2020
R -0.950 -0.961
90 0.196 0.067

(0.182 to 0.209)

(0.061 to 0.073)

Predicted Total Mortality and (95% CI)

18508
(17385 to 19993)

34130
(33008 to 35562)

Predicted Peak Daily Mortality and (95%
CI)

905
(791 to 1046)

570
(505 to 645)

Peak Daily Mortality Recorded 919 919
Predicted Date of Peak Daily Mortality 27 Mar 2020 07 Apr 2020
Date of Highest Recorded Daily Mortality | 27 Mar 2020

Social Distancing Latency 28 days

Table 2: Details for Italy
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France Single Phase
Epoch N/A

R -0.924

90 0.191

(0.174 to 0.208)

Predicted Total Mortality and (95% CI)

24006
(23054 to 25258)

Predicted Peak Daily Mortality and (95%
CI)

1145
(1000 to 1313)

Peak Daily Mortality Recorded 1438
Predicted Date of Peak Daily Mortality 10 Apr 2020
Date of Highest Recorded Daily Mortality | 15 Apr 2020
Social Distancing Latency N/A

Table 3: Details for France

(0.202 to 0.245)

UK Phase 1 Phase 2

Epoch Before 13 Apr 2020 | After 13 Apr 2020
R -0.916 -0.875

90 0.223 0.102

(0.083 to 0.120)

Predicted Total Mortality and (95% CI)

17223
(15353 to 20219)

34733
(31910 to 39789)

Predicted Peak Daily Mortality and (95%
CI)

962
(773 to 1240)

882
(665 to 1191)

Peak Daily Mortality Recorded 1172 1172
Predicted Date of Peak Daily Mortality 08 Apr 2020 18 Apr 2020
Date of Highest Recorded Daily Mortality | 21 Apr 2020

Social Distancing Latency 21 days

Table 4: Details for UK

6 Discussion

Although we might be pleased with the fit of the model, the conclusions that inevitably
follow if it correctly describes the pandemic in these countries, are both surprising and

disquieting.

The principle stated aim of social distancing is to reduce peak daily mortality, allow
health services to cope with those seriously affected by the disease and so save lives.[9] It
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is clear, however, that social distancing has not modified the attainment of the “natural”
peak in daily mortality predicted by the phase 1 logistic function (the only logistic func-
tion for France) in these 4 countries. It has neither reduced the predicted peak in daily
mortality nor has it altered its timing. With an average latency from the implementation
of strict social distancing to an effect on mortality of 3.5 weeks, we can see that for it
to have had an effect strict social distancing would have had to have been introduced
at around the time of the first three deaths. This was nearly achieved in Germany with
a closure of schools and colleges at 8 deaths and a blanket “lockdown” at 94 deaths.
Their mortality has been much lower. We might introduce the term “Delayed Social Dis-
tancing” to distinguish it from “Timely Social Distancing”, used where social distancing
occurs much later than the date of the third death from a pandemic condition.[10]

In contrast, the natural resolution of the pandemic has been delayed in Italy, Spain
and the UK which now proceed along a second broader logistic. This contrasts with
France’s “natural” fast up and down daily mortality peak. The predicted total mortality
is higher if based on the second phase logistic (of those countries with a biphasic pattern)
than that based on the first. To explore this further the ratio of the growth factors gy for
phases 1 and 2 was plotted vs. normalised predicted total mortality. % is found from
the ratio of the gradient of the regression lines for pandemic phases 1 and 2 in the plots of

%% and provides a dimensionless measure of the effectiveness of strict social distancing.

Pandemic, Social Distancing Effect vs. Predicted Final Mortality (Normalised)
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Figure 9: Italy, True and Modelled Cumulative Mortality vs. Date.

The old “...stable door...” adage seems surprisingly apposite. The increase in predicted
total mortality with increasing social distancing effect (delayed) is quite unexpected. The
pattern of mortality data might provide insight into possible underlying mechanisms. We
know that certain groups are at higher risk of dying from Covid-19. Age, obesity, diabetes,
gender and socio-economic status are all known factors influencing mortality in addition
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to the strong effect from co-morbidities. A low aerobic fitness might be a common thread
amongst all these factors and is likely to be adversely affected by a “lock down”. This
will be particularly true where the bulk of a person’s exercise arises from the performance
of their routine activities rather than any specific training, and where there are limited
opportunities at home to maintain fitness because of a lack of space or overcrowding.
We already know that a modest increase in 6 minute walking distance (6MWD) has a
significant impact on survival in COPD.[11]

