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Abstract 

Background: Network meta-analysis (NMA) produces complex outputs as many comparisons 

between interventions are of interest and a treatment ranking is often included in the aims of 

the evidence synthesis. The estimated relative treatment effects are usually displayed in a 

forest plot or in a league table and several ranking metrics are calculated and presented, such 

as the median and mean treatment ranks.  

Methods: We estimate relative treatment effects of each competing treatment against a 

fictional ‘average’ treatment using the ‘deviation from the means’ coding that has been used 

to parametrize categorical covariates in regression models. Based on this alternative 

parametrization of the NMA model, we present a new ranking metric (PreTA: Preferable 

Than Average) interpreted as the probability that a treatment is better than a fictional 

treatment of average performance. 

Results: We compare PreTA with existing probabilistic ranking metrics in 232 networks of 

interventions. We use two networks of interventions, a network of 18 antidepressants for 

acute depression and a network of four interventions for heavy menstrual bleeding, to 

illustrate the methodology. The agreement between PreTA and existing ranking metrics 

depends on the precision with which relative effects are estimated.  

Conclusions: PreTA is a viable alternative to existing ranking metrics which can be 

interpreted as the probability of being better than the ‘average’ treatment. It enriches the 

decision-making arsenal with a ranking metric which is interpreted as a probability and 

considers the entire ranking distributions of the involved treatments.  

 

Keywords: Alternative parametrization; Deviation from means; Indirect evidence; 

Probabilistic ranking; Treatment hierarchy  
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1 Introduction 

Results from network meta-analysis (NMA) are often used to inform health-care 

decision making and their presentation in a coherent and understandable way is of critical 

importance (1,2). The main output of NMA is a set of relative effects between all treatments, 

which has been produced by combining direct and indirect evidence in a network of trials 

comparing different treatments (3,4). A very informative way of presenting the NMA relative 

treatment effects is in a league table, where the names of the treatments are presented in the 

diagonal and each cell contains the relative treatment effect (5). Such a table allows for the 

simultaneous presentation of two outcomes, or of the results from pairwise and network meta-

analysis, below and above the diagonal. 

Although the set of relative effects contains all the information produced from NMA, a 

treatment hierarchy is often of interest to decision makers and end users. To this aim, 

alongside treatment effect estimates, several ranking metrics have been proposed to present 

NMA results. Ranking probabilities of each treatment being at each possible rank are 

calculated using simulation or resampling techniques either in a Bayesian or in a frequentist 

framework. Other ranking metrics include the surface under the cumulative ranking curve 

(SUCRA), that averages across all ranking probabilities for each treatment, and its frequentist 

analogue, P-score, which is calculated analytically (6,7). SUCRA and P-score can be 

interpreted as the mean extent of certainty that a treatment is better than all the other 

treatments. As authors of (6) point out, however, “it is impossible to tell what constitutes a 

modest or large difference in SUCRA between two treatments, either statistically or 

clinically”. An alternative way to produce a treatment hierarchy is to simply rank treatments 

according to the relative effects versus placebo, or another reference treatment. However, this 

hierarchy either does not take into account uncertainty (by considering only point estimates) 

or depends a lot on the uncertainty around the reference treatment. 

In this paper, we develop a probabilistic ranking metric that naturally incorporates 

uncertainty and is a viable alternative to existing ranking metrics. We re-parametrize the 

NMA model to derive treatment effects against a fictional treatment of average performance 

using the deviation of means coding that has been used to parametrize categorical covariates 

in regression models (8). Then, we use the derived treatment effects to compute the 

probability of each treatment being better than the ‘average’ treatment. This ranking metric 
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aids the interpretation of NMA results in classifying treatments as superior, equivalent and 

inferior to an imaginary ‘average’ treatment.  

2 Reparametrization of the NMA model 

2.1 Deviation from means coding in regression models 

We start with a short description of the deviation from means coding in regression 

models as described by Hosmer and Lemeshow (8). This is an alternative parametrization to 

the most common ‘reference cell coding’ in order to avoid the use of a reference level. 

According to the reference cell coding, a categorical independent variable with 𝐶 categories is 

expressed through 𝐶 − 1 dummy/indicator variables. 

Consider, for example, that we aim to estimate the effect of a covariate with four 

groups on the probability of an event. We fit a logistic regression model  

𝑔(𝑝(𝒙)) = 𝛾0 + 𝛾1𝒙𝟏 + 𝛾2𝒙𝟐 + 𝛾3𝒙𝟑 

where 𝒙 = (𝒙𝟏, 𝒙𝟐, 𝒙𝟑)′ are the dummy variables for the covariate and 𝑔(𝑝(𝒙)) is the logit 

link function 𝑔(𝑝(𝒙)) = 𝑙𝑜𝑔𝑖𝑡(𝑝(𝒙)) = 𝑙𝑜𝑔(𝑝(𝒙)/(1 − 𝑝(𝒙))) with 𝑝(𝒙) indicating the 

probability of event. 

According to the reference cell coding, the indicator variables are parametrized as 

shown in Table 1 and result into estimating logarithms of the relative odds ratios (logOR) 

between the categories represented by the values 0 and 1 in these indicator variables.  

According to the alternative deviation from means coding, the indicator variables 

express effects as deviations between each category mean (here the logit of the outcome in 

that category) from the overall (grand) mean (here the average logit outcome over all 

categories). We re-write the model as 

𝑔(𝑝(𝒙)) = 𝛾0
∗ + 𝛾1

∗𝒙𝟏
∗ + 𝛾2

∗𝒙𝟐
∗+𝛾3

∗𝒙𝟑
∗  

where the indicator variables 𝑥1
∗, 𝑥2

∗, 𝑥3
∗ are defined as shown in Table 1. The model results in 

estimating the coefficients 𝛾1
∗, 𝛾2

∗, 𝛾3
∗, interpreted as the relative effects among groups versus 

the average effect across all groups. Note that the exponential of the coefficients 𝛾1
∗, 𝛾2

∗, 𝛾3
∗ are 

not odds ratios because in the denominator is the average odds that includes the odds of the 

numerator. 
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For example, the logit of group 2 versus average logit over all groups is derived as 

log(𝑂𝑅) = 𝛾0
∗ + 𝛾1

∗(1) + 𝛾2
∗(0) + 𝛾3

∗(0) − (𝛾0
∗ + 𝛾1

∗(0) + 𝛾2
∗(0) +𝛾3

∗(0)) = 𝛾1
∗ 

For further information and examples on the deviation from means coding, see (8).  

