1

1 <u>Title</u>

2 Case fatality rate in COVID-19: a systematic review and meta-analysis

3

4 <u>Authors</u>

- 5 Chanaka Kahathuduwa (MBBS, PhD)^{1, 2, 3}, Chathurika Dhanasekara (MBBS, PhD)⁴, Shao-Hua
- 6 Chin (PhD) 5

7

8 Affiliations

- ⁹ ¹ Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences
- 10 Center, Lubbock, Texas, USA.
- ² Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, Texas,
- 12 USA.
- ³ Department of Physiology, University of Peradeniya, Peradeniya, Sri Lanka.
- ⁴ Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
- ⁵ Department of Medical Science, Protech Pharmaservices Corporation, Taipei City, Taiwan.

16

17 <u>Correspondence to:</u>

- 18 Dr. Chanaka N. Kahathuduwa, Department of Laboratory Science and Primary Care, Texas Tech
- 19 University Health Sciences Center, 3601 4th Street, Lubbock TX 79430
- 20 Email: <u>chanaka.kahathuduwa@ttuhsc.edu;</u> Phone: +1- 806-743-2800; Fax: +1-806-743-2784

21

2

23 Abstract

Background: Estimating the prevalence of severe or critical illness and case fatality of COVID19 outbreak in December, 2019 remains a challenge due to biases associated with surveillance,
data synthesis and reporting. We aimed to address this limitation in a systematic review and
meta-analysis and to examine the clinical, biochemical and radiological risk factors in a metaregression.

Methods: PRISMA guidelines were followed. PubMed, Scopus and Web of Science were searched using pre-specified keywords on March 07, 2020. Peer-reviewed empirical studies examining rates of severe illness, critical illness and case fatality among COVID-19 patients were examined. Numerators and denominators to compute the prevalence rates and risk factors were extracted. Random-effects meta-analyses were performed. Results were corrected for publication bias. Meta-regression analyses examined the moderator effects of potential risk factors.

Results: The meta-analysis included 29 studies representing 2,090 individuals. Pooled rates of
severe illness, critical illness and case fatality among COVID-19 patients were 15%, 5% and
0.8% respectively. Adjusting for potential underreporting and publication bias, increased these
estimates to 26%, 16% and 7.4% respectively. Increasing age and elevated LDH consistently
predicted severe / critical disease and case fatality. Hypertension; fever and dyspnea at
presentation; and elevated CRP predicted increased severity.

42 Conclusions: Risk factors that emerged in our analyses predicting severity and case fatality
43 should inform clinicians to define endophenotypes possessing a greater risk. Estimated case

3

44	fatality rate of 7.4% after correcting for publication bias underscores the importance of strict
45	adherence to preventive measures, case detection, surveillance and reporting.
46	
47	Key Words
48	COVID-19; Mortality; Case fatality; Systematic review; Meta-analysis; Meta-regression
49	
50	Word Count of Main Text
51	2,696
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	

4

63 Introduction

64	A novel corona virus, first identified in Wuhan, China in late 2019, resulted in a
65	pandemic by the first quarter of 2020, contributed by the prolonged survival of the virus in the
66	environment and extended length of pre- or post-symptomatic and potential asymptomatic
67	shedding. ¹⁻⁴ While the virus is known to cause only a mild illness in a majority, severe illness
68	characterized by respiratory distress requiring hospital admission is not uncommon. ⁵
69	Furthermore, the virus has the potential to precipitate a life-threatening critical illness,
70	characterized by respiratory failure, circulatory shock, sepsis or other organ failure, requiring
71	intensive care. ^{6, 7}

An extensive body of literature that emerged since the outset of the epidemic in China, 72 73 have examined the rates of severe and critically severe illness as well as case fatality associated with COVID-19. However, the literature on COVID-19 has several limitations. First, due to lack 74 of awareness and limited availability of training and resources to confirm the diagnosis, failure to 75 76 recognize and code COVID-19 as the potential cause of morbidity and mortality may have contribute to under estimation of the effects of COVID-19.⁸ In fact, a recent estimate suggested 77 that approximately 86% cases of COVID-19 were not documented prior to January 23, 2020.⁴ 78 On the contrary, screening of only those who are at high risk may lead to over-reporting of 79 morbidity and mortality. Second, given that most datasets and publications are derived from 80 81 retrospective chart review, as opposed to prospective methods, high measurement error is inevitable.⁹ Third, the literature on the outcomes are originating mainly from tertiary care 82 settings, distorting the overall clinical picture. ¹⁰ Finally, including the same patients in multiple 83 84 reports examining the same research question without clearly indicating is a major lapse in methodological and ethical standards.¹¹ 85

5

86	As such, we aimed to conduct a systematic review of the available literature to identify
87	publications with minimal potential overlap, in order to estimate the prevalence of severe illness,
88	critical illness and case fatality among individuals with COVID-19 in random-effects meta-
89	analyses to enhance generalizability. More importantly, we aimed to adjust our prevalence
90	estimates by correcting for publication bias and underreporting. We further aimed to examine the
91	effects of clinical, biochemical and radiological risk factors moderating the between-study
92	heterogeneity of the severity and case fatality rates.
93	<u>Methods</u>

