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Abstract  

With the global coronavirus disease 2019 (COVID-19) pandemic, there is an urgent need for 

risk stratification tools to support prevention and treatment decisions. The Centers for 

Disease Control and Prevention (CDC) listed several criteria that define high-risk individuals, 

but multivariable prediction models may allow for a more accurate and granular risk 

evaluation. In the early days of the pandemic, when individual level data required for 

training prediction models was not available, a large healthcare organization developed a 

prediction model for supporting its COVID-19 policy using a hybrid strategy. The model was 

constructed on a baseline predictor to rank patients according to their risk for severe 

respiratory infection or sepsis (trained using over one-million patient records) and was then 

post-processed to calibrate the predictions to reported COVID-19 case fatality rates. Since its 

deployment in mid-March, this predictor was integrated into many decision-processes in the 

organization that involved allocating limited resources. With the accumulation of enough 

COVID-19 patients, the predictor was validated for its accuracy in predicting COVID-19 

mortality among all COVID-19 cases in the organization (3,176, 3.1% death rate). The 

predictor was found to have good discrimination, with an area under the receiver-operating 

characteristics curve of 0.942. Calibration was also good, with a marked improvement 

compared to the calibration of the baseline model when evaluated for the COVID-19 

mortality outcome. While the CDC criteria identify 41% of the population as high-risk with a 

resulting sensitivity of 97%, a 5% absolute risk cutoff by the model tags only 14% to be at 

high-risk while still achieving a sensitivity of 90%. To summarize, we found that even in the 

midst of a pandemic, shrouded in epidemiologic "fog of war" and with no individual level 

data, it was possible to provide a useful predictor with good discrimination and calibration.  
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Introduction 

The global coronavirus disease 2019 (COVID-19) pandemic is challenging healthcare systems 

around the world1,2. The wide range of outcomes observed, ranging from subpopulations 

that are mainly asymptomatic to subpopulations with substantial fatality rates3, calls for risk 

stratification. 

Such risk stratification can help to better tailor efforts, both for prevention (i.e. home 

quarantine, social distancing) and for treatment of confirmed cases (i.e. hospitalization vs. 

community isolation). In the face of equipment, services and personnel shortages, risk 

stratification can allow better use of existing resources and improved outcomes.  

To define who is at high risk for severe disease, the Centers for Disease Control and 

Prevention (CDC) defined the following criteria4: people 65 years and older, people who live 

in nursing homes, and people with at least one of the following conditions – chronic lung 

disease, serious heart conditions, severe obesity, diabetes, chronic kidney disease, liver 

disease or people who are immunocompromised.  

Unlike the binary classification to low and high risk groups that results from decision rules 

such as the ones put forth by the CDC, the medical community is long accustomed to use 

more granular and individualized evaluation of patients' risk, which are usually quantified 

using multivariable prediction models5. Because patient risk is multi-factorial in nature, with 

many interactions between the various factors, such models are well suited to the task of 

risk evaluation. Training of these models requires individual level data, which is usually 

available from retrospective electronic healthcare record (EHR) data6,7 or from datasets of 

cohorts that were collected for research purposes8,9. Such individual level data of COVID-19 

patients is starting to accumulate in different countries, but was not available when most 

western countries started forming their strategy to deal with the rise in COVID-19 patients. 

Many attempts to provide risk prediction models for COVID-19 were described in recent 

weeks. Wynants et. al recently reviewed10 prediction models for COVID-19, and found three 

that were trained on a general population to predict hospital admission due to pneumonia 

(as a proxy for COVID-19 pneumonia), and ten other prognostic models that were trained on 

COVID-19 patients to predict an outcome of death, severe disease or the need for hospital 

admission. However, most of these models are not reported at the usual standard required 

for prediction models11, and Wynants et. al summarized them as "poorly reported, at high 

risk of bias, and their reported performance is probably optimistic". 

In this paper we propose a hybrid methodology, which allows the construction of a 

multivariable prediction model without access to individual level data pertaining to the 

current pandemic. This methodology first uses a baseline model trained on the general 

population in order to provide a granular ranking (discrimination) of the risk for severe 

respiratory infection or sepsis, which were hypothesized to share a common physiologic 

tendency with severe COVID-19 infection. Then, a post-processing multi-calibration 

algorithm12 is used to adjust the predictions to published aggregate epidemiological reports 

of COVID-19 case fatality rates (CFRs) in various subpopulations. 
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This methodology was applied in practice during the first weeks of the COVID-19 pandemic. 

The resulting model was then used for different purposes within a large integrated 

healthcare organization. Once sufficient individual level data for COVID-19 became available, 

the model was validated.  

 

Methods 

Setting and source of data  

This is a retrospective cohort study based on the data warehouse of Clalit Health Services 

(CHS), a large integrated payer-provider operating in Israel. Health insurance in Israel is 

mandatory and is offered by several payer-provider organizations that directly supply most 

of the medical services to their insured population and indirectly pay for additional required 

services. CHS, the largest of these organizations, insures over half of the Israeli population 

(approximately 4.5 million members), which are a representative sample of the entire 

population. The CHS data warehouse contains both medical data (primary care, specialist 

care, laboratory data, in-network hospitalization data, imaging data etc.) and claims data 

(mostly out-of-network hospitalization data). CHS has been digitalized since the year 2000 

and has a low yearly attrition rate (~1-2%), allowing long follow-up of patients in the data 

warehouse.  

