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Abstract  
 
Healthcare-associated infection and antimicrobial resistance are major concerns.  
However, the extent to which antibiotic exposure affects transmission and detection of 
infections such as MRSA is unclear. Additionally, temporal trends are typically reported in 
terms of changes in incidence, rather than analysing underling transmission processes. We 
present a data-augmented Markov chain Monte Carlo approach for inferring changing 
transmission parameters over time, screening test sensitivity, and the effect of antibiotics on 
detection and transmission. We expand a basic model to allow use of typing information 
when inferring sources of infections. Using simulated data, we show that the algorithms are 
accurate, well-calibrated and able to identify antibiotic effects in sufficiently large datasets. 
We apply the models to study MRSA transmission in an intensive care unit in Oxford, UK 
with 7924 admissions over 10 years. We find that falls in MRSA incidence over time were 
associated with decreases in both the number of patients admitted to the ICU colonised with 
MRSA and in transmission rates. In our inference model, the data were not informative about 
the effect of antibiotics on risk of transmission or acquisition of MRSA, a consequence of the 
limited number of possible transmission events in the data. Our approach has potential to be 
applied to a range of healthcare-associated infections and settings and could be applied to 
study the impact of other potential risk factors for transmission. Evidence generated could be 
used to direct infection control interventions. 
 
 
 
Introduction 
There is widespread concern that the rise of antimicrobial resistance (AMR) threatens the 
delivery of safe healthcare. This is particularly disconcerting as many of the causes of 
healthcare associated infection are themselves antimicrobial resistant. For example, 
methicillin-resistant Staphylococcus aureus (MRSA) can be thought of as one of the original 
“superbugs”, but despite marked falls in invasive infections in some settings, including the 
United Kingdom (UK) (Duerden et al., 2015), it remains a serious threat. 
 
Efforts to control the spread and impact of AMR depend on understanding the transmission 
of resistant pathogens and the impact antimicrobial use. The relationship between human 
antimicrobial use and population-level risk of AMR is well established, e.g. (Seppälä et al., 
1997). Similarly increased individual use of antimicrobials is associated with increased 
personal risk of AMR including, e.g., AMR in nasally carried S. aureus (van Bijnen et al., 
2015).  Time series approaches have been used to show temporal relationships between 
several antimicrobial classes and MRSA incidence (Vernaz et al., 2008, Aldeyab et al., 
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2008). However, to date the specific impact of antimicrobial exposures on individual patient 
transmission dynamics within healthcare settings has not been explored.  
 
Mathematical modelling can provide powerful tools for understanding the transmission of 
healthcare-associated infections and other drug-resistant pathogens, and in a number of cases 
has directly informed national control policies ((Robotham et al., 2011), (van Bunnik et al., 
2014), (Bootsma et al., 2011)), but wider application of models to inform AMR control 
polices requires an improved biological understanding of the key epidemiological and 
evolutionary processes (Knight et al., 2019). Amongst the most important needs is for a 
quantitative understanding for how patient antimicrobial exposure selects for resistant 
organisms. Mechanistically this involves understanding at an individual patient level the 
extent to which antimicrobials affect susceptibility to infection and whether they promote or 
inhibit onward transmission. Antimicrobials may also change detection of pathogens in 
screening or clinical testing. If this is not accounted for it can lead to erroneous conclusions, 
for example, pathogen colonisation temporarily supressed at hospital admission by 
antimicrobials may falsely be attributed to healthcare-associated transmission if it becomes 
apparent later in a hospital admission when antimicrobials are stopped (Price et al., 2017). 
 
Temporal trends in healthcare associated infections are typically reported in terms of changes 
in incidence, rather than analysing underling transmission processes. The marked fall in 
MRSA incidence in the UK followed the introduction of a bundle of intensive control 
interventions and mandatory reporting of MRSA blood stream infections, and it is plausible 
that these measures contributed to the decline of MRSA  (Duerden et al., 2015). However, it 
is also possible that at least part of the decline may have occurred in the absence of such 
interventions, perhaps driven by long-term ecological interactions between components of the 
nasopharyngeal flora (Wyllie et al., 2011). Mathematical modelling offers the opportunity to 
study how specific processes have changed over time, for example how infectious a given 
patient on a hospital ward is. Better understanding the relative contribution of decreased 
transmission in hospitals versus decreased MRSA importation from the community may yield 
insights into the relative contribution of hospital infection control or ecological changes. 
 