2.2 Notation for the NMA model 

In this section, we introduce some general notation for the NMA model. Let the entire 

evidence base consist of 𝑖 = 1,… , 𝑛 studies forming a set of treatments, denoted as 𝑘 =

1, … , 𝐾. The number of treatments in study 𝑖 is denoted as 𝐾𝑖. Index 𝑗 denotes a treatment 

contrast. A core assumption in NMA is that of transitivity, which implies that in a network of 

𝐾 treatments, and subsequently (
𝐾
2
) possible relative treatment effects, only 𝐾 − 1 need to be 

estimated and the rest are derived as linear combinations of those (9,10). The target parameter 

is therefore a vector 𝝁 of 𝐾 − 1 relative treatment effects 𝜇2, 𝜇3, … 𝜇𝐾, called the vector of 

basic parameters (11,12). 

With arm-level data we can model arm level parameters, for example the event 

probability for a binary outcome, in study 𝑖 and treatment arm 𝑘 denoted as 𝑦𝑖𝑘(13). A link 

function 𝑔(𝑦𝑖𝑘) maps the parameters of interest onto a scale ranging from minus to plus 

infinity and 𝑢𝑖 are the trial-specific baselines. For an overview of commonly used link 

functions in meta-analysis see (14). All arm-level parameters 𝑦𝑖𝑘 across studies are collected 

in a vector 𝒚𝒂 of length ∑ 𝐾𝑖
𝑛
𝑖=1 , where superscript 𝑎 stands for ‘arm-level’. 

 With contrast-level data we model trial specific summaries, for example logOR, log 

risk ratio, mean difference or standardized mean difference (13). Let 𝑦𝑖𝑗 be the observed 

effect size for treatment contrast 𝑗 in study 𝑖. The vector of the estimated contrasts across all 

studies is denoted as 𝒚𝒄 and is of length ∑ (𝐾𝑖 − 1)
𝑛
𝑖=1 . The superscript 𝒄 indicates the fact that 

‘contrast-level’ data are modeled.   

We will first describe the arm-level and then the contrast-level NMA models using 

reference cell coding and the equivalent alternative deviation from the means parametrization, 

which allows estimation of all treatments versus a fictional treatment of average performance. 

We will exemplify the models using a hypothetical network of three treatments, A, B and C 

examined in four studies, one comparing A and B, one comparing A and C, one comparing B 

and C and one three-arm study comparing treatments A, B and C. The target vector of basic 

parameters is usually taken to include the relative effects of all treatments versus an arbitrary 
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reference, here treatment A, and hence is 𝝁 = (
𝜇𝐴𝐵
𝜇𝐴𝐶

). The transitivity assumption implies 

consistency between relative treatment effects; in particular, it holds that 

𝜇𝐵𝐶 = 𝜇𝐴𝐶 − 𝜇𝐴𝐵. 

2.3 NMA with arm-level data 

2.3.1 Reference cell coding 

The model for study 1, comparing treatments A and B is shown in Table 2; 𝛿1,𝐴𝐵 

denotes the random effect of study 1 for the comparison AB and 𝜏2 denotes heterogeneity. It 

is customary to assume that heterogeneity is common across comparisons. The model is 

straightforwardly generalized for the other three studies (Table 2). 

In its general form, the NMA model using arm-based analysis can be written as 

𝒈(𝒚𝒂)  = 𝒁𝒖 + 𝑿𝒂𝝁 +𝑾𝜹 

Equation 1 

where 𝒖 is the vector of baselines 𝑢𝑖 of length 𝑛, which can be assumed to be either fixed and 

unrelated to each other, or exchangeable drawn from a normal distribution (15). We assume 

fixed and unrelated baseline effects for the remainder of this paper. Vector 𝜹 includes the 

study random effects 𝛿𝑖,𝑗 and follows the multivariate normal distribution 

𝜹~𝑵(𝟎, 𝜮) 

Matrix 𝜮 is a block-diagonal between-study variance-covariance matrix of dimensions 

{∑ (𝐾𝑖 − 1)
𝑛
𝑖=1 } × {∑ (𝐾𝑖 − 1)

𝑛
𝑖=1 }. The matrices 𝒁,𝑿𝒂,𝑾 are design matrices linking the 

vector of baselines, basic parameters and random effects respectively with 𝒈(𝒚𝒂). The 

construction of these design matrices depends on the modeled arm-level parameters 𝑦𝑖𝑘 and is 

exemplified in the following example. 

For the example of Table 2, Equation 1 takes the form 
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(

 
 
 
 
 
 
 

𝑔(𝑦1𝐴)

𝑔(𝑦1𝐵)

𝑔(𝑦2𝐴)

𝑔(𝑦2𝐶)

𝑔(𝑦3𝐵)

𝑔(𝑦3𝐶)

𝑔(𝑦4𝐴)

𝑔(𝑦4𝐵)

𝑔(𝑦4𝐶))

 
 
 
 
 
 
 

=

(

 
 
 
 
 
 

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1)

 
 
 
 
 
 

(

𝑢1
𝑢2
𝑢3
𝑢4

)+

(

 
 
 
 
 
 

0 0
1 0
0 0
0 1
0 0
−1 1
0 0
1 0
0 1)

 
 
 
 
 
 

(
𝜇𝐴𝐵
𝜇𝐴𝐶

) +

(

 
 
 
 
 
 

0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1)

 
 
 
 
 
 

(

  
 

𝛿1,𝐴𝐵
𝛿2,𝐴𝐶
𝛿3,𝐵𝐶
𝛿4,𝐴𝐵
𝛿4,𝐴𝐶)

  
 

 

with  

(

  
 

𝛿1,𝐴𝐵
𝛿2,𝐴𝐶
𝛿3,𝐵𝐶
𝛿4,𝐴𝐵
𝛿4,𝐴𝐶)

  
 
~𝑁

(

 
 
 

(

 
 

0
0
0
0
0)

 
 
,

(

 
 

𝜏2 0 0 0 0
0 𝜏2 0 0 0
0 0 𝜏2 0 0
0 0 0 𝜏2 𝜏2 2⁄

0 0 0 𝜏2 2⁄ 𝜏2 )

 
 

)

 
 
 

 

Matrix 𝑿𝒂 indicates which elements of 𝝁 are estimated by each 𝑔(𝑦𝑖𝑘). It contains one row 

per study arm and one column per basic parameter. The first row corresponds to treatment 

arm A of the first study taking the value 0 both for 𝜇𝐴𝐵 and 𝜇𝐴𝐶. The second row indicates 

that 𝜇𝐴𝐵 is estimated in treatment arm B of the first study. Similarly, the construction of the 

next rows of 𝑿𝒂, as well as that of 𝒁 and 𝑾, is implied by the arm-level data included in each 

study and the subsequent elements of 𝝁 to be estimated (Table 2). 