 

Baseline Model 

The entire CHS population over the age of ten years was designated as relevant for the 

prediction. The exclusion of patients under the age of ten years was done based on the very 

low rates of COVID-19 mortality described in this young population, in contrast to young 

children’s susceptibility to severe respiratory infections by other pathogens (which may have 

been detected by the baseline model and would potentially create bias in the final COVID-19 

model).  

The index date was set to June 1st, 2018. Baseline covariates were extracted in the year prior 

to this date, with the value set as the last result available. A positive outcome was defined as 

a hospitalization with diagnoses of pneumonia, other respiratory infections or sepsis, or a 

positive influenza PCR result (i.e. influenza infection that required inpatient care). Outcome 

data was collected over a follow-up period of 12 months (until May 31st, 2019).  

The baseline model was trained in two phases – initial training for feature selection and final 

training for creation of the baseline model. In the first phase, a population of 1,000,000 

members, selected randomly from CHS members of the relevant age ranges, was selected. 

This population was run through an automatic prediction pipeline to explore important 

features for the prediction task, out of all covariates available in the CHS data warehouse 

(≈15,000 potential features).  
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Once this model was trained, the top 30 features were passed to a group of clinicians that 

chose a subset of features with meaningful and intuitive medical sense. In addition, variables 

describing medical conditions reported to be related to severe COVID-19 infection were 

added manually. This selection process, which resulted in 24 selected features, was 

performed to improve the interpretability of the resulting model and to allow its sharing 

with other providers. The full list of features used in the eventual model and the exact 

definition of the outcome used are detailed in Supplementary Table 1. 

The final baseline model, with the selected features, was trained and tested using another 

random sample of 1,050,000 individuals (that were not included in the feature selection 

phase). This population was then randomly divided in a 70/30 ratio to training-validation and 

test sets, respectively. 

The final model employed was a decision-tree-based gradient boosting model using the 

LightGBM library13 with default hyperparameters. The validation set was used for early 

stopping, with area under the receiver operating characteristics curve (AUROC) used as the 

performance measure. Decision tree models are capable of handling missing data without 

the need for imputation, and accordingly, none was performed. 

The model was scored on the test set for metrics of discrimination and calibration. 

Discrimination was measured as the AUROC. Calibration was measured using a smooth 

calibration plot14. Contribution and effect of the selected features was presented using SHAP 

scores15. Confidence intervals (CI) for the various performance measures were derived using 

the bootstrap percentile method16 with 5,000 bootstrap repetitions. 

 

Adjustment of the baseline model predictions for COVID-19 mortality 

The final baseline model was applied to the entire CHS population over the age of 10 years 

as of an index date of February 1st, 2020, which was chosen to avoid the effects of COVID-19 

disease (the first COVID-19 case was identified in Israel at January 29th, 2020). After 

producing individual risk assessment for what we hypothesized to be a physiologic tendency 

to severe COVID-19 infection, there was a need to recalibrate the results to the outcome of 

interest – mortality due to COVID-19 infection. This process was done using reported COVID-

19 CFRs for different subpopulations, taken from a report by the Chinese center for disease 

control17. The data in this report was presented as one-way conditionals, e.g., the probability 

of mortality given being in a specific age range, or of a specific sex group. 

Before applying the one-way conditionals from the Chinese population to the Israeli 

population, they were corrected to account for the different demographic distributions of 

the two populations. For this purpose, a linear probability model was trained on the Chinese 

data with ten-year age groups and sex as the predictors. This model has the advantage of 

only requiring the pair-wise covariance between the independent variables, which were 

available for the Chinese population as part of the global burden of disease (GBD) study 

201718,19. Once this model was trained, the corresponding conditionals were calculated on 

the Israeli population, using its demographic characteristics.  
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Adjustment of the predictions from the baseline model was done using a multi-calibration 

algorithm12. This algorithm acts as a post-processing phase for any baseline prediction model 

and works by iteratively adjusting the predictions of each subgroup (e.g., females aged 60-

69) so that their mean is equal to the mean of the observed outcomes in that subgroup. The 

algorithm iterates until no subgroups remain whose average is further from their target 

value by more than a pre-determined tolerance, which was set to 1%. Since the 

subpopulations are overlapping, this process requires several iterations until it converges (A 

detailed pseudocode of this algorithm is provided in Supplementary Figure 1). The 

predictions that were output from the recalibration procedure were used as the final model 

for predicting the risk of death from COVID-19 infection (i.e. the COVID-19 predictions).  

See Supplementary Description 1 for a complete technical description of the adjustment 

procedure. 

 

Testing the adjusted outcomes 

Once enough confirmed COVID-19 patients accumulated in Israel, the COVID-19 predictions 

were tested on the entire CHS COVID-19 patient population.  