94 <u>Search strategy and selection criteria</u>

95 All procedures were conducted in accord with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. PubMed, Scopus and Web of 96 Science databases were searched on March 7, 2020 with the aim of identifying studies that have 97 been published in year 2020 examining the prevalence of severe illness, critically severe illness 98 and mortality associated with COVID-19 infection using pre-determined keyword combinations 99 (Table S1 in Appendix). No language restrictions were applied. Duplicate records were removed 100 101 and titles and abstracts were screened for pre-defined eligibility criteria (Figure 1) by two independent raters (CD and CK or SC). Records published in Chinese were translated to 102 American English using Google translator and a native Chinese speaker (SC) examined the 103 104 original records in Chinese. Full-text manuscripts of records that were deemed eligible in the initial screening were re-examined. All eligible full-text manuscripts were examined using the 9-105 106 item Quality Assessment Tool for Case Series Studies of the National Heart, Lung and Blood Institute by two study personnel. 107

7

114	pressure of oxygen \leq 300 mmHg, requiring hospitalization. Critical illness was defined as having
115	respiratory failure, circulatory shock, end-organ failure or any combination of the above
116	requiring intensive care. In addition, the following variables were extracted as potential
117	covariates of the above outcomes. Central tendency (i.e. mean or median) and dispersion (i.e.
118	SD, SE, 95%CI, IQR or range) of age were extracted. When not reported, study level means and
119	standard deviations for age were imputed from the available statistics (i.e. median, IQR or
120	range). ¹² Proportions of the following variables within a study sample were extracted: age ≤ 18
121	years, age \geq 60 years, female sex, diabetes mellitus, hypertension, heart disease, chronic liver
122	disease, chronic kidney disease, chronic obstructive pulmonary disease, malignancy,
123	immunosuppression (e.g. HIV), smoking and pregnancy. Proportions of patients with specific
124	presenting symptoms (i.e. fever, cough, sore throat, shortness of breath, headache, diarrhea),
125	asymptomatic cases, specific laboratory parameters (i.e. positive nucleic acid test for COVID-19,
126	leukopenia, leukocytosis, thrombocytopenia, lymphopenia, elevated lactate dehydrogenase
127	(LDH), elevated C-reactive protein (CRP), elevated erythrocyte sedimentation rate (ESR), high
128	procalcitonin and high D-dimer based on reference ranges considered in each study) and
129	radiographic features (i.e. no lesions on CT, patchy consolidation, ground glass opacities,
130	peripheral distribution, and bilateral lung involvement or involvement of ≥ 3 lobes).
131	Data analysis

Three separate DerSimonian-Laird random-effects meta-analyses were performed using the 'meta' package (version 4.11-0) in R statistical software (version 3.6.2) to examine three primary outcomes: the prevalence of a) combined severe or critical COVID-19 infection, b) critically severe COVID-19 infection, and c) COID-19-associated mortality. ¹³ Studies with both zero or 100% proportions were not excluded to ensure incorporation of all available data, which

8

137	is also known to ensure analytic consistency and minimize bias. ¹⁴ Consistency of the findings of
138	the meta-analyses were confirmed by leave-one-out sensitivity analyses. ¹⁵ Given that under-
139	reporting and publication bias could result in biased (i.e. smaller) prevalence estimates,
140	publication bias was examined using funnel plots and the effect-sizes were imputed for estimated
141	missing (i.e. unpublished / unreported) studies via the trim-and-fill method. ^{16, 17} The meta-
142	analyses were repeated including the effect-size estimates of these potentially missing studies in
143	order to obtain unbiased estimates of the three primary outcomes. Heterogeneity of effect-sizes
144	was quantified by calculating the Higgins' I ² statistic for each meta-analysis. ^{18, 19} To explain the
145	heterogeneity of the studies ²⁰ , exploratory univariate random-effects meta-regression analyses
146	were performed to examine the moderator effects of each of the covariates described above.
147	Results
148	Results of database search, subsequent screening and eligibility assessment are
149	summarized in a PRISMA flow diagram (Figure 1). Out of 1,470 records identified in the initial
150	database search, 29 studies including data of 2,090 patients with COVID-19 were deemed
151	eligible. The proportions of females in the study samples ranged from 27.59-100.00%. The mean
152	age of the participants included in the studies ranged from 2-66 years. Four studies recruited

153 entirely on children and one study exclusively recruited pregnant women. The included studies

and their quality ratings are summarized in Table S2 with their references. The summary

statistics of all covariates are summarized in Table S3 in Appendix.