2.3.2 Deviation from means coding 

The above model in Equation 1 can be modified using the deviation from means 

coding (8). The model will be parametrized in such a way to estimate the effects of each 

treatment versus the ‘average’ treatment. The target parameter of this model is a vector 𝒃 that 

includes 𝐾 − 1 parameters 𝑏𝑘 with 𝑘 = 2,… , 𝐾 which are the effects of treatment 𝑘 versus 

the average effect over all treatments. One of the treatments – here treatment 1 – is arbitrarily 

chosen to be excluded for identifiability. Results do not depend on the choice of this 

‘reference’ treatment.  

For the deviation from means coding, the model will be 

𝒈(𝒚𝒂)  = 𝒁𝒖 + 𝑿𝒂
∗
𝒃 +𝑾𝜹 

Equation 2 
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with 𝑿𝒂
∗
 denoting the modified design matrix. The matrices 𝒁 and 𝑾 remain unchanged. The 

new design matrix 𝑿𝒂
∗
 will take values -1 for the arbitrarily chosen treatment that is not 

included in vector 𝒃; all other entries in the matrix are as in 𝑿𝒂 .  

Consider the example of Table 1 and the first two rows of the 𝑿𝒂 matrix, (
0 0
1 0

), 

corresponding to the first study. According to the deviation from means coding as illustrated 

in Table 1, we chose a treatment (here treatment A) for which 𝑿𝒂
∗
 will take -1 for both 

dummy variables (both columns of the design matrix) and the group corresponding to 

treatment B takes 1 and 0 for the two columns of the design matrix, as in 𝑿𝒂. Thus, the 

respective part of the new design matrix will be (
−1 −1
1 0

). The model for study 1 with the 

alternative parametrization is  

𝑔(𝑦1𝐴) = 𝑢1 − 𝑏𝐵 − 𝑏𝐶 

𝑔(𝑦1𝐵) = 𝑢1 + 𝑏𝐵 + 𝛿1,𝐴𝐵 

𝛿1,𝐴𝐵 ~ 𝑁(0, 𝜏
2) 

where the parameters 𝑏𝐵 and 𝑏𝐶 denote the effects of B versus average treatment and C versus 

average treatment respectively. The effect of A versus the average treatment is −𝑏𝐵 − 𝑏𝐶 and 

the relative effect of B versus A for the study 1 is derived as 

𝑔(𝑦1𝐵) − 𝑔(𝑦1𝐴) = 2𝑏𝐵 + 𝑏𝐶 + 𝛿1,𝐴𝐵 

The models for all studies are given in Table 2 and the full model is written as   

(

 
 
 
 
 
 
 

𝑔(𝑦1𝐴)

𝑔(𝑦1𝐵)

𝑔(𝑦2𝐴)

𝑔(𝑦2𝐶)

𝑔(𝑦3𝐵)

𝑔(𝑦3𝐶)

𝑔(𝑦4𝐴)

𝑔(𝑦4𝐵)

𝑔(𝑦4𝐶))

 
 
 
 
 
 
 

=

(

 
 
 
 
 
 

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1)

 
 
 
 
 
 

(

𝑢1
𝑢2
𝑢3
𝑢4

) +

(

 
 
 
 
 
 

−1 −1
1 0
−1 −1
0 1
1 0
0 1
−1 −1
1 0
0 1 )

 
 
 
 
 
 

(
𝑏𝐵
𝑏𝐶
) +

(

 
 
 
 
 
 

0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1)

 
 
 
 
 
 

(

  
 

𝛿1,𝐴𝐵
𝛿2,𝐴𝐶
𝛿3,𝐵𝐶
𝛿4,𝐴𝐵
𝛿4,𝐴𝐶)

  
 

 

Note that the reparametrization described using the deviation from the means coding 

should not be confused with different parametrizations of the NMA model to produce relative 

treatment effects of all treatments versus each other. We present in the Additional file 1 an 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.18.20070615doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.18.20070615
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

example of different parametrizations for specifying the means using reference cell coding 

and deviation from means coding using arm-level data. 

2.4 NMA with contrast-level data 

2.4.1 Reference cell coding 

In the contrast-level NMA, data from 𝐾𝑖 − 1 contrasts for each study are modeled. The 

model for study 𝑖 and treatment contrast 𝑗 is written as 

𝑦𝑖𝑗 = 𝜇𝑗 + 𝜀𝑖𝑗 + 𝛿𝑖𝑗 

𝜀𝑖𝑗 ~ 𝑁(0, 𝑠𝑖𝑗
2 ) 

𝛿𝑖𝑗  ~ 𝑁(0, 𝜏
2) 

with 𝜀𝑖𝑗 being the random error for study 𝑖 and treatment contrast 𝑗 where 𝑠𝑖𝑗
2  is the sample 

variance of 𝑦𝑖𝑗. The random effect 𝛿𝑖𝑗 is defined as in the NMA with arm-level data. For 

example, for the first study the model is 

𝑦1,𝐴𝐵 = 𝜇𝐴𝐵 + 𝜀1,𝐴𝐵 + 𝛿1,𝐴𝐵 

𝜀1,𝐴𝐵 ~ 𝑁(0, 𝑠1,𝐴𝐵
2 ) 

𝛿1,𝐴𝐵 ~ 𝑁(0, 𝜏
2) 

and, similarly, for the other studies the models are given in Table 2.  

The contrast-based NMA model in its general form is then written as 

𝒚𝒄  = 𝑿𝒄𝝁 + 𝜹 + 𝜺 

Equation 3 

with the vector of random effects 𝜹 having the distribution given in the arm-level NMA 

model and the vector of random errors being distributed as  

𝜺~𝑵(𝟎, 𝑺) 

where 𝑺 is the block-diagonal within-study variance-covariance matrix of the same 

dimensions as 𝜮. The design matrix 𝑿𝒄 has dimensions ∑ (𝐾𝑖 − 1) × (𝐾 − 1
𝑛
𝑖=1 ). The entries 
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in each row describe the relationship between the vector of basic parameters 𝝁 and the vector 

of observed contrast-level data 𝒚𝒄.  