Here we present a statistical inference approach that allows transmission events to be 
reconstructed and the impact of antimicrobial exposures on acquisition, onward transmission 
and detection to be estimated. Our approach also accounts for changes over time in 
transmission and importation. We use a data-augmented Markov chain Monte Carlo 
(MCMC) method to allow for the fact we do not directly observe transmission, but instead a 
series of imperfectly sensitive screening results, alongside patients’ hospital admission 
records. We apply our approach to study the transmission of MRSA in an adult intensive care 
unit (ICU) in Oxford, UK, between 2008 and 2017, allowing insights to be gained into the 
mechanisms behind the successful control of MRSA in the UK during this period. We also 
extend our models to allow discrete subtypes of MRSA to be modelled and show how 
antimicrobial susceptibility data can be used to inform transmission estimates. 
 
 
Results 
We model the transmission of MRSA within a hospital intensive care unit (ICU), regarding 
patients as either colonised (with probability φ) or susceptible at the point of admission to the 
ICU. Once admitted susceptible patients can become infected at a rate proportional to the 
number of colonised patients present in the ICU (𝛽𝐶). Patients are screened for MRSA at 
admission and then at regular intervals; the screening test is assumed to be imperfectly 
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sensitive (with sensitivity 𝜌), i.e. false negative results can occur, but perfectly specific, i.e. 
there are no false positive results. The analysis is performed in discrete time using daily time 
steps reflecting the precision of some of the underlying data items. Exposure to antibiotics 
alters the rate of onward transmission from each colonised patient by a factor, τ, 
susceptibility to colonisation in susceptible patients by a factor, α, and test sensitivity by a 
factor, δ.  
 
Identifying the effect of antibiotics 
We use simulated data to show that given a large enough dataset our approach was able to 
independently and simultaneously identify all three effects of antibiotics specified above 
(Figure 1). We generated 10 datasets with 10000 admissions during 2000 days and assumed 
the true effect of antibiotics on onward transmission, acquisition and detection to be 
relatively modest, i.e. τ = 	1.2, α = 	1.3	and δ = 	1.1 respectively. The circulating MRSA 
was assumed to be from one of four types present at equal frequency, and model inferences 
were generated with and without accounting for this typing data. The models were also able 
to successfully recover the main model parameters (φ, 𝛽, 𝜌) (Supplementary Figure 1) and 
the statuses of the patients (Supplementary Figure 2). We also generated 40 datasets with 
time dependent transmission and importation and were able to recover increases as well as 
decreases in both transmission and importation (Supplementary Figure 3). Accounting for 
typing improves estimates of the importation parameter (Supplementary Figure 1), but does 
not yield more precise estimates of the antibiotic effects (Figure 1). Estimates of the effect of 
antibiotics on detection had the narrowest credibility intervals, reflecting the fact that data 
from all patients with positive swabs, who may be tested multiple times, are informative here. 
There was also less uncertainty about the impact of antibiotics on acquisition than onward 
transmission, likely reflecting the increased uncertainty introduced by the multiple possible 
sources for many acquisition events.  
 

 
 
Figure 1. Posterior estimates of the effect of antibiotics on onward transmission, acquisition and detection in 10 
simulated datasets. The true values are indicated by the solid horizontal lines. Each dataset was analysed with the model 
using positive and negative swabs only (blue circles) and using typing information (red squares, assuming 4 types were 
present at equal frequency). The dashed horizontal lines indicate 1 (i.e. no effect). HPDI, highest posterior density interval. 
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We also analysed simulations including re-admissions of a subset of the same patients to the 
ICU. In the baseline model described above these re-admissions were artificially treated as 
new patients. This simplifying assumption avoided the need to track the colonisation status of 
patients between ICU admissions. We also developed an alternative formulation that tracked 
the probability of previously admitted patients being re-admitted colonised, described in 
Supplementary File 1. Model inferences were similar for both models (Supplementary File 1, 
Figure i), and as the baseline model was computationally simpler this was used for 
subsequent analyses. The proportion of patients readmitted to the ICU in our study dataset 
was relatively low (around 10%), using this proportion in simulations produced similar 
parameter estimates using both approaches, however in settings with higher re-admission 
rates the more complex model may be required. 
 
Analysing MRSA transmission and antibiotic effects in Oxfordshire, UK 
We analysed data from the Oxford University Hospitals NHS Foundation Trust, a 1200-bed 
teaching hospital group providing secondary care to the population of Oxfordshire, UK 
(approximately 600000 people), and tertiary care services to the surrounding region. Data 
were available for all patients admitted to the combined medical and surgical adult ICU 
between June 2008 and November 2017 inclusive. Data items included ICU admission and 
discharge dates, MRSA screening swab results including antimicrobial susceptibility testing 
results for positive cultures, antimicrobial prescriptions, and patient factors including age, 
sex, Charlson comorbidity score, and admission specialty (Supplementary Table 1).  
 