Pooled prevalence of severe or critically severe illness among individuals with COVID19 infection was estimated to be 14.6% (95%CI, 8.9%-23.1%) in the random-effects metaanalysis (Figure 2a). Excluding any single study from the meta-analysis (i.e. leave-one-out
sensitivity analyses) did not significantly change the pooled prevalence estimate. However,

160	funnel plot of the effect-sizes was severely asymmetric, suggesting substantial underreporting or
161	publication bias (Figure 2b). Seven effect-sizes were imputed to correct for the publication bias.
162	When the random-effects meta-analysis was performed including these imputed effect-sizes (i.e.
163	after correcting for publication bias), the prevalence of severe or critical illness increased to
164	25.8% (95%CI, 17.2%-36.8%) (Figure 2c).
165	Significant heterogeneity was observed among the prevalence estimates of severe illness
166	($\tau^2 = 1.679$; $I^2 = 94\%$, p < 0.001). Correcting for publication bias decreased this heterogeneity (I^2
167	= 85%, 95% CI, 80%-89%), however, heterogeneity remained significant (p < 0.001).
168	Exploratory univariate random-effects meta-regression analyses conducted with the aim of
169	explaining the heterogeneity using the moderator effects of the considered covariates suggested
170	that each of increasing mean age (p = 0.006) and prevalence of age \geq 60 years (p < 0.001),
171	hypertension (p < 0.001), chronic kidney disease (p = 0.038), malignancy (p = 0.023) and
172	chronic obstructive pulmonary disease ($p = 0.025$) were associated with a greater risk of severe
173	or critical illness associated with COVID-19, while the prevalence of age \leq 18 years (p = 0.007)
174	within a sample was associated with a reduced risk of severe or critical illness. Prevalence of the
175	presenting clinical features of fever (p < 0.001), dyspnea (p = 0.028) and diarrhea (p = 0.026);
176	laboratory findings of lymphocytopenia (p = 0.003), elevated LDH (p < 0.001), CRP (p < 0.001)
177	and D-dimer levels (p < 0.001); and bilateral lung involvement or involvement of \geq 3 lung lobes
178	(p = 0.006) was associated with increased risk of severe or critically severe illness, while having
179	no radiological features on chest CT was associated with decreased risk of severe illness (p =
180	0.003). The results of all univariate meta-regression analyses examining the moderator effects of
181	the covariates on the prevalence of severe or critical illness in COVID-19 infection and their
182	effects on heterogeneity are summarized in Table S4 in Appendix.

10

187

183 Figure 2: Results of random-effects meta-analysis examining the pooled prevalence of

184 combined severe and critical illness among individuals with COVID-19. a) Forest plot; b) Funnel

- 185 plot depicting publication bias and imputed effect-sizes to correct for publication bias; c) Results
- 186 corrected for publication bias.

188	The random effects meta-regression analyses revealed a pooled estimate of 4.8%
189	(95%CI, 2.4%-9.5%) for the prevalence of critical illness in COVID-19 infection (Figure 3a).
190	Leave-one-out meta-regression analyses did not significantly change this estimate. The funnel
191	plot of effect-sizes (Figure 3b) was highly suggestive of underreporting or publication bias.
192	Eleven effect-sizes had to be imputed to statistically correct for this bias and after correction, the
193	pooled prevalence of critical illness in COVID-19 infection increased to 16.3% (95%CI, 9.8%-
194	25.7%) (Figure 3c).
195	Significant heterogeneity of effect-sizes was a concern for the meta-analysis of
196	prevalence of critical illness as well ($\tau^2 = 1.994$; $I^2 = 92\%$, p < 0.001). Correcting for publication
197	bias decreased this heterogeneity ($I^2 = 78\%$, 95%CI, 69%-84%), however, heterogeneity
198	remained significant ($p < 0.001$). Univariate meta-regression analyses suggested increased risk of
199	critical illness associated with sample characteristics of increasing mean age ($p = 0.002$),
200	prevalence of age \geq 60 years (p < 0.001), comorbid hypertension (p < 0.01), cardiac disease (p =
201	0.023) and malignancy ($p = 0.041$). Similarly, prevalence of fever ($p = 0.044$), dyspnea ($p = 0.044$)
202	0.042) and fatigue ($p = 0.036$) on presentation; prevalence of increased LDH ($p = 0.003$), CRP (p
203	= 0.008) and D-dimer ($p = 0.021$) were associated with a greater risk of critical illness (Table S5
204	in Appendix).
205	

12

209 Figure 3: Results of random-effects meta-analysis examining the pooled prevalence of critical

210 illness among individuals with COVID-19. a) Forest plot; b) Funnel plot depicting publication

bias and imputed effect-sizes to correct for publication bias; c) Results corrected for publication

212 bias.

214	Prevalence of COVID-19 associated mortality was 0.8% (95%CI, 0.2%-2.9%) based on
215	the random-effects meta-analysis (Figure 4a) and this estimate was minimally affected by leave-
216	one-out sensitivity analyses. However, as with severe and critically severe illness, publication
217	bias / potential underreporting was apparent on the funnel plot of effect sizes (Figure 4b).
218	Thirteen effect-sizes were imputed to account for missing / unreported effects in an attempt to
219	statistically correct for the publication bias and conducting the meta-regression analyses with the
220	addition of these effect-sizes revealed a pooled estimate of 7.4% (95%CI, 4.5%-11.9%) for the
221	mortality rate associated with COVID-19 infection (Figure 4c).
222	Heterogeneity of effect-sizes on prevalence of mortality in COVID-19 was also a concern
223	$(\tau^2 = 2.996; I^2 = 86\%, p < 0.001)$. Correction for publication bias decreased the heterogeneity (I ²
224	= 61%, 95%CI, 45%-73%), yet the heterogeneity remained significant ($p < 0.001$). Univariate
225	meta-regression analyses modeling heterogeneity indicated increased mortality risks associated
226	with increasing mean age (p < 0.001), prevalence of age \geq 60 years (p = 0.011), presenting with
227	fatigue (p = 0.048), leukocytosis (p =0.007), high LDH (p = 0.030) and low albumin (p < 0.001).
228	Prevalence of age \leq 18 years (p = 0.036) was associated with a decreased risk of COVID-19-
229	associated mortality (Table S6 in Appendix).
230	