For example, in the illustrative network of three treatments and four studies, the full 

model is written as 

(

 
 

𝑦1,𝐴𝐵
𝑦2,𝐴𝐶
𝑦3,𝐵𝐶
𝑦4,𝐴𝐵
𝑦4,𝐴𝐶)

 
 
=

(

 
 

1 0
0 1
−1 1
1 0
0 1)

 
 
(
𝜇𝐴𝐵
𝜇𝐴𝐶

) +

(

  
 

𝛿1,𝐴𝐵
𝛿2,𝐴𝐶
𝛿3,𝐵𝐶
𝛿4,𝐴𝐵
𝛿4,𝐴𝐶)

  
 
+

(

 
 

𝜀1,𝐴𝐵
𝜀2,𝐴𝐶
𝜀3,𝐵𝐶
𝜀4,𝐴𝐵
𝜀4,𝐴𝐶)

 
 

 

The first row of the 𝑿𝒄 matrix indicates that the first two-arm study estimates 𝜇𝐴𝐵. Note that 

the arm-level model using reference cell coding for study 1 implies that  

𝑔(𝑦1𝐵) − 𝑔(𝑦1𝐴) = 𝜇𝐴𝐵 + 𝛿1,𝐴𝐵 

and, consequently, the first row of the 𝑿𝒄 matrix results as the subtraction of the second minus 

the first row of 𝑿𝒂. 

2.4.2 Deviation from means coding 

The reparametrized model will differ from that presented in Equation 3 in two ways; 

the target parameter to be estimated, which again are the relative effects 𝒃 against an 

‘average’ treatment, and the design matrix 𝑿𝒄
∗
. The matrix 𝑿𝒄

∗
can be easily obtained from 

𝑿𝒂∗ by subtracting its rows within each study contrast.  

In its general form, the model is 

𝒚𝒄  = 𝑿𝒄
∗
𝒃 + 𝜹 + 𝜺 

Equation 4 

Consider in our example the part of 𝑿𝒂∗ corresponding to study 1, (
−1 −1
1 0

), then 

the row of  𝑿𝒄
∗
 corresponding to that first study will be (2 1), which is the subtraction of 

the two rows. This is also evident considering that 

𝑔(𝑦1𝐵) − 𝑔(𝑦1𝐴) = 2𝑏𝐵 + 𝑏𝐶 + 𝛿1,𝐴𝐵 

according to the arm-based model using the deviation from means coding.  

 The models for studies 1 to 4 are given in Table 2 and can be written as 
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(

 
 

𝑦1,𝐴𝐵
𝑦2,𝐴𝐶
𝑦3,𝐵𝐶
𝑦4,𝐴𝐵
𝑦4,𝐴𝐶)

 
 
=

(

 
 

2 1
1 2
−1 1
2 1
1 2)

 
 
(
𝑏𝐵
𝑏𝐶
) +

(

  
 

𝛿1,𝐴𝐵
𝛿2,𝐴𝐶
𝛿3,𝐵𝐶
𝛿4,𝐴𝐵
𝛿4,𝐴𝐶)

  
 
+

(

 
 

𝜀1,𝐴𝐵
𝜀2,𝐴𝐶
𝜀3,𝐵𝐶
𝜀4,𝐴𝐵
𝜀4,𝐴𝐶)

 
 

 

The estimation of 𝒃 in the contrast-based NMA model using deviation from means coding 

(Equation 4) is 

�̂� = ((𝑿𝒄
∗
)
′
(𝑺 + �̂�)

−𝟏
𝑿𝒄

∗
)
−𝟏

(𝑿𝒄
∗
)
′
(𝑺 + �̂�)

−𝟏
𝒚𝒄 

with variance-covariance matrix  

𝒗𝒂𝒓(�̂�) = ((𝑿𝒄
∗
)
′
(𝑺 + �̂�)

−𝟏
𝑿𝒄

∗
)
−𝟏

 

Vector �̂� includes the estimation of the 𝐾 − 1 parameters 𝑏𝑘 for 𝑘 = 2, … , 𝐾. The estimation 

of the effect of treatment 𝑘 = 1, which was chosen to be excluded for identifiability, versus 

the average effect is given as 

�̂�1 =∑ (−�̂�𝑘)
𝐾

𝑘=2
 

with variance ∑ 𝑣𝑎𝑟(�̂�𝑘)
𝐾
𝑘=2 + ∑ 2𝑐𝑜𝑣(�̂�𝑘, �̂�𝑙)

𝐾
𝑘≠𝑙, 𝑘<𝑙,𝑘>1,𝑙>1 . Note that results do not depend 

on the choice of reference treatment. 

Network estimates �̂�𝑵 can be derived as linear combinations of �̂�  

�̂�𝑵 = 𝒀∗�̂� 

with variance-covariance matrix 

𝒗𝒂𝒓(�̂�𝑵) = 𝒀∗ ((𝑿𝒄
∗
)
′
(𝑺 + �̂�)

−𝟏
𝑿𝒄

∗
)
−𝟏

(𝒀∗)′ 

and are equivalent to the network estimates derived using reference cell coding. Matrix 𝒀∗ of 

dimensions (
𝐾
2
) × (𝐾 − 1) is constructed similarly to 𝑿𝒄

∗
 and connects �̂� with network 

estimates �̂�𝑵. We can use several methods for estimating 𝜮 such as likelihood-based methods 

and an extension of the DerSimonian and Laird method (11,16). For the worked example, it 

holds that 
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(

�̂�𝐴𝐵
𝑁

�̂�𝐴𝐶
𝑁

�̂�𝐵𝐶
𝑁

) = (
2 1
1 2
−1 1

)(
�̂�𝐵
�̂�𝐶
) = (

2�̂�𝐵 + �̂�𝐶
�̂�𝐵 + 2�̂�𝐶
−�̂�𝐵 + �̂�𝐶

) 

The contrast-level NMA model can be written as a two-stage model, as first described 

in (11,17,18), where results of separate pairwise meta-analyses are used instead of 𝒚𝒄 in the 

model described in Equation 3. Constructing the respective design matrix follows the logic of 

constructing 𝑿𝒄 and its modification to parametrize the model using the deviation from means 

coding is straightforward. 

3 PreTA: Probability of a treatment being preferable than the 

average treatment 

Applying the deviation from means coding in NMA models results into the derivation 

of the effects of each treatment against a fictional treatment of ‘average’ performance. In this 

section we use the 𝐾 estimated parameters �̂�𝑘 to compute the probability of each treatment 

being better than the average treatment. To do so, we follow similar steps as those followed 

by Rücker and Schwarzer who derived the frequentist analogue of SUCRA, P-score (7). 