There were 7924 admissions to the ICU from 7138 patients. A total of 12047 MRSA screens 
were performed in 6757 patients, 271 (2.2%) were MRSA-positive in 179 different patients. 
An overview of the antimicrobial prescription data is shown in Supplementary Figure 4, the 
most commonly prescribed antibiotics were co-amoxiclav, vancomycin, metronidazole, 
piperacillin-tazobactam and meropenem. Molecular typing or whole-genome sequencing was 
not routinely undertaken, however routine antimicrobial susceptibility testing provides a 
proxy for isolate relatedness. In addition to confirming methicillin resistance, seven 
antibiotics (gentamicin, erythromycin, tetracycline, fusidic acid, ciprofloxacin, rifampicin and 
mupirocin) were consistently tested for during the whole study period and therefore used to 
establish resistance profiles. The number of tests per resistance profile and the distance 
between profiles over time for individual patients are shown in Supplementary Figure 5. We 
found 31 different combinations of presence and absence of resistance with respect to these 
seven antibiotics. The maximum number of profiles in a single patient was 5. However, no 
patient had multiple different profiles during the same admission. Therefore, as repeat 
admissions were considered separately, when using typing data, we considered transmission 
from one patient to another to be plausible only when both patients were colonized with 
strains with identical resistance profiles. We also performed analyses without typing data, 
which provides a sensitivity analysis if the assumption requiring matching antibiograms is 
overly restrictive. For 50 admissions with a positive test there was no profile as recorded 
susceptibly data was not present for all seven antibiotics. These profiles were augmented in 
the same way that profiles for patients with no positive test were augmented, which is 
described in more detail in the Methods section.  
 
Time dependent transmission and importation 
The number of positive tests per year decreased over time from 48 in 2009 to 9 in 2016, 
while the diversity of the resistance profiles observed increased with time (Supplementary 
Figure 6). While in the earlier years of the study, a majority of colonized patients had one of 
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two resistance profiles (ciprofloxacin resistance only or ciprofloxacin and erythromycin 
resistance) all 8 colonized patients in 2017 had a different resistance profile. Provided 
transmission events associated with changes in antibiograms are uncommon, as suggested by 
the stability of antibiograms over time in individual patients (Supplementary Figure 5), the 
diversity of resistance profiles seen at the end of the study suggests that towards the end of 
the study transmission was uncommon and importation was most importation driver of 
positive tests. We formally model this by allowing the transmission and importation 
parameters to vary with time. We find a strong decrease in both the transmission parameter 
and the importation probability over time (Figure 2). In the model using typing data, the 
estimate of 𝛽 falls from 0.0074 (95% highest posterior density interval, HPDI 0.0035, 
0.0113) in 2008 to 0.0004 (1.9e-7, 0.0023) by 2017 (Figure 2A). This is reflected in the 
number of acquisitions from early 2013 onwards being estimated as zero (Figure 2C). The 
importation probability falls from 0.044 (0.034, 0.060) in 2008 to 0.012 (0.007, 0.018) in 
2017 (Figure 2B and 2D). The signal for these declines is captured by the slope of the 
function we use to model time, which is -0.0014 (-0.0032, -0.0002) and -0.0007 (-0.0009, -
0.0005) for transmission and importation respectively (Supplementary Figure 7). Temporal 
trends in transmission and importation from the model without typing data were similar 
(Figure 2, which also shows estimates from models without time-dependent transmission and 
importation).  
 

 
Figure 2. Change in transmission and importation of MRSA in an Oxford ICU, 2008-2017: posterior estimates from four 
different models. The top panels show point estimates (solid lines) and highest posterior density intervals (ribbons) of the 
transmission (A) and importation (B) parameters from the models with constant transmission and importation without 
(grey) and with (orange) considering antibiograms as typing data, and the models with time dependent transmission and 
importation without (blue) and with (red) antibiograms. The bottom panels show the posterior mean estimates of the 
number of patients estimated to have been colonised due to acquisition (C) and importation (D). The models without typing 
data (grey and blue) estimated very similar numbers of acquisitions and importations. 

 
Inferring effects of antibiotics 
We analysed the effects of antibiotics for 3 antibiotics/antibiotic groups: co-amoxiclav (the 
most commonly used), ciprofloxacin, and broad-spectrum beta-lactams without activity 
against MRSA (including co-amoxiclav, piperacillin/tazobactam, cefuroxime, ceftriaxone, 
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ceftazidime, ceftolozane and meropenem). As a simplifying assumption, the effects were 
considered to last only while the patient was taking the antibiotics. The posterior estimates 
for the effect of antibiotics on transmission, acquisition and detection are shown in Figure 3, 
using the basic model without time-dependent transmission or typing data. (The very similar 
posterior estimates from the model with typing data and the model with time dependent 
transmission and importation are shown in Supplementary Figures 8-10.) 
 