The study population was extracted on April 22nd, 2020, and included all patients diagnosed 

at least 14 days prior to the extraction date (to allow a reasonable time for the outcome to 

occur on the one hand, and to avoid overly reducing the sample size on the other hand). To 

validate this decision, empirical cumulative distribution functions of time-to-death from 

COVID-19 were derived using all patients in CHS' database. These included both the crude 

distribution and the distribution accounting for censoring and the "competing risk" of cure, 

calculated using the Aalen-Johansen estimator20. 

Patients were diagnosed using RT-PCR tests from nasal and pharyngeal swabs performed 

between the beginning of the outbreak in Israel and the extraction date. The outcome used 

was death, as identified from national registries which are updated on a daily basis. 

The COVID-19 predictions were scored for discrimination using the AUROC. To assess the 

success of the calibration adjustment procedure, calibration was compared to that of the 

baseline model using calibration curves (with both the baseline and the final COVID-19 

models evaluated against the COVID-19 outcome). The effects of the recalibration were also 

assessed via decision-curves, which present net-benefit against different decision thresholds 

and are used to evaluate the utility of decisions made based on the model21. 

In addition, plots of the positive predictive value (PPV) against the sensitivity (precision-

recall curve), and of the sensitivity against the percent of patients identified as high risk 

were drawn across different thresholds. This was done to present the sensitivity and PPV 

that result from all possible shares of the population that could be defined to be at high risk. 

These plots were also used to demonstrate the comparative performance of the binary 

classification that results from the American CDC criteria for defining high risk patients4. 
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Ethical approval 

Due to the urgent need for information regarding COVID-19, all data analysis related to the 

management of the COVID-19 pandemic in Israel (not including genetic data research and 

clinical trials) was exempt from a need for IRB approval (decision reference number 

178368620).  

 

Analysis 

The baseline model development was done using Python version 3.6, Anaconda version 

5.1.0 and LightGBM version 2.2.3. The model performance analysis and plot creation was 

done in R version 3.5.2. 

 

Results 

Baseline Model 

The characteristics of the population used for the training and testing of the final baseline 

model are described in Supplementary Table 2. Among this population of 1,050,000 Clalit 

Health Services' (CHS) members over the age of 10 years, 11,718 (1.1%) positive outcomes 

were recorded over a follow-up period of one year.  

The contribution and effect of the features of the baseline model for prediction of its chosen 

outcome, as measured by SHAP scores, are presented in Figure 1. Panel A of the figure 

presents the overall importance and effect of all variables in the model. Panel B presents the 

odds ratios across different values of three selected variables15. 

Performance of the baseline prediction model on the test set is detailed in Figure 2. The 

AUROC was 0.820 (95% CI: 0.811-0.828), which indicates good discrimination. The 

calibration plot, which runs very close to the diagonal, shows excellent calibration. 

 

COVID-19 Complications Model 

The recalibration procedure of the baseline model to the COVID-19 case fatality rates among 

different age and sex groups terminated after making 23 corrections. The aggregated 

corrections for each group are detailed in Supplementary Table 3. It is evident that the larger 

corrections made were for the older age groups, where the risk had to be increased 

substantially. 

The model was deployed for large-scale use in the CHS around mid-March. When a 

sufficiently large local population of confirmed COVID-19 patients accumulated over the 

following weeks, performance of the COVID-19 predictions was tested. The last date that 

was allowed for confirmed cases to be included in the analysis was 14 days prior to the 
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extraction date, thus allowing a minimum follow up period of 14 days. The empirical 

cumulative distribution functions for the time-of-death of all patients, both crude and 

adjusted for censoring and the "competing risk" of cure, is shown in Supplementary Figure 2. 

These figures indicate that between 79% and 88% of COVID-19 deaths occur until the 14th 

day. 

The testing population included a cohort of 3,176 COVID-19 patients, with 87 (3.1%) deaths 

recorded until April 22nd, 2020. A population table for this population is detailed in Table 1. 

The table shows the much higher fatality rate among the chronically ill and those of 

advanced age. 

Discriminatory performance of the COVID-19 predictions in general and at specific 

thresholds is detailed in Figure 3a. The overall AUROC of the COVID-19 predictions is 0.942 

(95% CI 0.916-0.960). When considering an absolute risk of 10% as the threshold, a fraction 

of 7% (95% CI 6%-8%) of the population is identified as having a high risk, and this high-risk 

group contains 69% (95% CI 59%-79%) of the patients who eventually died (sensitivity). If a 

patient was identified as a high risk by this cutoff, his or her probability for death was 27% 

(95% CI 21%-33%) (PPV). At a 5% risk threshold, a fraction of 14% (95% CI 13%-16%) of the 

population is found to be at high risk, with a sensitivity of 90% (95% CI 83%-96%) and PPV of 

17% (95% CI 14%-21%). The CDC high-risk criteria identify 41% (95% CI 40%-43%) of the 

population as high risk with a sensitivity of 97% (95% CI 92%-100%) and a PPV of 6% (95% CI 

5%-8%).  

Figures 3b and 3c present plots of the COVID-19 predictions' PPV against their sensitivity and 

of their sensitivity against the percent of patients identified as high risk, respectively. These 

plots also contain a graphical indication of the CDC criteria's corresponding values. 