Intermediate to the calculation of P-scores is the derivation of the probability that 

treatment 𝑘 is better than treatment 𝑙, calculated as 

𝑃𝑘𝑙 = 𝑃(�̂�𝑘𝑙
𝑁 > 0) = Φ(

�̂�𝑘𝑙
𝑁

√𝑣𝑎𝑟(�̂�𝑘𝑙
𝑁 )
) 

assuming that higher values represent a better outcome. Accordingly, the probability that 

treatment 𝑘 is better than the fictional treatment of average performance (PreTA) can be 

derived as 

𝑃𝑟𝑒𝑇𝐴𝑘 = 𝑃(�̂�𝑘 > 0) = Φ

(

 
�̂�𝑘

√𝑣𝑎𝑟(�̂�𝑘))

  

The range of values for 𝑃𝑟𝑒𝑇𝐴𝑘 is (0.5, 1) if �̂�𝑘 > 0, and (0, 0.5) if �̂�𝑘 < 0. As it is the case 

with P-scores, the mean of 𝑏𝑒𝑡𝑎𝑘 across all treatments is 0.5. Alternatively, the z-score 
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�̂�𝑘

√𝑣𝑎𝑟(�̂�𝑘)
 can be used to classify treatments according to their ‘distance’ from the average 

treatment. 

Of note is that the above calculations assume normality of the estimated parameters 

�̂�𝑘. However, as �̂�𝑘 are not effect sizes expressed for example as logOR or mean differences, 

using them for hypothesis testing is not meaningful. Despite that, drawing �̂�𝑘 along with the 

associated 95% confidence intervals can be useful in capturing uncertainty around the ranking 

produced by relative treatment effects. Furthermore, by making some extra assumptions, �̂�𝑘 

can be translated into absolute effects; for example, performing a meta-analysis of all 

treatment arms in the network can give an estimate of the expected outcome in the ‘average’ 

treatment. This estimate combined with �̂�𝑘 will then give absolute effects of each treatment. 

3.1 Comparison of PreTAs with existing ranking metrics: theoretical 

considerations and empirical analysis 

The, usually called, probability of being the best is a popular ranking metric which is 

interpreted as the probability of producing the best value in the outcome (pBV) in a network 

of interventions (e.g. large effects for a beneficial outcome, or small effects for a harmful 

outcome). While its derivation might be sensible in some cases, we should not overlook the 

fact that it only takes into account one tail of the treatment effects’ distributions; e.g. it does 

not account for the probability to produce a small effect on a beneficial outcome. SUCRAs 

and P-scores are useful summaries of the entire ranking distributions; suggested 

interpretations include “the average proportion of competing treatments, which produce 

outcome values worse than treatment k” and “the mean extent of certainty that treatment k 

produces better values than all other treatments” (7,19). 

We performed an empirical comparison of the treatment hierarchies obtained with 

PreTA, pBV and SUCRA, calculated using parametric bootstrap in a frequentist framework. 

The agreement between ranking metrics was measured using Kendall’s tau. We used a 

previously described database of NMAs published until 2015 including networks of four or 

more interventions (1). We included networks with available outcome data in arm-level 

format, for which the primary outcome was analysed either as binary or as continuous. We 

used the effect measure used in the original review. Details about the inclusion criteria of the 

NMAs included in the database can be found in (1). The empirical analysis was performed 

with the use of the nmadb package in R (20).  
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In the following section, we illustrate our method in two networks of interventions, for 

which at least some disagreements between pBV, SUCRAs and PreTAs occur. 

4 Worked examples 

4.1 Network of antidepressants 

We illustrate the derivation of the method using as an example a recently published 

NMA comparing the effectiveness of antidepressants for major depression (21). The primary 

efficacy outcome was response measured as 50% or greater reduction in the symptoms scales 

between baseline and 8 weeks of follow up and results were presented as ORs. The authors 

aimed at comparing active antidepressants and considered the inclusion of both head-to-head 

and placebo-controlled trials. The network comprised 522 double-blind, parallel, RCTs 

comparing 21 antidepressants or placebo. However, in line with previous empirical evidence 

(22,23), the authors have found evidence that the probability of receiving placebo decreases 

the overall response rate in a trial and dilutes differences between active compounds (24). 

Based on this ground, authors of this NMA (21) synthesized only head-to-head studies 

separately to estimate the relative efficacy of active interventions. Here, we will focus on the 

latter network that included 179 head-to-head studies comparing 18 antidepressants (Figure 

1a). 

Authors presented relative treatment effects between all pairs of the 18 antidepressants 

in a league table (figure 4 in (21)). When effect sizes are used to rank treatments, selecting a 

reference treatment against which to draw a forest plot of NMA effects is of particular 

importance. Although the choice of reference does not affect the estimates obtained, the 

uncertainty around NMA effects depends on the precision with which the selected reference 

treatment is associated. Figure 2 shows the relative treatment effects against fluoxetine and 

vortioxetine, the treatments that have been studied most and least respectively. While results 

are equivalent, choosing to present one over the other forest plot might implicitly lead to 

different interpretations on the similarity between the drugs based on visually inspecting the 

overlap of the confidence intervals. 

Figure 2 also shows the derived odds of each treatment versus the odds of a fictional 

treatment of average response with their confidence intervals. The line of no effect is included 

in the graph for illustration reasons, although 𝑒�̂�𝑘 are not suited for hypothesis testing. The 

amount of uncertainty around the relative effects versus the average treatment is between the 
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amount of uncertainty around the relative effects of fluoxetine and that of vortioxetine. In 

fact, presenting 𝑒�̂�𝑘 with their confidence intervals offers a solution to the ambiguity of 

selecting a reference treatment, in terms of the uncertainty around them and the consequent 

conclusions about similarity of treatments. Moreover, Figure 2 shows the approximated 

absolute responses for each treatment, assuming the expected risk of the average treatment 

calculated as the meta-analytic effect of all treatment responses.  

Table 3 summarizes the ranking metrics for the network of antidepressants; pBV, the 

SUCRA and PreTAs are presented (6,25). Escitalopram, which is the first treatment according 

to PreTA, ranks second according to SUCRA and third according to pBV. The disagreement 

between PreTA and pBV is explained by the fact that pBV favours vortioxetine and 

bupropion over escitalopram because their effects are estimated with greater uncertainty. The 

small disagreement between PreTA and SUCRA reflects their different interpretations: 

vortioxetine, ranked first according to SUCRA, beats on average a larger proportion of 

treatments compared to escitalopram (0.90 versus 0.83) but escitalopram has a larger 

probability to be better than the fictional average treatment compared to vortioxetine (0.93 

versus 0.87). Similarly, fluoxetine ranks last according to PreTA whereas it is followed by 

trazodone according to SUCRA. 