There was a moderate effect of antibiotics on detection. Co-amoxiclav was associated with a 
1.3-fold (95% HPDI 1.01, 1.57) increase in the relative probability of detection, however 
there was no strong evidence that this was also the case for broad-spectrum beta-lactams as a 
group,1.03-fold (95% HPDI 0.87, 1.26). The proportion of patients who were given an 
MRSA active drug simultaneously with any broad-spectrum beta-lactam antibiotic or co-
amoxiclav on the day of the test was 0.25 and 0.25 respectively. Conversely, ciprofloxacin 
was estimated to be associated with a 0.29-fold (95% HPDI 0.03, 1.04) reduction in test 
sensitivity. However only a handful of tests were conducted while patients were exposed to 
ciprofloxacin, one positive test and an estimated four false negative tests, and the uncertainty 
was large. The true positive test was a result of colonisation with ciprofloxacin-resistant 
MRSA, and the inferred resistance profiles of the four false negative results also included 
ciprofloxacin resistance, so a reduction in sensitivity due to ciprofloxacin being active against 
MRSA is unlikely.  
 
Posterior distributions of the effects of antibiotics on acquisition or onward transmission of 
MRSA were very similar to the priors, and for all three groups of antibiotics considered we 
are unable to rule out substantial effects in both directions (Figure 3). For example, co-
amoxiclav was estimated to be associated with a 0.88-fold reduction in acquisition (95% 
HPDI 0.22, 1.66) and a 1.20-fold increase in onward transmission (95% HPDI 0.22, 1.87) 
respectively. This lack of information about the effects of antibiotics on acquisition and 
transmission rates reflects the low number of possible transmission events in the data. Of the 
179 patients who were tested positive, only 50 were not tested positive on admission, which 
is many fewer than the transmission events used to identify the antibiotic effects in simulated 
data.  
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Figure 3. Effects of antibiotics on acquisition, onward transmission and MRSA detection in an Oxford ICU, 2008-2017. 
Posterior estimates are shown in black and prior distributions in grey. The plot is based on a model without time-dependent 
transmission or importation parameters or typing data. Alternative plots for these models are very similar and shown in 
Supplementary Figures 6-8. 

Patient factors associated with acquisition and onward transmission 
We used the status (susceptible, imported, acquired) with the highest posterior density of 
each patient and performed logistic regression to investigate for any relationship between 
importation, acquisition or onward transmission and patient age, sex, Charlson comorbidity 
score, admission speciality group (acute medicine, specialist medicine, general surgery, 
trauma and orthopaedics [T&O], other). Controlling for all other factors, patients admitted 
under T&O were less likely to be admitted colonised than the acute medicine reference group 
(OR 0.52 [95%CI 0.28, 0.97]) and importation was associated with increased age (OR per 10 
year increase 1.11 [1.01, 1.22]). There was no strong statistical evidence that any of the other 
variables studied were associated with a change in importation, acquisition and onward 
transmission. The results for all variables studied are reported in Supplementary Table 2. 
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Discussion 
We describe an individual-patient probabilistic method for simultaneously reconstructing 
transmission events, estimating parameters and quantifying important co-variates. We apply 
this to study healthcare-associated MRSA transmission, the impact of antibiotics and changes 
over time.  
 
We make several key observations. Firstly, it is possible to independently recover the effects 
of antibiotics on acquisition, onward transmission and detection, even if these changes are 
relatively modest. However, this requires large datasets e.g. in our simulations several 
thousand MRSA cases were needed, of which up to 80% were acquisitions which facilitated 
estimation of acquisition/onward transmission effects. In many settings this is likely to 
exceed the number of cases present within a dataset, unless potential heterogeneity is 
introduced by pooling data across multiple institutions or over prolonged periods of time 
(which would need to be accounted for). In the dataset we study, there are an order of 
magnitude fewer cases. This suggests that to make reliable estimates of the effect of 
antibiotics on transmission we are likely to need to pool data from multiple wards or 
hospitals, taking care to appropriately to account for heterogeneity. Here, we can only rule 
out very large effects, e.g. increases in acquisition or onward transmission of >1.9-fold and 
>1.7-fold respectively.  
 