A calibration plot, comparing the ability of the COVID-19 predictions and the baseline 

predictions in accurately evaluating the absolute risk for COVID-19 mortality, is included in 

Figure 4a. The figure shows that the original predictions were too low for the new outcome 

and that the recalibration procedure provided a marked improvement. The importance of 

the correction is further illustrated by decision curves (Figure 4b(. These curves, which 

compare the utility of the decisions that would have been made using the two models, show 

that decisions made using the COVID-19 predictions are superior to those made by the 

baseline model for the thresholds relevant for defining high-risk groups. 

Access details to the code required to generate the baseline model predictions, as well as 

the data required for the adjustment and calibration of the baseline predictions to COVID-19 

CFRs, are supplied under the code availability statement. 

 

 

Discussion 

Main findings 
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This work presents a model for prediction of COVID-19 mortality that was developed using a 

hybrid approach, by calibrating the predictions from a baseline model - designed to rank the 

population according to the risk for severe respiratory infections or sepsis - to reported 

COVID-19 mortality rates. The resulting model, developed rapidly under conditions of 

uncertainty, entered wide use in CHS around mid-March, just before the first case of COVID-

19 fatality in Israel. Since then, with the increase in the number of COVID-19 patients in 

Israel, some with severe outcomes, it became possible to validate its performance. 

We showed that on a validation set of 3,176 COVID-19 patients (3.1% death rate), the model 

was highly discriminative, with an AUROC of 0.942. We also showed that the post-processing 

multi-calibration phase resulted in a large improvement to the calibration of the baseline 

model when evaluated on COVID-19 patients (Figure 4a). The improved calibration also 

translated to improved net benefit across the risk thresholds relevant for defining high risk 

groups (Figure 4b).  

 

The need for a risk stratification model and examples of its uses  

Since its development, the model has been used for many purposes within CHS. Its first use 

was for prevention purposes, with an intention to notify high-risk members of their 

increased risk, to explain the importance of following social distancing instructions, and to 

provide information regarding telemedicine and other remotely accessible medical services. 

For that purpose, two cutoffs of high risk groups were defined: the very-high risk group 

(absolute predicted risk ≥ 10%, about 4.3% of the CHS population over the age of 10 years) 

and the high risk group (absolute predicted risk of 5-10%; 6.7% of the population). The first 

group received phone calls from their care providers to convey these messages personally, 

and both groups received a text message with similar information.  

Risk stratification was also used for prioritization of COVID-19 RT-PCR tests, along with other 

criteria such as symptoms and potential exposure. Once tested for COVID-19, the model 

predictions were also used to decide on the place of treatment of confirmed cases. This was 

done using the following methodology: first the treating physician makes a decision 

regarding the preferred place for treating a new patient, based on his or her clinical 

condition. If it is decided that the patient can be treated outside of a hospital, the physician 

checks the patient's risk group. Patients of the very-high risk group are reconsidered for 

hospital admission. Patients at the high-risk group can still be treated outside of a hospital, 

but their daily follow-up is more frequent than that of other patients. 

The CDC and other authorities provided definitions of who should be considered to be at 

high risk4. There are two main issues with such binary classification. First, it does not allow 

the flexibility of choosing intervention cutoffs according to available resources or for 

interventions that are based on several risk levels. This is a problem especially when health 

resources are at a premium, for example when making personal phone calls by the medical 

staff. Second, defining a risk group by a list of risk factors (in the form of A or B or C etc.) 

usually results in many patients placed at the high-risk group, which is "wasteful" in its 

attempt to identify those who are truly at risk. This was noted in our population, where the 
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CDC criteria define 41% of the population to be at high risk. While this group does include 

97% of the death cases (sensitivity), a cutoff of 5% absolute risk by our more granular model 

allows defining only 14% of the population as high-risk, while still attaining a sensitivity of 

90%.  

Considerations regarding model development  

When first faced with the need to create a risk stratification model for COVID-19, there was 

no available individual level data in Israel or in the public domain. The only information 

available that seemed sufficiently representative (i.e. not limited to inpatient populations) 

was that reported by the Chinese CDC17, which reported CFRs for different subpopulations. 

Because this data cannot be translated directly to individualized risk assessment, we chose 

to first train a predictor on a related outcome that is available in our retrospective data and 

then to adjust its predicted distributions to match those COVID-19 CFRs.  

Interestingly, the multi-calibration algorithm we used was borrowed from the domain of 

"algorithmic fairness"22; its intended use is to ensure calibrated and fair predictions for 

minority subpopulations that are underrepresented in a training set, and it is designed to 

run on hundreds of overlapping subpopulations (defined by many "protected" variables). In 

this case, however, the algorithm was used to make sure that the baseline model is 

calibrated for the reported CFRs of different age and sex groups. It should be noted that on 

top of the sex and age groups, we initially intended to calibrate the predictions to reported 

CFRs of populations with specific comorbidities, as any calibration target can be fed to the 

multi-calibration algorithm in order to further refine the predictions' accuracy. This was 

eventually not done because of issues that were raised about the quality of the published 

comorbidity data in the Chinese report. As we could not find other reports of CFRs for 

different comorbidity groups in representative COVID-19 populations (as of the time of 

model deployment), we opted to only adjust for age and sex. 