14

- Figure 4: Results of random-effects meta-analysis examining the pooled case fatality rate among
- individuals with COVID-19. a) Forest plot; b) Funnel plot depicting publication bias and
- imputed effect-sizes to correct for publication bias; c) Results corrected for publication bias.

15

238 Discussion

239	In this systematic review and meta-analysis, we comprehensively and systematically
240	examined the available literature to estimate the prevalence of morbidity and mortality associated
241	with SRAS-CoV-2 infection. Despite the large number of articles that were reviewed, our
242	quantitative synthesis was limited to 29 studies representing data of 2,090 individuals. Our
243	literature-based estimates of severe illness, critical illness and case fatality rates among patients
244	with COVID-19 were 15%, 5% and 0.8% respectively. After adjusting for underreporting and
245	publication bias, COVID-19-associated prevalence of severe illness, critical illness and case
246	fatality increased to 26%, 16% and 7.4% respectively.
247	Our unadjusted random-effects estimates of severe illness requiring hospitalization (15%)
248	and critical illness requiring intensive care admission (5%), are consistent with the estimates of
249	COVID-19-associated morbidity based on large individual-level datasets. ²¹ As such, the
250	unadjusted findings of our meta-analysis regarding severity of illness corroborate the inferences
251	made based on current surveillance systems. However, the unadjusted mortality rate observed in
252	our analysis (0.8%, 95% CI, 0.2%-2.9%) is lower than the COVID-19-associated mortality rates
253	in China (3.6%) or globally (3.4%) at the end of February, 2020 (i.e. the time represented in the
254	reviewed publications). ²²

As we have noted in the introduction, retrospective patient data and the literature derived from such data could be systematically biased towards both overestimating and / or underestimating morbidity and mortality. The reviewed studies are largely representing tertiary care settings, of which the capacity may have been overridden minimally, if at all, despite the high reproductive number (R_0) at the time of sampling. As such, the outcomes of our unadjusted random-effects meta-analyses, which accounts for the random variability of effects between

16

studies, can be inferred to be a generalizable representation of morbidity and mortality rates
applicable to a well-trained and equipped healthcare setting of which resources are not
overwhelmed. This estimate therefore represents COVID-19 associated mortality in regions with
a low R₀.

However, reverse-causation bias caused by failing to capture the deaths that may not 265 reach healthcare facilities / be diagnosed prior to death may contribute to underestimation.²³ The 266 267 effect-sizes imputed to correct for publication bias may in fact represent severity and case fatality rates of settings where the demand exceeds the available resources.²⁴ In fact, our data 268 269 substantiate the recent forecasts and recommendations to suppress the epidemic growth. ²⁵ While optimized utilization of healthcare facilities by maintaining a low R₀ may reduce the mortality 270 271 rates to as low as 0.8%, overwhelming healthcare resources may increase the overall case fatality rate to 7.4%, or even greater as represented by the effect-sizes we have imputed.²⁶ 272

273 In our meta-regression analyses that examined risk factors, increasing age and age ≥ 60 274 years consistently stood out as a risk factor, while age < 18 years consistently remained a protective factor, being consistent with the current literature. Angiotensin converting enzyme 275 (ACE)-2 receptors are generally upregulated in patients with hypertension or heart failure, who 276 receive ACE-inhibitors and angiotensin-II receptor blockers. ²⁷ COVID-19 is known to enter 277 cells by binding to ACE-2 receptors, increasing their risk of infection and development of severe 278 clinical illness. ²⁷ Consistently, we observed an increased risk of severity with hypertension and 279 cardiovascular disease. Presenting with fever emerged as a risk factor for severe and critical 280 illness as well as mortality, underscoring the importance body temperature as a screening tool.²⁸ 281

Our systematic review has some limitations. First, while we eliminated studies with
overlapping samples by screening for overlaps of institutes, study dates and authors, we cannot

17

be 100% certain. Second, high degree of heterogeneity was a concern. However, this should be 284 expected in any meta-analysis due to the variability in methodology and study samples and we 285 used heterogeneity to explore covariates in meta-regression analyses. ^{18, 20} Third, funnel plots of 286 all three meta-analyses indicating substantial publication bias, limiting the generalizability of 287 uncorrected random-effects meta-analyses. Finally, the protocol was not pre-registered. Use of a 288 289 systematic search strategy; use of random-effects meta-analyses and meta-regression analyses assuming high heterogeneity of effect-sizes; exploring the etiology of heterogeneity in meta-290 291 regression analyses, which also identified risk factors of morbidity and mortality; exploring the 292 validity of our findings in sensitivity analyses; and statistically correcting for publication / underreporting bias are notable strengths of our systematic review and meta-analysis. 293 294 In conclusion, after correcting for publication bias, COVID-19 associated overall rates of requirement for hospitalization, intensive care and case fatality could be as high as 26%, 16% 295 and 7.4% respectively. This underscores the importance of strict adherence to preventive 296 297 measures, case detection, surveillance and reporting. Hypertension; fever and dyspnea at presentation; and elevated CRP seem to predict increased disease severity, while increasing age 298 299 and elevated LDH seem to consistently predict severity and case fatality. These risk factors 300 should inform clinicians to define endophenotypes possessing a greater risk. 301 302 303