We find evidence that antibiotics can have contrasting associations on MRSA detection, with 
co-amoxiclav associated with enhanced detection and ciprofloxacin associated with reducing 
detection. These findings may reflect co-amoxiclav, without activity against MRSA, clearing 
other organisms present in the nose and allowing MRSA to proliferate. However, why the 
same effect was not seen with all broad-spectrum beta-lactams is unclear. Additionally, with 
much of the MRSA isolated resistant to ciprofloxacin it seems unlikely that the ciprofloxacin 
effect is causal unless in vitro test results are not reflecting in vivo activity. Antibiotic 
exposure transiently masking pre-existing carriage has been hypothesized to account for 
some apparent hospital acquisition on the basis of whole genome sequencing (Price et al., 
2017), and these findings underscore the need to better understand the role of antibiotics on 
detection in transmission studies. 
 
We find that importation of MRSA decreased from around 5% in 2008 to below 2% in 2018. 
This is consistent with estimates of importation found in other studies. Forrester et al., 2007 
found an importation probability of 4.6% in an ICU in London between 1995 and 1997 and 
Worby et al., 2016 estimated the importation probability in a neonatal ward in Cambridge at 
around 1.2% in 2011. 
 
We explore the relative contribution of falls in transmission and importation to the decline of 
MRSA seen on our ICU, mirroring the decline in MRSA in the UK nationally. We find 
evidence of transmission rates falling from 2009 onwards. In fact, it is likely that 
transmission rates had been falling prior to our study, given the timing of key interventions 
locally and nationally earlier in the decade (Duerden et al., 2015). In the ICU studied, most 
infection control enhancements made in response to MRSA were already in place at the start 
of the study, including isolation and contact precautions for colonised patients, screening of 
all patients at ICU admission and at regular intervals, universal skin decolonisation with 2% 
chlorhexidine, antimicrobial impregnated central lines, with dedication insertion packs and 
care standards and root-cause analyses of all blood stream infections. Further details of these 
interventions can be found in (Wyllie et al., 2011). 
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Our study has several limitations in addition to the limited power to detect antibiotic effects. 
Rather than model re-admissions, as in our setting these are uncommon to the ICU, we treat 
re-admissions as new patients. However, we have detailed an alternative approach to account 
for these, but it is more computationally intensive. Our model also treats the ICU in isolation 
to the rest of the hospital, as antimicrobial prescribing data were only available for the ICU. 
However, MRSA transmission dynamics within the hospital as a whole likely contributed to 
MRSA observed on the ICU. We use antibiograms as an example of a discrete typing 
scheme, however this is a relatively crude typing scheme, that may vary within a single 
infection (Eyre et al., 2012), although we did not see this in the current study. However, our 
approach could be extended to other typing schemes, such as spa-typing or multilocus 
sequence typing. We also did not study the effect of glycopeptides including vancomycin and 
teicoplanin directly. This was a prospectively made decision given concern about reverse 
causation whereby patients suspected (or known, from another hospital’s data) to have 
MRSA colonisation may be given these antibiotics prior to a positive test, which would 
complicate the interpretation of the observed increase in test sensitivity associated with 
vancomycin administration (Supplementary Figure 12).  
 
We use data which is routinely collected in an ICU. This has the advantage that our model 
could potentially be applied to other, similar datasets. But as with all such observational 
studies we cannot make strong causal statements about antibiotics effects as they were not 
randomly assigned to patients. Our modelling approach expands existing methods by 
allowing to estimate the effect of covariates. This could be further developed by capturing 
effects other than multiplicative and by extending the timespan of effects beyond the day of 
antibiotic exposure. 
 
In conclusion, we present a method that can allow important risk factors for transmission and 
infection detection to be estimated. This provides a mechanism for undertaking data-driven 
infection control whereby not just who-infected-whom can be estimated, but also the 
conditions leading to transmission understood and combatted. This is likely to lead to better 
infection control in future and in turn better outcomes for patients. 
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Methods 
 
Transmission models and likelihood functions 
We implement a stochastic mechanistic transmission model, that builds on previous 
approaches, e.g. (Forrester et al., 2007, Worby et al., 2016). The data augmentation approach 
used in these publications introduces additional parameters for the unknown status of for each 
patient, which makes it possible to split the overall likelihood into the following product: 
 

Π(Ω,W|ρ, φ, β) = Π(Ω|W, ρ) ⋅ Π(W|φ, β) 
	 

where Ω denotes the test results, W is the colonisation status of the patients and colonisation 
times, 𝜌 is the test sensitivity, 𝜑 is the probability of a patient being positive on admission 
and 𝛽 is a transmission parameter. The first factor of the product describes the observation 
process, which can be modelled as a binomial distribution. Assuming perfect specificity, the 
likelihood of the test results given the test sensitivity and the true statuses is therefore given 
by   
 