Figure 3 shows the PreTAs for the 18 antidepressants; treatments around 0.5 are the 

treatments closest to the average treatment. Vortioxetine has the largest point estimate against 

the average treatment but its estimation comes with great uncertainty. Escitalopram versus 

average is more precisely estimated in favor of escitalopram and it is associated with the 

greatest PreTA (97%). Duloxetine and milnacipran are the treatments closest to the average 

treatment. The point estimate of nefazodone versus the average treatment is slightly larger 

than that of duloxetine. Due to the associated uncertainty, however, there is 34% probability 

that nefazodone is superior to the fictional average treatment, compared to 52% of duloxetine. 

Fluoxetine, clomipramine, fluvoxamine, trazodone and reboxetine are among the worst 

treatments in the network, either because of their point estimates against the average treatment 

or because of the respective precision in the estimation. 

4.2 Network of interventions for heavy menstrual bleeding 

We use as a second example a network of interventions for the treatment of heavy 

menstrual bleeding. The following four interventions were compared: levenorgestel-releasing 

intrauterine system (Mirena), first generation endometrial destruction, second generation 
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endometrial destruction and hysterectomy (26). The primary outcome was patients’ 

dissatisfaction at 12 months and the network included 20 studies (Figure 1b). 

Figure 4 shows the treatment effects of the four treatments compared to a fictional 

average treatment and Appendix Figure 1 illustrates the relative position of each treatment 

according to its probability of being superior (green) or inferior (red) than the average 

treatment. There is a clear advantage of hysterectomy compared to the other three treatments 

with no treatment lying close to the ‘average treatment area’ (0.5 of PreTA). 

In this example, hysterectomy outperforms the other three treatments and ranks first 

according to all ranking metrics. Similarly, all ranking metrics agree that first generation 

endometrial destruction is the least preferable option (Figure 4). The disagreement between 

ranking metrics occurs for the second and third position between Mirena and second 

generation endometrial destruction. The two interventions are similar according to the point 

estimates but second generation is more precise. This leads to a greater certainty that second 

generation is worse than the average treatment compared to Mirena, resulting in a smaller 

PreTA. However, second generation beats on average more treatments than Mirena does since 

the relative effect of second generation is larger than that of Mirena; this results in a larger 

SUCRA for second generation than for Mirena.  

5 Results of the empirical analysis 

We ended up with 232 networks to be included in the empirical analysis. There was 

strong agreement between hierarchies obtained by PreTAs and SUCRAs, shown by a median 

Kendall’s tau (in the following called ‘correlation’) of 0.94 with interquartile range (IQR) 

0.86 to 1.00). Almost half of the networks (101, 44%) had correlation of 1 while only two 

networks (1%) had correlation less than 0.6. The network with the smallest correlation (0.4) is 

shown in Appendix Figure 2 (27); while the hierarchy itself does not change much, PreTA 

and SUCRA disagree in proximity of treatments with similar point estimates and different 

precision. The agreement between PreTAs and pBV was lower with a median correlation of 

0.74 (IQR 0.61 to 0.89) and 49 networks (21%) having correlation less than 0.6 (Appendix 

Figure 3). 

As with all ranking metrics, any disagreements between PreTAs and pBV or SUCRAs 

are attributed to the different ways they incorporate uncertainty in the estimation. pBV favors 

treatments associated with uncertainty, as the tail of the distribution of treatments with 

uncertain effects is larger compared to the tail of the distribution for treatments with similar 
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point estimate but high precision. The probability 𝑃𝑘𝑙 tends to 0.5 with increased 𝑣𝑎𝑟(�̂�𝑘𝑙
𝑁 ); 

consequently, the greater the uncertainty associated with a treatment, the more its P-score 

tends to 0.5. A research paper describing theoretically the interpretation and the role of 

uncertainty in the various ranking metrics, as well as a detailed empirical analysis are in 

preparation (19,28). 

6 Discussion 

In this paper, we developed a new ranking metric, PreTA, interpreted as the probability of 

each treatment being preferable than a fictional treatment of average performance. The notion 

of the average treatment refers to the average absolute efficacy among the treatments included 

in the systematic review. Thus, as with all ranking metrics, the interpretation of PreTAs is 

subject to the set of treatments compared. PreTAs can be produced in all NMAs as long as the 

eligibility of treatments is well justified. The usefulness of the interpretation of the �̂�𝑘 

coefficients, however, depends on whether the the notion of an ‘average’ treatment makes 

sense. 

In the presence of a reference treatment, e.g. placebo, a simple and intuitive non-

probabilistic ranking metric can be obtained by ranking all relative effects against placebo. 

Authors of NMA often present estimated treatment effects against placebo or standard care in 

a forest plot, providing implicitly or explicitly a treatment hierarchy. While such a hierarchy 

might be appropriate in many settings, they assume that treatment effects against placebo are 

of primary interest for the analysis. This might not be the case in other healthcare areas where 

one or more established therapies exists (29) or where researchers are concerned about the 

quality of the evidence from placebo-controlled studies (30–32) and choose to, exclusively or 

complementary, analyse a network without placebo. Moreover, it should be taken into 

account that the amount of data associated with the reference treatment might have an impact 

on the judgement regarding the similarity of the treatments, when such a judgement is made 

by visually inspecting a forest plot of NMA effects. Point estimates against the fictional 

average treatment provide a solution to this ambiguity. Furthermore, data from registries can 

be assumed to approximate the response of an average treatment, as participants may take any 

of the available interventions. Thus, using such external data, absolute effects can be 

approximated using the point estimates against the average.  
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Alternative methods to avoid the reference group coding have been suggested in the 

literature. The application of quasi-variances (33), independently proposed as ‘floating 

absolute risks’ in epidemiology (34), do avoid setting a reference group. However, the scope 

of their use pertains to approximating a set of variances of the model contrasts such that the 

variances between any linear combination of contrasts can be derived without the disposal of 

the covariance matrix (35). Thus, quasi-variances approaches target a different problem from 

the model described in this paper and the relevance of the estimated quantities to NMA is not 

clear. 

Producing a treatment hierarchy in NMA is popular, with 43% of published NMAs 

presenting at least one ranking metric (1), but also debatable. Recent developments tackle 

common criticisms against ranking metrics, pertaining to arguments that they are unstable 

(36,37), uncertain (38), do not differentiate between clinically important and unimportant 

differences (4,39), do not account for multiple outcomes (40) and are not accompanied by a 

measure of uncertainty (41). In particular, recent developments include extensions of P-scores 

for two or more outcomes (42), incorporation of clinically important values in their 

calculation (42), application of multiple-criteria decision analysis (43) and partial ordering of 

interventions according to multiple outcomes (44). PreTAs can be easily extended to 

incorporate clinically important values as shown in (42); such probabilities will then be 

interpreted as the probability of a treatment being better than the average by at least a certain 

value. 