We consider this approach to provide an efficient combination between individual level data 

and epidemiologic reports. The resulting model can easily be further recalibrated whenever 

new data regarding different subpopulation CFRs becomes available, whether conditioned 

on a single characteristic (e.g. CFR in obese patients) or more (e.g. CFR in 50 to 70 year-old 

smokers).  

Interesting features  

Our baseline model identified relevant features from thousands of potential candidates. 

Among those, the model identified seven laboratory tests as being predictive of severe 

respiratory illness. Interestingly, most of these tests were later found to be indicative of 

severe COVID-19 infection. For example, recent reports highlight lymphopenia as a marker 

of COVID-19 disease severity10,23-25. C-reactive protein (CRP) was also identified as an 

important feature for predicting a severe course of disease in hospitalized COVID-19 

patients10,24,26. In addition, albumin, urea and red cell distribution width (RDW) were also 

mentioned as indicative of severe COVID-19 infection26. Lactate dehydrogenase (LDH), 

another variable that stood out as important is several studies10,24-26, was not picked up by 

our baseline model. These findings of overlapping risk factors further strengthen the 
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hypothesis that the baseline model correctly identifies a physiologic tendency and relevant 

susceptibility for a severe COVID-19 infection. 

Comparison to previous literature 

Three other models described in the literature employed a similar "baseline model" 

approach, with hospital admissions for respiratory disease used as a proxy for COVID-19 

pneumonia. These models reported AUROC values of 0.73 to 0.81 (compared to 0.820 in our 

study)10. The models were all developed by DeCaprio et. al27 on a cohort of approximately 

1.8 million Medicare members. Contrary to the model we report, these models were not 

adjusted to the COVID-19 outcome and were not evaluated on COVID-19 patients.  

In addition to these, there were ten other prognostic models for predicting death, severe 

disease or length of admission10, which were trained on COVID-19 patients, almost 

exclusively from China. Wynants et. al10 determined these studies to be at high risk of bias, 

due to a "non-representative selection of control patients, exclusion of patients who had not 

experienced the event of interest by the end of the study, and high risk of model 

overfitting". In addition, they criticized most of the reports for low reporting quality. It 

should be emphasized that due to the urgent circumstances, many of these models were 

published as preprints, and have not yet been subjected to a peer review process. These 

studies were performed in an inpatient setting, with sample sizes ranging from dozens to 

several hundreds and a relatively high rate of severe outcomes (some with mortality rates of 

over 50%). Since our work evaluates the risk for severe COVID-19 disease for the entire 

population, and is designed to be used prior to contracting the disease, a detailed 

comparison between the models is of less relevance. 

Strengths and limitations 

Our work, which takes the hybrid approach of developing a population-based model that is 

then adjusted to COVID-19 mortality rates, has several strengths. It was conducted and 

reported according to the standard guidelines for prediction model reporting11. The baseline 

model was developed on a random and large sample of the CHS population, and validated 

on a separate test set, thus limiting the possibility for overfitting. In addition, the 

performance of the COVID-19 adjusted model was then evaluated on all COVID-19 

confirmed CHS cases that were diagnosed at least 14 days prior to the analysis. Given that 

Israel has a relatively high testing rate28, and given that all tests and patients' status reports 

are collected centrally (whether they are treated in the community or in the hospital), the 

possibility for selection or sampling bias is markedly reduced.  

This work also has several limitations. First, the method described depends on being able to 

construct a discriminative model for a related outcome, for which the resulting ranking is 

relevant to the outcome of interest. This is usually not known accurately in advance, 

particularly for emerging diseases such as COVID-19. Second, the method requires 

subpopulation-specific CFRs that are relevant to the study population. These will usually be 

found in foreign populations and will need to be corrected to the local population. The 

correction method used in this study, using a linear probability model, is coarse, and could 

result in significant bias if the populations are sufficiently different. Third, patients that were 
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diagnosed later in the follow-up period had a shorter follow-up time (with a minimum of 14 

days) from the time-of-diagnosis to the time the outcome of death was ascertained. As our 

analysis shows, a 14 days of follow-up has the potential to miss up to 20% more deaths. 

Last and most important, without individual level data, there is no way to test the resulting 

predictions. As a result, a poorly performing model could find its way into clinical use at a 

critical time. This can be counteracted, at least partially, by evaluating the resulting model 

and predictions manually, using clinical domain knowledge, as was performed in the CHS 

prior to model deployment. This also emphasizes the importance of validating the model on 

individual level data as soon as such data becomes available.  

Conclusions 

In this work we described the development and use of a prediction model for a novel 

infection, when individual level data is not yet available. We found that even in the midst of 

a pandemic, shrouded in epidemiologic "fog of war", it was possible to provide a useful 

prediction model for COVID-19 with good discrimination and calibration. It appears that the 

choice of a related outcome was able to provide a proper ranking of the population, and the 

multi-calibration approach was useful for integration of published epidemiological data into 

the model. We also demonstrated that this approach is more efficient in identifying high-risk 

individuals compared to the current CDC definitions. 