Π(Ω|W, ρ) = ρ9: ⋅ (1 − ρ)<= 
 
where TP and FN denote the number of true positive and false negative tests. The second 
factor of the overall likelihood captures the transmission process. Following (Worby et al., 
2016) we assume that patients who acquire a colonisation stay colonised until discharge. The 
patient statuses, W, are therefore fully described by the colonisation times, t?, which are set 
to infinity for patients who do not get colonised during their ward stay. By discretising time 
into days, the likelihood of the colonisation times given the transmission parameters can be 
modelled as 
 

Π(t?|φ, β) = φ=@(1 − φ)=A=@ B CBD1 − 𝑝FGH

IJ
K

GLIJ
M

N
F:IJ

PLQ

B R𝑝FIJP BD1 − 𝑝FGH

IJ
PAS

GLIJ
M

T
F:IJ

PUQ

 

 
where N is the total number of patients, NW is the number of patients who are admitted 
already colonised and 𝑡FY, 𝑡FZ and 𝑡F[ denote the day of admission to the ICU, colonisation and 
discharge from the ICU of patient k. 𝑝FG is the probability of patient k becoming colonised on 
day j which is given by 
 

p]^ = 	1	 − 	exp(−	βC(j))	 
 
where C(j) is the number of colonised patients present on the ICU on day j. 
 
Accounting for the effect of antibiotics 
We expand this model to account for the effect of antibiotics on detection and transmission.  
We assume that antibiotics can affect the test sensitivity, the probability of acquisition and 
the probability of onward transmission. To capture the effect of antibiotics on test sensitivity 
we assume that in the presence of antibiotics the baseline test sensitivity changes by a factor 
δ and therefore model the likelihood of the test results as 
 

Π(Ω|W, ρ, δ, Σ) = ρ9:defg ⋅ (1 − ρ)<=defg ⋅ (δρ)9:efg ⋅ (1 − δρ)<=efg		 
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where 𝑇𝑃jYkl, 𝐹𝑁jYkl, 𝑇𝑃Ykl and 𝐹𝑁Ykl denote the total number of true positive and false 
negative tests conducted while a patient was off or on antibiotics and Σ is a matrix with 
entries σpG equal to one if patient i is on antibiotics on day j and zero otherwise. We model 
the effect of antibiotics on the transmission dynamics by introducing a parameter α for the 
effect on acquisition and a parameter τ for the effect on onward transmission and modify the 
daily probability of acquisition as follows 
 

p]^ = 1 − 	exp(	−	αSqrstu(βCvwxy(j) + τβCwxy(j))) 
 
where 𝐶jYkl(j) and 𝐶Ykl(j) denote the number of colonised patients on day j who are off or 
on antibiotics and 1{rsLS is an indicator function which equals to 1 if patient k is on 
antibiotics on day j and zero otherwise.  
 
 
Modifications to the likelihood and data augmentation with typing data 
To extend our model to account for discrete typing data we use a simplified version of the 
model by (Worby et al., 2016)). If the testing contains some additional information on the 
type of infection this information can be used to determine likely sources of infection and 
therefore potentially increase the overall precision of the estimates. The dataset we are using 
does not contain typing or sequencing data, however, resistance profiles can be used as a 
proxy for the type of strain. We denote by Z the augmented source patients for all 
transmission events and factorise the overall likelihood as follows 
 

Π(Ω, Σ, T, D,W, Z|θ) = Π(Ω, Σ, T, D|W, Z, θ	) ⋅ Π(Z|W, θ) ⋅ Π(W|θ) 
 
with T denoting the MRSA type causing colonisation and θ a vector whose elements are the 
model parameters β, ρ, φ, α, δ	and	τ described in Table 1. D is a matrix of distances between 
the different types. In the simplest case we can assume that patients colonised with different 
MRSA types cannot be linked by transmission and set the likelihood contribution of all 
patients who acquire to 1 if the augmented type of the patient is the same as the type as the 
source and to 0 otherwise. For patients who are imported and do not have a positive test, a 
type has to be augmented. We assume that for the imported patients the probability of being 
colonised with any given type is equal to the proportion of patients who were tested positive 
and found to have that type. We therefore model the likelihood of the observed types given 
the augmented sources and colonisation times as 
 

Π(Ω, Σ, T, D|W, Z, θ	) = 	 B �1�JL��J�
F:IJ

PUQ,	IJ
P	�	IJ

M

	 B
𝑁�J
𝑁�F:		IJ

P	�	IJ
M

 

 
where 𝑁�J is the number of patients who were tested positive with type 𝑇F	and 𝑁�is the total 
number of patients tested positive with any type. The first term applies to patients who 
acquire the pathogen in the ward. Since we assume that transmission can only take place 
between patients with the same type, this term, denoted by the indicator function 1�JL��J , is 
zero if the type of any patient, 𝑇F, is not equal to the type of the source of infection for that 
patient, 𝑇�J.	The second term is the importation model. Since our model allows for an effect 
of antibiotics on onward transmission, patients who are on antibiotics on a given day are not 
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equally likely to act as sources of infection as patients who are not on antibiotics. In the 
absence of effects of antibiotics, the likelihood of any given patient being the source of 
infection to a patient who acquires infection on a given day is equal to one over the number 
of colonised patients on that day. In that case the likelihood of the sources given the 
colonisation times would be given by 
  