304

18

306 <u>Contributors</u>

- 307 CK, CD and SC conceptualized the study; CK and CD conducted the literature search; CK, CD
- and SC were involved in screening the literature; CK and CD extracted the data; CK performed
- the meta-analyses and meta-regression analyses; CK and CD wrote the manuscript; all authors
- 310 read and agreed to the content of the manuscript.

311

312 **Declaration of interests**

313	The study was not funded. The authors have no potential conflicts of interest to declare.
314	
315	
316	
317	
318	
319	
320	
321	
322	
323	
324	

19

325 **References**

- Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected
- with 2019 novel coronavirus in Wuhan, China. *Lancet.* 2020; 395: 497-506.
- 2 Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, Surface
- 329 Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory
- 330 Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. *JAMA*. 2020.
- 331 3 Jiang X, Rayner S, Luo MH. Does SARS-CoV-2 has a longer incubation period than
- 332 SARS and MERS? *J Med Virol*. 2020; 92: 476-78.
- Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented
- infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). *Science*. 2020.
- 335 5 Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus
- 336 Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the
- 337 Chinese Center for Disease Control and Prevention. *JAMA*. 2020.
- 338 6 Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, *et al.* Clinical course and outcomes of
- critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered,
- retrospective, observational study. *Lancet Respir Med.* 2020.

341 7 Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, *et al.* Clinical course and risk factors for

mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.

- 343 Lancet. 2020.
- 344 8 Lau H, Khosrawipour V, Kocbach P, Mikolajczyk A, Ichii H, Schubert J, et al.
- 345 Internationally lost COVID-19 cases. *Journal of Microbiology, Immunology and Infection.* 2020.
- 346 9 Matt V, Matthew H. The retrospective chart review: important methodological
- 347 considerations. *Journal of educational evaluation for health professions*. 2013; 10.

348	10	Delgado-Rodríguez M, Llorca J. Bias. J Epidemiol Community Health. 2004; 58: 635-41.
349	11	Bauchner H, Golub RM, Zylke J. Editorial Concern-Possible Reporting of the Same
350	Patie	nts With COVID-19 in Different Reports. JAMA. 2020.
351	12	Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation
352	from	the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;
353	14: 135.	
354	13	DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled clinical trials. 1986;
355	7:17	7-88.
356	14	Friedrich JO, Adhikari NK, Beyene J. Inclusion of zero total event trials in meta-analyses
357	main	tains analytic consistency and incorporates all available data. BMC Med Res Methodol.
358	2007; 7: 5.	
359	15	Patsopoulos NA, Evangelou E, Ioannidis JP. Sensitivity of between-study heterogeneity
360	in me	eta-analysis: proposed metrics and empirical evaluation. Int J Epidemiol. 2008; 37: 1148-57.
361	16	Duval S, Tweedie R. A nonparametric "trim and fill" method of accounting for
362	publi	cation bias in meta-analysis. Journal of the American Statistical Association. 2000; 95: 89-
363	98.	
364	17	Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and
365	adjus	ting for publication bias in meta-analysis. <i>Biometrics</i> . 2000; 56: 455-63.
366	18	Higgins J, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in
367	medi	cine. 2002; 21: 1539-58.
368	19	Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions: Wiley
369	Onlir	ne Library 2008.

21

- Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a comparison of
- 371 methods. *Statistics in medicine*. 1999; 18: 2693-708.
- 372 21 Organization WH. Clinical management of severe acute respiratory infection (SARI)
- 373 when COVID-19 disease is suspected: interim guidance, 13 March 2020. World Health
- 374 Organization: 2020.
- 375 22 Organization WH. Coronavirus disease 2019 (COVID-19)
- 376 Situation Report 40. World Health Organization: 2020.
- 27 23 Lipsitch M, Donnelly CA, Fraser C, Blake IM, Cori A, Dorigatti I, et al. Potential Biases
- in Estimating Absolute and Relative Case-Fatality Risks during Outbreaks. *PLoS Negl Trop Dis.*
- **379** 2015; 9: e0003846.
- Ji Y, Ma Z, Peppelenbosch MP, Pan Q. Potential association between COVID-19
- mortality and health-care resource availability. *Lancet Glob Health*. 2020.
- Ferguson NM, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M, *et al.* Impact
- of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcaredemand.
- Baud D, Qi X, Nielsen-Saines K, Musso D, Pomar L, Favre G. Real estimates of
- mortality following COVID-19 infection. *Lancet Infect Dis.* 2020.
- Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at
- increased risk for COVID-19 infection? *Lancet Respir Med.* 2020.
- 389 28 Mao B, Liu Y, Chai Y-h, Jin X-y, Luo HW, Yang J-w, *et al*. Early Discern COVID-19
- from the Suspected Patients via Fever Clinics: A Multicenter Cohort Study from Shanghai. 2020.
- 391