7 Conclusions

If the proposed model correctly describes and predicts the evolution of the pandemic in
the four countries studied then we may draw the following conclusions:

e The mortality from Covid-19 was not growing exponentially prior to the implemen-
tation of social distancing measures in any of the countries studied. The mortality
data closely followed a logistic curve.

e The gradient of the logistic curve modelling the mortality data culminates in a
“natural” peak. Delayed social distancing has had no impact on this “natural”
peak of daily mortality which closely fits the phase 1 model peak in all the countries
studied.

e To have had an effect on peak daily mortality, one of the stated principle aims of
social distancing, it would have had to have been implemented at around the time
of the third death from Covid-19. In countries where this was achieved, mortality
has been much lower. We might use the terms timely and delayed social distancing
to describe this.

e Social distancing, when implemented too late to influence the “natural” peak (as is
the case in the four countries studied), appears to delay the subsequent resolution
of the pandemic. The area under the curve of daily mortality is increased and so
therefore is the final predicted total mortality.

e Delayed social distancing, where effective, appears to increases overall mortality.
The increase in overall mortality seems directly related to the effectiveness of social
distancing.

e The modified SIR model predicts that not all susceptible persons will be infected.
When social distancing is relaxed we should expect a further peak in daily mor-
tality from Covid-19. Mini-peaks of infection have been noted after the relaxation
of regional social distancing used to control influenza outbreaks.[12] This is an in-
evitable consequence of increasing § in our model. It certainly does not validate
the use of delayed social distancing, nor should it influence its relaxation.

References

[1] The Covid Tracking Project. The covid tracking project. https://covidtracking.com.
Accessed: 2020-05-03.

14


https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.05.03.20089680; this version posted May 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

[2] Michael Day. Covid-19: identifying and isolating asymptomatic people helped elim-
inate virus in italian village. BMJ, 368:m1165, 2020.

[3] Yan Bai, Lingsheng Yao, Tao Wei, Fei Tian, Dong-Yan Jin, Lijuan Chen, and
Meiyun Wang. Presumed asymptomatic carrier transmission of covid-19. Jama,
323(14):1406-1407, 2020.

[4] Roy M Anderson. Discussion: the kermack-mckendrick epidemic threshold theorem.
Bulletin of mathematical biology, 53(1-2):1, 1991.

[5] David Tétrai and Zoltdn Varallyay. Covid-19 epidemic outcome predictions based
on logistic fitting and estimation of its reliability. arXiv preprint arXiv:2003.14160,
2020.

[6] The UK Survey. Covid-19 serology surveillance strategy.
https://www.reuters.com/article /us-health-coronavirus-britain-tests /uk-to-test-
prevalence-of-covid-19-in-general-population-idUSKCN224317Z. Accessed: 2020-05-

03.
[7] Atlanta  Georgia  CDC. Covid-19  serology  surveillance  strat-
egy. https://www.cdc.gov/coronavirus/2019-ncov/covid-data/serology-

surveillance/index.html. Accessed: 2020-05-03.
[8] Worldometer. Worldometer. https://www.worldometers.info. Accessed: 2020-05-03.

9] GOV UK. Staying at home and away from others (social distancing).
https://www.gov.uk/government /publications/full-guidance-on-staying-at-home-
and-away-from-others/full-guidance-on-staying-at-home-and-away-from-others.
Accessed: 2020-05-03.

[10] Martin CJ Bootsma and Neil M Ferguson. The effect of public health measures on
the 1918 influenza pandemic in us cities. Proceedings of the National Academy of
Sciences, 104(18):7588-7593, 2007.

[11] Janet B Bowen, John J Votto, Roger S Thrall, Margaret Campbell Haggerty, Rebecca
Stockdale-Woolley, Tapas Bandyopadhyay, and Richard L. Zu Wallack. Functional
status and survival following pulmonary rehabilitation. Chest, 118(3):697-703, 2000.

[12] Richard J Hatchett, Carter E Mecher, and Marc Lipsitch. Public health interven-
tions and epidemic intensity during the 1918 influenza pandemic. Proceedings of the
National Academy of Sciences, 104(18):7582-7587, 2007.

15


https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.05.03.20089680
http://creativecommons.org/licenses/by-nc-nd/4.0/