Π(Z|W	𝜃	) = B
1

𝐶(𝑡pZ)
					

p	∶I�
PUQ,	I�

P	�	I�
M

 

 
where 𝐶(𝑡pZ) is the number of colonised patients on the day when patient i becomes 
colonised. To account for the effect of antibiotics on transmission we modify this as follows  
 

Π(Z|W, 𝜃	) = B
𝑏��J

𝐶jYkl(𝑡pZ) + 𝑏𝐶Ykl(𝑡pZ)
				

p:	I�
PUQ,	I�

P	�	I�
M

 

with  

v�] = �
1, if	σI�P,�� = 1
0, else

 

 
The approach we present here can also be used for discrete typing schemes such as multi-
locus sequence typing (MLST). It can also be easily adapted to more continuous measures of 
distance, such as spa typing, by deriving a likelihood function which is based on the distance 
between the type of the offspring and the type of the proposed source. 
 
Time dependent acquisition and importation 
We are analysing a dataset that was collected during 10 years, a timespan during which 
changes in importation and transmission probability are likely to occur. We can account for 
this by allowing the importation probability, φ, and the transmission parameter, β, to vary 
with time and set 
 

φ(t) =
𝑎�

1 + 𝑒𝑥𝑝 �−𝑏�D𝑡 + 𝑐�H�
 

 
and 

β(t) =
𝑎�

1 + 𝑒𝑥𝑝 �−𝑏�D𝑡 + 𝑐�H�
 

 
with parameters 𝑎�, 𝑏�, 𝑐�, 𝑎�, 𝑏� and 𝑐� being estimated. An example of curves resulting 
from different combinations of the shape parameters a, b and c is shown in Supplementary 
Figure 11. 
 
 
MCMC algorithm and implementation 
 
We use a Markov chain Monte Carlo (MCMC) algorithm to generate posterior estimates of 
the model parameters and the augmented patient statuses. In each iteration of the MCMC we 
first update the parameters of the transmission model one at a time using a Metropolis step 
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and the importation probability via a Gibbs update. We then update the statuses and sources 
of infection of a subset of patients. The moves and Hastings ratios involved in the status 
updates are described in detail in Worby et al., 2016. The width of the proposal distributions 
are adapted during the first 30% of the iterations in order to achieve an acceptance ratio 
between 0.1 and 0.3 for each parameter. These iterations are discarded as part of the burn-in. 
Convergence is assessed using the Gelman-Rubin convergence diagnostic as implemented in 
the Rpackage coda using 1.1 as a cut-off indicating convergence. We combine chains from 
different starting values and use a minimum effective sample size of above 200 for all 
parameters. We use weakly informative priors for all parameters. Parameters and priors are 
shown in Table 1.  
 

parameter interpretation value in simulations prior 
𝜷 transmission parameter 0.02 Half-Chauchy (0, 4) 
𝝆 test sensitivity 0.8 Uniform (0, 1) 
𝝋 proportion of patients admitted already colonised (community 

prevalence) 
0.1 Beta (Gibbs 

sampling) 
𝜶 effect of antibiotics on acquisition 1.3 Normal (1, 0.5) 
𝝉 effect of antibiotics onward transmission 1.2 Normal (1, 0.5) 
𝜹 effect of antibiotics on detection 1.1 Normal (1, 0.5) 
𝒂𝝋 upper asymptote of importation in time dependent model 0.2 Half-Normal (0, 0.1) 
𝒃𝝋 slope of importation in time dependent model -0.05 Normal (0, 0.001) 
𝒄𝝋 horizontal shift of importation in time dependent model 1 Normal (0, 100) 
𝒂𝜷 upper asymptote of transmission parameter in time dependent model 0.1 Half-Normal (0, 0.1) 
𝒃𝜷 slope of transmission parameter in time dependent model -0.02 Normal (0, 0.001) 
𝒄𝜷 horizontal shift of transmission parameter in time dependent model 1 Normal (0, 100) 

Table 1. Model parameters and priors. 

The models are implemented in R and C++, making use of Rcpp (Eddelbuettel and François, 
2011). All four models are available as a package 
(https://github.com/mirjamlaager/mrsamcmc). The package also includes functions for 
forward simulations which can be used to create simulated data, conduct posterior predictive 
checks and simulate the effect of interventions. 
 