393	Supplementary Appendix
394	Title
395	Case fatality rate in COVID-19: a systematic review and meta-analysis
396	
397	Authors
398	Chanaka Kahathuduwa (MBBS, PhD) ^{1, 2, 3} , Chathurika Dhanasekara (MBBS, PhD) ⁴ , Shao-Hua
399	Chin (PhD) ⁵
400	
401	Affiliations
402	¹ Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences
403	Center, Lubbock, Texas, USA.
404	² Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, Texas,
405	USA.
406	³ Department of Physiology, University of Peradeniya, Peradeniya, Sri Lanka.
407	⁴ Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
408	⁵ Department of Medical Science, Protech Pharmaservices Corporation, Taipei City, Taiwan.
409	
410	Correspondence to:
411	Dr. Chanaka N. Kahathuduwa, Department of Laboratory Science and Primary Care, Texas Tech
412	University Health Sciences Center, 3601 4th Street, Lubbock TX 79430
413	Email: chanaka.kahathuduwa@ttuhsc.edu; Phone: +1- 806-743-2800; Fax: +1-806-743-2784
414	

- 415 **Table S1:** Keywords and keyword combinations used to screen the PubMed, Scopus, and Web
- 416 of Science electronic databases

	(covid-19) OR (((corona OR coronavirus)) AND wuhan) OR (2019 novel coronavirus
	infection) OR (COVID19) OR (coronavirus disease 2019) OR (coronavirus disease-19) OR
	(2019-nCoV disease) OR (2019 novel coronavirus disease) OR (2019-nCoV infection)
417	
44.0	
418	
419	
420	
424	
421	
422	
423	
424	
424	
425	
426	
427	
727	
428	
429	
130	
-50	

24

431 **Table S2:** Studies meeting eligibility criteria.

Study	Country	Study Site	Study	Sample	Severe /	Critical	Mortality	Qua	lity †	Special
			Period	Size	Critical	Illness			-	Remarks
					Illness			Rater 1	Rater 2	
	CI.	<u></u>	L 10	10	0	0	0			CI.'1.1
Cai et	China	Children's	Jan19-	10	0	0	0	Good	Good	Children
al.		Hospital in	Feb03							
(2020) ¹		Shanghai,								
		Hainan,								
		Hefei and								
		Qingdao								
Chen C	China	Fever clinic	Jan-Feb	150	NA	24	11	Good	Good	
et al.		of Tongji								
(2020) ²		Hospital in								
		Wuhan								
Chen H	China	Zhongnan	Jan20-	9	0	0	0	Good	Good	Pregnant
et al.		Hospital of	Jan31							women
(2020) ³		Wuhan								
		University								
Chen L	China	Tongji	Jan14-	29	14	5	2	Good	Good	
et al.		hospital	Jan29							
(2020) ⁴		affiliated to								
		Tongji								
		medical								
		college of								
		Huazhong								
		University								
		of Science								
		and								
		Technology								
Chen N	China	Wuhan	Jan01-	99	33	23	11	Good	Good	
et al.		Jinyintan	Jan20							
(2020) 5		Hospital								

Chen W	China	Guangzhou	NA	57	18	NA	NA	Fair	Poor	
et al.		Eighth								
(2020) 6		People's								
		Hospital								
Feng et	China	Third	Jan16-	15	0	0	0	Fair	Good	Children
al.		People's	Feb06							
(2020)		Hospital of								
		Shenzhen								
Li K et	China	Second	Jan-Feb	83	25	0	NA	Good	Good	
al.		Affiliated								
(2020) ⁷		Hospital of								
		Chongqing								
		Medical								
		University								
Li Y et	China	Wuhan No.	Jan-Feb	54	14	NA	0	Good	Good	
al.		4 Hospital								
(2020) 8										
Liu C et	China	First	Jan23-	32	4	NA	0	Fair	Fair	
al.		Hospital of	Feb08							
(2020) 9		Lanzhou								
		University								
Liu K et	China	Respiratory	Dec30-	137	34	26	16	Good	Good	
al.		Departments	Jan24							
(2020)		of Nine								
10		Tertiary								
		Hospitals in								
		Hubei								
Liu W	China	Three	Dec30-	78	20	8	2	Good	Good	
et al.		Tertiatry	Jan15							
(2020)		Care								
11		Centers in								
		Wuhan -								