The methodology described here can be used in other populations lacking individual COVID-

19 data and in future similar circumstances for other emerging diseases or situations in 

which an outcome of interest is not yet available in the local data. As a healthcare 

organization, we consider risk stratification tools as important for both proactive prevention 

measures and for care decisions regarding confirmed patients. This need becomes even 

more critical when health systems are facing extreme loads and there is a need to properly 

assign available resources.  
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Tables and Figures 

 

Table 1 – Population characteristics table 

Variable Outcome = No Outcome = Yes 

Overall 3,089 87 

Age group (years)   

  10-19  276 (8.9)   0 (0.0)  

  20-29  737 (23.9)   1 (1.1)  

  30-39  518 (16.8)   1 (1.1)  

  40-49  420 (13.6)   1 (1.1)  

  50-59  390 (12.6)   1 (1.1)  

  60-69  409 (13.2)  11 (12.6)  

  70-79  202 (6.5)  20 (23.0)  

  80-89  102 (3.3)  30 (34.5)  

  90-99   35 (1.1)  22 (25.3)  

Sex   

  M 1389 (45.0)  47 (54.0)  

  F 1700 (55.0)  40 (46.0)  

Diabetes   

  No 2746 (88.9)  41 (47.1)  

  Yes  343 (11.1)  46 (52.9)  

Hypertension   

  No 2602 (84.2)  28 (32.2)  

  Yes  487 (15.8)  59 (67.8)  

Cardiovascular Disease   

  No 2810 (91.0)  33 (37.9)  

  Yes  279 (9.0)  54 (62.1)  

Malignancy   

  No 2900 (93.9)  68 (78.2)  

  Yes  189 (6.1)  19 (21.8)  

Chronic Respiratory Disease   

  No 2847 (92.2)  73 (83.9)  

  Yes  242 (7.8)  14 (16.1)  

Abbreviations: SD, Standard Deviation; 
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Figure 1 - Summary and feature-specific SHAP values for the baseline model 

 
A. A summary plot of the SHAP values for each feature. Going from top to bottom, features decrease in their overall 

importance (sum of SHAP values). In each feature, every point is a specific case, colors towards red represent higher 
values of the variable and the X-axis represents the effect the variable had on the prediction in this specific patient 
(increased risk to the right of the vertical grey line and decreased risk to the left of the line). 

B. A plot of the odds ratio for different values of age. A smoothed red line is fit to the curve and a horizontal grey line is 
drawn at odds ratio = 1. 

C. A plot of the odds ratio for different values of percent of lymphocytes in the blood. A smoothed red line is fit to the curve 
and a horizontal grey line is drawn at odds ratio = 1. 

D. A plot of the odds ratio for different values of albumin. A smoothed red line is fit to the curve and a horizontal grey line is 
drawn at odds ratio = 1. 

Abbreviations: SHAP – SHapley Additive exPlanations 
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Figure 2 - Performance charts for the baseline model 

 
A. Calibration plot, plotting the observed outcome against the predicted probabilities. The diagonal grey line 

represents perfect calibration. A smoothed line is fit to the curve, and points are drawn to represent the averages in 
ten discretized bins. The "rug" under the plot illustrates the distribution of predictions. 

B. Receiver operating characteristics curve, plotting the sensitivity against one minus specificity for different values of 
the thresholds. The diagonal grey line represents a model with no discrimination. The area under the curve, with its 
95% confidence interval, is shown on the top-left. 

Abbreviations: AUROC, Area Under the Receiver Operating Characteristics Curve;  
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Figure 3 - Performance charts for the COVID-19 model 

 
A. A table specifying the performance the overall model predictions and of three classifiers. 
B. A plot of the positive predictive value against the sensitivity of the predictor for different thresholds. The light band 

around the line represents point-wise 95% confidence intervals. Only thresholds up to 15% absolute risk were plotted 
because of very low outcome rates in higher thresholds that which resulted in instability. The colored dots show the 
performance of three binary classifiers.  

C. A plot of the sensitivity against the percent of patients identified as high-risk for different thresholds. The light band 
around the line represents point-wise 95% confidence intervals. The colored dots show the performance of three binary 
classifiers. 

Abbreviations: AUROC, Area Under the Receiver Operating Characteristics Curve; CI, Confidence Interval; CDC, Centers for 
Disease Control and prevention; COVID-19, Corona Virus Disease 2019;  
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Figure 4 - Calibration plot and decision curves comparing the COVID-19 model with the 
baseline model 

 
A. Calibration plots plotting the observed outcome against the predicted probabilities of both models. The diagonal grey line 

represents perfect calibration. A smoothed line is fit to each curve. The "rug" above and under the plots illustrates the 
distribution of predictions for each model. 

B. The decision curve plots the standardized net benefit against different decision thresholds for both models. Net benefit is 
a measure of utility that calculates a weighted sum of true positives and false positives, weighted according to the 
threshold. Vertical dashed lines were added at relevant decision thresholds that were used in practice. 