PreTA is a viable alternative to existing ranking metrics, that can be interpreted as a 

probability and takes into account the entire ranking distribution. As it is also the case with 

PreTA, all existing ranking metrics use the distribution of NMA treatment effects to produce 

a hierarchy of the treatments. This hierarchy can be based either on probabilities like “which 

is the probability that each treatment produces the best outcome value” or “which is the 

probability of treatment A beating treatment B” or summaries of these probabilities. 

Rankograms visualise the entire ranking distributions for each treatment and SUCRAs, P-

scores and mean ranks summarise these probabilities in a single number for each treatment. 

The interpretation of these summaries is, however, not always straightforward. The 

development of PreTAs enriches the decision-making arsenal with a presentational and 

ranking tool, which can be interpreted in a clinically meaningful way. 
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Figure 1. Panel a: Network plot of head-to-head randomized control trials comparing 18 antidepressants. Panel b: 

Network plot of head-to-head randomized control trials comparing 4 interventions for heavy menstrual bleeding. 

First and second generation interventions refer to endometrial destruction. Nodes and edges are unweighted.  
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Figure 2. Odds ratios of each treatment versus fluoxetine, odds of each treatment versus odds of a fictional treatment 

of average response 𝒆𝒙𝒑(�̂�𝒌) and odds ratios versus vortioxetine in the network of head-to-head studies comparing 18 

antidepressants. OR: odds ratio; CI: confidence interval. 
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Figure 3. Classifier of interventions for the network of 18 antidepressants  according to the probability of being 

preferable than average (PreTA).  
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Figure 4. Odds of each treatment versus odds of a fictional treatment of average response 𝒆𝒙𝒑(�̂�𝒌), probability of 

each treatment being better than the average (PreTA), probability of producing the best value (pBV) and SUCRA in 

the network of head-to-head studies comparing 4 interventions for heavy menstrual bleeding. Numbers in parentheses 

under PreTA, pBV and SUCRA represent ranks. CI: confidence interval; PreTA: preferable than average; pBV: 

probability of producing the best value; SUCRA: surface under the cumulative ranking curve. 
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Appendix Figure 1. Classifier of interventions for the network of four interventions for heavy menstrual bleeding 

according to the probability of being preferable than average (PreTA). 
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Appendix Figure 2. Odds ratios, probability of each treatment being better than the average (PreTA) and SUCRA in 

the network with the smallest correlation between PreTA and SUCRA. Numbers in parentheses under PreTA, pBV 

and SUCRA represent ranks. OR: odds ratio; CI: confidence interval; PreTA: preferable than average; pBV: 

probability of producing the best value; SUCRA: surface under the cumulative ranking curve. 
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Appendix Figure 3. Histogram of correlation measured as Kendall’s tau between probability of being better than 

average (PreTA) and probability of producing the best value (red) and between PreTA and surface under the 

cumulative ranking curve (SUCRA) (blue). pBV: probability of producing the best value; SUCRA: surface under the 

cumulative ranking curve; PreTA: preferable than average.  

 

9 Highlights 

What is already known: A treatment hierarchy is often of interest to users of network meta-

analysis. However, interpretation of ranking metrics is often challenging.  

What is new: We present a new ranking metric (PreTA: Preferable Than Average) 

interpreted as the probability that a treatment is better than a fictional treatment of average 

performance. 

Potential impact for Review Synthesis Methods readers outside the authors’ field: The 

proposed ranking metric uses the entire ranking distribution and it is interpreted as a 
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probability. It can be used as a viable alternative to existing ranking metrics in systematic 

reviews with multiple interventions. 
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11 Tables 1 

Reference cell coding Deviation from means coding 

 Dummy variables  Dummy variables 

Covariate 𝑥1  𝑥2  𝑥3  Covariate 𝑥1
∗  𝑥2

∗  𝑥3
∗  

Group 1 0 0 0 Group 1 -1 -1 -1 

Group 2 1 0 0 Average* 0 0 0 

Group 3 0 1 0 Group 2 1 0 0 

Group 4 0 0 1 Group 3 0 1 0 

    Group 4 0 0 1 

Table 1. Illustration of construction of dummy variables for modelling a categorical variable with four groups in 2 

regression using reference cell coding and deviation from means coding.3 
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Study number, 

treatments 

compared 

Arm-based NMA Contrast-based NMA 

Reference cell coding Deviation from means coding Reference cell coding Deviation from means coding 

Study 1, AB 𝑔(𝑦1𝐴) = 𝑢1 

𝑔(𝑦1𝐵) = 𝑢1 + 𝜇𝐴𝐵 + 𝛿1,𝐴𝐵 

𝛿1,𝐴𝐵  ~ 𝑁(0, 𝜏
2) 

𝑔(𝑦1𝐴) = 𝑢1 − 𝑏𝐵 − 𝑏𝐶 

𝑔(𝑦1𝐵) = 𝑢1 + 𝑏𝐵 + 𝛿1,𝐴𝐵 

𝛿1,𝐴𝐵  ~ 𝑁(0, 𝜏
2) 

𝑦1,𝐴𝐵 = 𝜇𝐴𝐵 + 𝜀1,𝐴𝐵 + 𝛿1,𝐴𝐵 

𝜀1,𝐴𝐵 ~ 𝑁(0, 𝑠1,𝐴𝐵
2 ) 

𝛿1,𝐴𝐵  ~ 𝑁(0, 𝜏
2) 

𝑦1,𝐴𝐵 = 2𝑏𝐵 + 𝑏𝐶 + 𝜀1,𝐴𝐵 + 𝛿1,𝐴𝐵 

𝜀1,𝐴𝐵 ~ 𝑁(0, 𝑠1,𝐴𝐵
2 ) 

𝛿1,𝐴𝐵  ~ 𝑁(0, 𝜏
2) 

Study 2, AC 𝑔(𝑦2𝐴) = 𝑢2 

𝑔(𝑦2𝐶) = 𝑢2 + 𝜇𝐴𝐶 + 𝛿2,𝐴𝐶 

𝛿2,𝐴𝐶  ~ 𝑁(0, 𝜏
2) 

𝑔(𝑦2𝐴) = 𝑢2 − 𝑏𝐵 − 𝑏𝐶  

𝑔(𝑦2𝐶) = 𝑢2 + 𝑏𝐶 + 𝛿2,𝐴𝐶 

𝛿2,𝐴𝐶  ~ 𝑁(0, 𝜏
2) 