		The Central								
		Hospital;								
		Tongji								
		Hospital;								
		Wuhan								
		Pulmonary								
		Hospital								
Liu Y et	China	Shenzhen	Jan11-	12	9	3	0	Good	Good	
al.		Third	Jan20							
(2020)		People's								
12		Hospital								
Tian et	China	Beijing	Jan20-	262	46	0	3	Good	Good	
al.		Emergency	Feb10							
(2020)		Medical								
13		Service								
		(EMS)								
Wang D	China	21 hospitals	Jan25-	31	0	0	0	Fair	Good	Children
et al.		in 17 cities	Feb21							
(2020)		of Northern								
(a) ¹⁴		China								
Wang D	China	Zhongnan	Jan01-	138	36	36	6	Good	Good	
et al.		Hospital of	Jan28							
(2020)		Wuhan								
(b) ¹⁵		University								
Wang L	China	e First	Jan21-	18	NA	2	0	Good	Good	
wang L et al.	China	e First Affiliated	Jan21- Feb05	18	NA	2	0	Good	Good	
wang L et al. (2020)	China	e First Affiliated Hospital of	Jan21- Feb05	18	NA	2	0	Good	Good	
wang L et al. (2020) ¹⁶	China	e First Affiliated Hospital of Zhengzhou	Jan21- Feb05	18	NA	2	0	Good	Good	
Wang L et al. (2020) ¹⁶	China	e First Affiliated Hospital of Zhengzhou University	Jan21- Feb05	18	NA	2	0	Good	Good	
Wang L et al. (2020) ¹⁶ Wu J et	China	e First Affiliated Hospital of Zhengzhou University Three Grade	Jan21- Feb05 Jan22-	18 80	NA 3	2	0	Good	Good Good	
Wang L et al. (2020) ¹⁶ Wu J et al.	China	e First Affiliated Hospital of Zhengzhou University Three Grade IIIA	Jan21- Feb05 Jan22- Feb14	18 80	NA 3	2	0	Good	Good	

2	7	

P1 Image Image <thimage< th=""> Image <thimage< th=""> <thimage< th=""> <thimage< th=""> <thimag< th=""><th>(2020)</th><th></th><th>hospitals of</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thimag<></thimage<></thimage<></thimage<></thimage<>	(2020)		hospitals of								
Wind is and iteration of the state of t	17		Jiangsu								
etal. (200) (3) jopatiment Store (3) jan25 (3) juma jum	Wu W	China	Breguet	Jan19-	40	17	4	2	Good	Good	
(2020) 13StoreStoreIntermediateStoreStoreIntermediateStore<	et al.		Department	Jan25							
ind Ind Num Jan2	(2020)		Store								
Xia W Chinan Wuhan Jan23- 20 1 0 Pair Fair Good Children et al. Children's Feb8 I <	18										
etal. (2020) (2)Chidren'sFeb8Lu<Lu	Xia W	China	Wuhan	Jan23-	20	1	0	0	Fair	Good	Children
(2020) 12Image: Section of the sectio	et al.		Children's	Feb8							
19 Image Im	(2020)		Hospital								
Xu Xu Xu China Zhejiang Janlo 62 1 1 0 Good Good Image: State Sta	19										
al. Province Jan26 Jan26 Jan2 Jan26 Jan2 Jan3 Jan3<	Xu X et	China	Zhejiang	Jan10-	62	1	1	0	Good	Good	
(2020) 20Simal<	al.		Province	Jan26							
201001100<	(2020)										
Xu YetChinaThe FifthJan-Feb501330GoodGoodGoodal.MedicalFallI. <td< td=""><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	20										
al. Medical I, I	Xu Y et	China	The Fifth	Jan-Feb	50	13	3	0	Good	Good	
(2020)Image: state of the state	al.		Medical								
21 Image: Probability of the strength of the strengt of the strength of the strength of the stre	(2020)		Center of								
PLA General HopitalPLA General HopitalInterprete HomitalInter	21		Chinese								
Image: series of the series			PLA								
ImageHospitalHospitalImageImageHospitalHospitalImageIm			General								
Yang etChinaMulti-centerJan17-14923230GoodGoodGoodal.study inFeb10I.<			Hospital								
al.study inFeb10III<	Yang et	China	Multi-center	Jan17-	149	23	23	0	Good	Good	
(2020)WenzhouWenzhouInternationalInt	al.		study in	Feb10							
22city, Zhejiangcity, Zhejianglene <thlene< th="">lenelenelen</thlene<>	(2020)		Wenzhou								
Image: Marking strengthZhejiangImage: Marking strengthImage: Marking strength<	22		city,								
Yao etChinaShaanxiJan01-19550FairGoodal.ProvinceFeb07II			Zhejiang								
al.ProvinceFeb07Full <t< td=""><td>Yao et</td><td>China</td><td>Shaanxi</td><td>Jan01-</td><td>195</td><td>5</td><td>5</td><td>0</td><td>Fair</td><td>Good</td><td></td></t<>	Yao et	China	Shaanxi	Jan01-	195	5	5	0	Fair	Good	
(2020) 23Image: SingaporeSingaporeSingaporeJan22-18620GoodGoodet al.Image: SingaporeJan31Image: SingaporeJan31Image: SingaporeImage: Singap	al.		Province	Feb07							
2323Image: SingaporeSingaporeJan22-18620GoodGoodet al.Image: SingaporeJan31Image: SingaporeJan31Image: SingaporeImage: SingaporeSin	(2020)										
YoungSingaporeSingaporeJan22-18620GoodGoodet al.Image: SingaporeJan31Image: SingaporeJan31Image: SingaporeImage: SingaporeGoodGood	23										
et al. Jan31	Young	Singapore	Singapore	Jan22-	18	6	2	0	Good	Good	
	et al.			Jan31							