Simulations 
We use simulated data to show that our models are accurate and well calibrated. For each 
model we generate 10 datasets, simulating under the same assumptions as in the inference 
model. For each dataset we compute the absolute difference between the point estimate and 
the true value of the parameter (precision) and check whether the true value lies within the 
90% highest posterior density interval (calibration). The average precision and calibration are 
shown in Table 2. 
 

 transmission 
parameter (𝜷) 

importation 
probability 

(𝝋) 

effect on 
acquisition 

(𝜶) 

effect on 
transmission 

(𝝉) 

test 
sensitivity (𝝆)	

effect on 
detection (𝜹) 

basic model 0.0034 [0.0009, 
0.0042] 

1 

0.0147 [0.0093, 
0.0209] 

1 

0.1405 [0.0940, 
0.3120] 

0.9 

0.1317 [0.0554, 
0.2441] 

1 

0.0700 [0.0137, 
0.0872] 

0.9 

0.0851 [0.0460, 
0.0942] 

1 

model with 
sources 

0.0017 [0.0006, 
0.0032] 

1 

0.0117 [0.0109, 
0.0156] 

1 

0.1729 [0.0595, 
0.3858] 

1 

0.2027 [0.1204, 
0.2532] 

1 

0.0566 [0.0344, 
0.0806] 

0.9 

0.0841 [0.0445, 
0.0902] 

1 

model with 
time 

𝒂𝜷 
0.0115 [0.0049, 

0.0132] 
0.9 
𝒃𝜷 

0.0009 [0.0007, 
0.0011] 

𝒂𝝋 
0.0357 [0.0152, 

0.0535] 
0.9 
𝒃𝝋 

0.0010 [0.0009, 
0.0011] 

1 

0.1482 [0.0500, 
0.2238] 

1 

0.2540 [0.0913, 
0.4509] 

1 

0.0597 [0.0196, 
0.0895] 

0.9 

0.0581 [0.0272, 
0.0827] 

1 
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1 
𝒄𝜷 

12.2 [5.9, 20.2] 
1 

𝒄𝝋 
11.1 [4.1, 

17.9] 
1 

model with 
time and 
sources 

𝒂𝜷 
0.0100 [0.0058, 

0.0147] 
0.9 
𝒃𝜷 

0.0009 [0.0007, 
0.0011] 

1 
𝒄𝜷 

9.2 [3.0, 12.2] 
1 
 

𝒂𝝋 
0.0178 [0.0029, 

0.0297] 
1 
𝒃𝝋 

0.0009 [0.0007, 
0.0011] 

1 
𝒄𝝋 

13.7 [5.9, 18.1] 
1 

0.1483 [0.0909, 
0.2203] 

1 

0.2778 [0.1342, 
0.5164] 

1 

0.0545 [0.0268, 
0.0702] 

0.9 

0.0600 [0.0301, 
0.0845] 

1 

Table 2.  Absolute difference between the maximum posterior density point estimate and the true value (top row, 
median and interquartile range) from ten simulated datasets and proportion of simulations where the true value lies 
within the 0.90 highest posterior density interval (bottom row). The parameters a,b and c in for the time dependent 
models refer to the scaling parameters of the time dependent transmission and importation function, as described in the 
methods section. 

 
Oxford ICU dataset 
Data were extracted from an anonymised extract of linked admissions to and microbiology 
data from the Oxford University Hospitals NHS Foundation Trust from the Infections in 
Oxfordshire Research Database (IORD) which has generic Research Ethics Committee, 
Health Research Authority and Confidentiality Advisory Group approvals (14/SC/1069, 
ECC5-017(A)/2009).  
 
Model Assessment 
We assessed the model fit in our Oxford ICU analysis by sampling 1000 parameters from the 
posterior distributions and running forward simulations with the simulated values. These 
posterior predictive checks have been advocated for as a useful tool to assess whether a 
model is able to reproduce key aspects of the transmission process (Gibson et al., 2018). The 
results are shown in Figure 4. The total number of positive tests in the dataset lies within the 
interquartile range of the simulated data for all four models. To check whether the models 
appropriately differentiate between acquisition and importation we used the number of 
patients with a negative test followed by a positive test as an approximation of acquisitions 
and the number of patients whose first test was positive as an approximation of importations. 
All four models performed well in this comparison. The decrease of positive tests over time 
is better captured by the models that include time.  
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Figure 4 Posterior predictive checks. The number of positive tests in the true patient data (black lines) is compared to the 
positive tests in 1000 simulated datasets (boxplots, mean and interquartile range). D shows the number of positive tests for 
each year in the true patient data (black lines) and in 1000 simulated datasets (median and 0.9 credible interval). 
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