𝑦2,𝐴𝐶 = 𝜇𝐴𝐶 + 𝜀2,𝐴𝐶 + 𝛿2,𝐴𝐶 

𝜀2,𝐴𝐵  ~ 𝑁(0, 𝑠2,𝐴𝐶
2 ) 

𝛿2,𝐴𝐶  ~ 𝑁(0, 𝜏
2) 

𝑦2,𝐴𝐶 = 𝑏𝐵 + 2𝑏𝐶 + 𝜀2,𝐴𝐶 + 𝛿2,𝐴𝐶 

𝜀2,𝐴𝐵  ~ 𝑁(0, 𝑠2,𝐴𝐶
2 ) 

𝛿2,𝐴𝐶  ~ 𝑁(0, 𝜏
2) 

Study 3, BC 𝑔(𝑦3𝐵) = 𝑢3 

𝑔(𝑦3𝐶) = 𝑢3 − 𝜇𝐴𝐵 + 𝜇𝐴𝐶 + 𝛿3,𝐵𝐶 

𝛿3,𝐵𝐶  ~ 𝑁(0, 𝜏
2) 

𝑔(𝑦3𝐵) = 𝑢3 + 𝑏𝐵 

𝑔(𝑦3𝐶) = 𝑢3 + 𝑏𝐶 + 𝛿3,𝐵𝐶 

𝛿3,𝐵𝐶  ~ 𝑁(0, 𝜏
2) 

𝑦3,𝐵𝐶 = −𝜇𝐴𝐵 + 𝜇𝐴𝐶 + 𝜀3,𝐵𝐶 + 𝛿3,𝐵𝐶 

𝜀3,𝐵𝐶  ~ 𝑁(0, 𝑠3,𝐵𝐶
2 ) 

𝛿3,𝐵𝐶  ~ 𝑁(0, 𝜏
2) 

𝑦3,𝐵𝐶 = −𝑏𝐵 + 𝑏𝐶 + 𝜀3,𝐵𝐶 + 𝛿3,𝐵𝐶 

𝜀3,𝐵𝐶  ~ 𝑁(0, 𝑠3,𝐵𝐶
2 ) 

𝛿3,𝐵𝐶  ~ 𝑁(0, 𝜏
2) 

Study 4, ABC 𝑔(𝑦4𝐴) = 𝑢4 

𝑔(𝑦4𝐵) = 𝑢4 + 𝜇𝐴𝐵 + 𝛿4,𝐴𝐵 

𝑔(𝑦4𝐶) = 𝑢4 + 𝜇𝐴𝐶 + 𝛿4,𝐴𝐶 

𝛿4,𝐴𝐵  ~ 𝑁(0, 𝜏
2) 

𝛿4,𝐴𝐶  ~ 𝑁(0, 𝜏
2) 

𝑔(𝑦4𝐴) = 𝑢4 − 𝑏𝐵 − 𝑏𝐶 

𝑔(𝑦4𝐵) = 𝑢4 + 𝑏𝐵 + 𝛿4,𝐴𝐵 

𝑔(𝑦4𝐶) = 𝑢4 + 𝑏𝐶 + +𝛿4,𝐴𝐶  

𝛿4,𝐴𝐵  ~ 𝑁(0, 𝜏
2) 

𝛿4,𝐴𝐶  ~ 𝑁(0, 𝜏
2) 

𝑦4,𝐴𝐵 = 𝜇𝐴𝐵 + 𝜀4,𝐴𝐵 + 𝛿4,𝐴𝐵 

𝑦4,𝐴𝐶 = 𝜇𝐴𝐶 + 𝜀4,𝐴𝐶 + 𝛿4,𝐴𝐶  

𝜀4,𝐴𝐵 ~ 𝑁(0, 𝑠4,𝐴𝐵
2 ) 

𝛿4,𝐴𝐵  ~ 𝑁(0, 𝜏
2) 

𝜀4,𝐴𝐶  ~ 𝑁(0, 𝑠4,𝐴𝐶
2 ) 

𝛿4,𝐴𝐶  ~ 𝑁(0, 𝜏
2) 

𝑦4,𝐴𝐵 = 2𝑏𝐵 + 𝑏𝐶 + 𝜀4,𝐴𝐵 + 𝛿4,𝐴𝐵 

𝑦4,𝐴𝐶 = 𝑏𝐵 + 2𝑏𝐶 + 𝜀4,𝐴𝐶 + 𝛿4,𝐴𝐶 

𝜀4,𝐴𝐵 ~ 𝑁(0, 𝑠4,𝐴𝐵
2 ) 

𝛿4,𝐴𝐵  ~ 𝑁(0, 𝜏
2) 

𝜀4,𝐴𝐶  ~ 𝑁(0, 𝑠4,𝐴𝐶
2 ) 

𝛿4,𝐴𝐶  ~ 𝑁(0, 𝜏
2) 

Table 2. Arm-level and contrast-level NMA models using reference cell coding and deviation from means coding for a fictional network of three treatments examined in four studies. 
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  pBV SUCRA PreTA 

Agomelatine 0.01 (6) 0.64 (6) 0.74 (8) 

Amitriptyline 0.01 (7) 0.71 (5) 0.88 (4) 

Bupropion 0.20 (2) 0.80 (3) 0.87 (5) 

Citalopram 0.00 (17.5) 0.37 (13) 0.24 (13) 

Clomipramine 0.00 (15) 0.26 (14) 0.10 (14.5) 

Duloxetine 0.01 (9) 0.52 (9) 0.52 (9) 

Escitalopram 0.07 (3) 0.83 (2) 0.97 (1) 

Fluoxetine 0.00 (17.5) 0.23 (16) 0.01 (18) 

Fluvoxamine 0.00 (12.5) 0.25 (15) 0.10 (14.5) 

Milnacipran 0.01 (8) 0.48 (10) 0.46 (10) 

Mirtazapine 0.03 (4) 0.75 (4) 0.91 (3) 

Nefazodone 0.02 (5) 0.38 (12) 0.33 (12) 

Paroxetine 0.00 (10) 0.62 (7) 0.82 (6) 

Reboxetine 0.00 (15) 0.09 (18) 0.02 (16.5) 

Sertraline 0.00 (11) 0.46 (11) 0.38 (11) 

Trazodone 0.00 (15) 0.12 (17) 0.02 (16.5) 

Venlafaxine 0.00 (12.5) 0.61 (8) 0.78 (7) 

Vortioxetine 0.64 (1) 0.90 (1) 0.93 (2) 

Table 3. Ranking metrics for the network of antidepressants and ranks according to each ranking metric in parentheses. pBV: probability of producing the best value; SUCRA: surface 

under the cumulative ranking curve; PreTA: preferable than average.   
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