Abbreviations: COVID-19, Corona Virus Disease 2019 
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Supplementary Material 

Supplementary Figure 1 - Pseudo-code of the "multi-calibration" algorithm 

 
Detailed pseudo-code of the multi-calibration algorithm, as described in Hebert-Johnson et al.

12
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Supplementary Figure 2 – Cumulative Distribution Functions of time-to-death in CHS' 

database 

 

Empirical cumulative distribution functions for time-to-death of all COVID-19 patients in CHS' 

database. The black line shows the crude distribution. The blue line shows the cumulative incidence 

as calculated after accounting for censoring the "competing risk" of cure, derived using the Aalen-

Johansen estimator
20
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Supplementary Description 1 – Technical description of adjustment procedure 

Purpose: to adjust predictions to external one-way conditional probabilities. 

Inputs: 

 Baseline predictions for another outcome on the entire population of interest, 

P(Yold|X), conditioned on as many independent variables as wanted. 

 Published one-way conditional probabilities for the outcome of interest, from an 

external population, conditional on n variables. Pexternal(Ynew|X_i), I = 1..n 

 A co-occurrence matrix M of size nxn, where Mi,j = Pexternal(Xj|Xi) in the population on 

which the one-way conditional probabilities were published 

 Rates of the different population characteristics in the local population, Plocal(X_i), I = 

1..n 

Steps: 

1. Solving for the coefficients of the linear probability model 

This is done by deriving the coefficients for each independent variable in a linear 

probability model. That is, the model is P(Y) = w1P(X1) + … + wnP(Xn), and the 

coefficients are solved for by solving a system of n equations: 

Pexternal(Y|X1) = w1Pexternal(X1|X1) + … + wnPexternal(Xn|X1) 

Pexternal(Y|X2) = w1Pexternal(X1|X2) + … + wnPexternal(Xn|X2) 

. 

Pexternal(Y|Xn) = w1Pexternal(X1|Xn) + … + wnPexternal(Xn|Xn) 

 

Where P(Xi|Xj) is the i,j entry of the M matrix. 

 

2. Adjust external one-way conditionals to the local population 

With the coefficients in hand, rate for the local population are calculated using the 

local probabilities of the independent variables, 

Plocal(Y|X1) = w1Plocal(X1|X1) + … + wnPlocal(Xn|X1) 

Plocal(Y|X2) = w1Plocal(X1|X2) + … + wnPlocal(Xn|X2) 

… 

Plocal(Y|Xn) = w1Plocal(X1|Xn) + … + wnPlocal(Xn|Xn) 

 

3. Recalibrate the predictions for the baseline outcome to the outcome rates of the 

new outcome 

With the calculated local outcome rates in hand, the baseline predictions are 

adjusted using the multi-accuracy algorithm depicted in Supplemental Figure 1. 

 

When the process terminates, we have P(Ynew|X) for the entire population of interest. 
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Supplementary Table 1 - Variable and outcome definitions  

Variable 
Definitions 

Category Units Time Frame 
(prior to index 
date) 

Details Mechanism of 
feature selection 

Outcome Diagnoses No / Yes  ICD9 codes 
48[0-8]*, 46[0-
6]*, 490*, 
510.9*, 511.0, 
511.89, 518.82, 
785.52 or 
positive 
influenza PCR 

NA 

Age Demograp
hics 

Years Current Age in full 
years 

From the top-
features list 

Sex Demograp
hics 

Male / 
Female 

Current  Added manually 

Pack years Clinical 
Covariates 

Count 1 year #years smoked 
X average 
number of 
packs per year 

From the top-
features list 

COPD Diagnoses No / Yes Ever As per Clalit's 
chronic disease 
registry 

From the top-
features list 

Number of 
wheezing / 
dyspnea 
diagnoses 

Diagnoses Count 1 year ICD9: 786.0 From the top-
features list 

Albumin Labs g/dl 1 year  From the top-
features list 

Red cell 
distribution width 

Labs % 1 year  From the top-
features list 

C-Reactive 
Peptide 

Labs mcg/ml 1 year  From the top-
features list 

Urea Labs mg/dl 1 year  From the top-
features list 

Lymphocyte Labs % 1 year  From the top-
features list 

Chlroide Labs mEq/L 1 year  From the top-
features list 

Creatinine Labs mg/dl 1 year  From the top-
features list 

High Density 
Lipoprotein 

Labs mg/dl 1 year  From the top-
features list 

Duration of 
hospitalizations 

Healthcare 
Utilization 

Count 1 year  From the top-
features list 

Count of 
hospitalizations 

Healthcare 
Utilization 

Count 1 year  From the top-
features list 

Count of 
ambulance rides 

Healthcare 
Utilization 

Count 1 year  From the top-
features list 

Count of 
Sulfonamide 
dispenses 

Drugs Count 1 year ATC4: C03CA From the top-
features list 

Count of Anti-
cholinergic 
dispenses 

Drugs Count 1 year ATC4: R03BB From the top-
features list 

Count of 
Glucocorticoid 
dispenses 

Drugs Count 1 year ATC4: H02AB From the top-
features list 

Chronic 
Respiratory 
Disease 

Diagnoses No / Yes Ever As per Clalit's 
chronic disease 
registry 

Added manually 

Cardiovascular 
Disease 

Diagnoses No / Yes Ever As per Clalit's 
chronic disease 
registry 

Added manually 
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Diabetes Diagnoses No / Yes Ever As per Clalit's 
chronic disease 
registry 

Added manually 

Malignancy Diagnoses No / Yes Ever As per Clalit's 
chronic disease 
registry 

Added manually 

Hypertension Diagnoses No / Yes Ever As per Clalit's 
chronic disease 
registry 

Added manually 

Caption: A list of the variables used in the model, including their type, units, time frame of extraction, definitions and how they 

were selected. 

Abbreviations: COPD, Chronic Obstructive Pulmonary Disease; g, gram; mcg, microgram; mEq, mili-equivalent; ml, milliliter; dl, 

deciliter; L, liter; PCR, Polymerase Chain Reaction; ICD9, International Classification of Disease, 9th revision; ATC4, Anatomical 

Therapeutic Chemical (ATC) Classification System, 4th level;   
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Supplementary Table 2 - Population table for baseline model 

Variable Train/Validation Test Missing (%)  

Overall 735,000 315,000      

Outcome, n (%)    0.0 

  No 726,749 (98.9)  311,533 (98.9)   

  Yes   8,251 (1.1)    3,467 (1.1)   

Age, Mean (SD)  41.00 (21.26)  40.99 (21.23)  0.0 

Sex, n (%)    0.0 

  Female 378,617 (51.5)  162,144 (51.5)   

  Male 356,383 (48.5)  152,856 (48.5)       

Pack years, Mean (SD)  23.65 (24.07)  23.52 (23.31) 75.5 

Chronic Respiratory 
Disease, n (%)    0.0 

  No 669,347 (91.1)  286,961 (91.1)   

  Yes  65,653 ( 8.9)   28,039 ( 8.9)       

Cardiovascular Disease, 

n (%)    0.0 

  No 657,985 (89.5)  281,953 (89.5)   

  Yes  77,015 (10.5)   33,047 (10.5)       

Diabetes, n (%)    0.0 

  No 655,383 (89.2)  280,804 (89.1)   

  Yes  79,617 (10.8)   34,196 (10.9)       

Malignancy, n (%)    0.0 

  No 694,706 (94.5)  297,718 (94.5)   

  Yes  40,294 ( 5.5)   17,282 ( 5.5)       

Hypertension, n (%)    0.0 

  No 612,797 (83.4)  262,802 (83.4)   

  Yes 122,203 (16.6)   52,198 (16.6)       

COPD, n (%)    0.0 

  No 721252 (98.1)  309082 (98.1)   

  Yes  13748 (1.9)    5918 (1.9)   

Wheezing/Dyspnea 
diagnosis, Mean (SD)   0.05 (0.47)   0.05 (0.49)  0.0 

Albumin, Mean (SD)   4.24 (0.38)   4.24 (0.38) 64.1 

Red cell distribution 
width, Mean (SD)  13.69 (1.32)  13.69 (1.31) 49.9 

C-Reactive Peptide, 

Mean (SD)   1.16 (2.80)   1.14 (2.73) 86.6 

Urea, Mean (SD)  31.49 (14.34)  31.38 (14.37) 50.4 

Lymphocyte%, Mean 

(SD)  31.12 (9.07)  31.16 (9.09) 43.7 

Chloride, Mean (SD) 103.94 (3.45) 103.95 (3.46) 94.8 

Creatinine, Mean (SD)   0.79 (0.41)   0.79 (0.41) 46.6 

High Density 
Lipoprotein, Mean (SD)  49.08 (13.07)  49.04 (13.04) 51.7 

Total duration of 
hospitalizations, Mean 

(SD)   0.55 (5.72)   0.54 (5.86)  0.0 

Count of 
hospitalizations, Mean 

(SD)   0.10 (0.45)   0.10 (0.45)  0.0 

Count of ambulance 
rides, Mean (SD)   0.03 (0.26)   0.03 (0.27)  0.0 

Count of Sulfonamide 
dispenses, Mean (SD)   0.15 (1.22)   0.15 (1.21)  0.0 

Count of Anti-
cholinergic dispenses, 

Mean (SD)   0.09 (0.91)   0.09 (0.91)  0.0 

Count of Glucocorticoid 
dispenses, Mean (SD)   0.16 (0.94)   0.16 (0.93)  0.0 

Population characteristics for the three population sets used to build and validate the baseline model. 

Abbreviations: SD, Standard Deviation;  
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Supplementary Table 3 - Correction table for the "multi-calibration" recalibration 

procedure 

Total Corrections 23 

 Sex 

Age Group Male Female 

  10-19 +0.003 -0.011214 

  20-29 +0.00368 -0.010539 

  30-39 +0.00086 -0.013356 

  40-49 +0.00723 -0.006987 

  50-59 +0.01217 -0.002049 

  60-69 +0.02944 +0.01523 

  70-79 +0.05912 +0.0449 

  80+ +0.08484 +0.07063 
Total number of corrections performed and cumulative magnitude of the correction for each subgroup of age and sex. 
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