(2020)										
24										
Zhang J	China	No. 7	Jan16-	140	58	NA	NA	Good	Good	
et al.		Hospital of	Feb03							
(2020)		Wuhan								
25										
Zhang	China	Beijing	Jan18-	9	0	0	0	Good	Good	
M et al.		Tsinghua	Feb03							
(2020)		Changgeng								
26		Hospital								
Zhao et	China	Radiology	NA	101	14	NA	NA	Good	Fair	
al.		Quality								
(2020)		Control								
27		Center,								
		Hunan								
Zhu et	China	Second	Dec01-	12	0	0	0	Good	Good	
al.		Xiangya	Feb15							
(2020)		Hospital of								
28		Central								
		South								
		University								
	1	1	1	1	1	1	1	1		

432

433 [†] Quality of studies were examined using the National Heart, Lung and Blood Institute's 9-item

434 Quality Assessment Tool for Case Series Studies.

29

Table S3: Summary statistics of all covariates used in the univariate meta-regression analyses.

Variable	Events	Total	Studies	Pooled Effect Size (95%CI) †		
				Fixed-effects model	Random-effects model	
Demographic varia	ables			1		
Age (years)	NA	2033	28	32.847 (32.344 - 33.350)	41.148 (32.737 - 49.558)	
Age \leq 18 years	110	1349	22	0.082 (0.068 - 0.097)	0.025 (0.002 - 0.274)	
Age \geq 60 years	178	975	15	0.183 (0.160 - 0.208)	0.064 (0.019 - 0.196)	
Female	941	2033	28	0.463 (0.441 - 0.485)	0.466 (0.431 - 0.500)	
Past medical histor	ŗy	1		1		
DM-2	123	1420	22	0.087 (0.073 - 0.102)	0.102 (0.069 - 0.148)	
Hypertension	228	1090	19	0.209 (0.186 - 0.234)	0.120 (0.069 - 0.201)	
Cardiac disease	127	1121	18	0.113 (0.096 - 0.133)	0.060 (0.029 - 0.120)	
Chronic liver	23	926	18	0.025 (0.017 - 0.037)	0.010 (0.003 - 0.037)	
disease						
Chronic kidney	12	926	18	0.013 (0.007 - 0.023)	0.013 (0.007 - 0.023)	
disease						
Malignancy	34	1216	19	0.028 (0.020 - 0.039)	0.024 (0.014 - 0.040)	
COPD	19	1014	12	0.019 (0.012 - 0.029)	0.018 (0.010 - 0.031)	
Low immunity	2	236	3	0.008 (0.002 - 0.033)	0.008 (0.002 - 0.033)	
Smoking	16	247	3	0.065 (0.040 - 0.103)	0.065 (0.040 - 0.103)	
Pregnant	11	506	11	0.022 (0.012 - 0.039)	0.000 (0.000 - 0.386)	
Presenting sympton	ms		•			
Asymptomatic	24	618	11	0.039 (0.026 - 0.057)	0.009 (0.001 - 0.084)	
Fever	1310	1578	24	0.830 (0.811 - 0.848)	0.833 (0.778 - 0.877)	
Cough	992	1656	25	0.599 (0.575 - 0.622)	0.619 (0.539 - 0.693)	
Sore throat	121	909	16	0.133 (0.113 - 0.157)	0.131 (0.085 - 0.197)	
Tachypnea	138	325	7	0.425 (0.372 - 0.479)	0.084 (0.010 - 0.461)	
Dyspnea	245	1452	20	0.169 (0.150 - 0.189)	0.102 (0.053 - 0.186)	
Myalgia	163	801	14	0.203 (0.177 - 0.233)	0.192 (0.123 - 0.288)	
Fatigue	328	762	11	0.430 (0.396 - 0.466)	0.336 (0.198 - 0.508)	
Headache	136	1253	16	0.109 (0.092 - 0.127)	0.103 (0.071 - 0.146)	
Diarrhea	104	1288	21	0.081 (0.067 - 0.097)	0.078 (0.059 - 0.104)	

Laboratory invostigations +									
Laboratory myesu									
Nucleic acid test	1529	1617	22	0.946 (0.933 - 0.956)	1.000 (0.916 - 1.000)				
positive									
Leukopenia	258	940	16	0.274 (0.247 - 0.304)	0.217 (0.111 - 0.380)				
Leukocytosis	99	899	16	0.110 (0.091 - 0.132)	0.082 (0.048 - 0.137)				
Thrombocytopenia	73	472	8	0.155 (0.125 - 0.190)	0.137 (0.078 - 0.229)				
Lymphopenia	476	988	17	0.482 (0.451 - 0.513)	0.410 (0.289 - 0.543)				
High LDH	220	526	9	0.418 (0.377 - 0.461)	0.433 (0.242 - 0.646)				
Low Albumin	156	423	6	0.369 (0.324 - 0.416)	0.340 (0.063 - 0.797)				
High CRP	650	930	17	0.699 (0.669 - 0.728)	0.668 (0.534 - 0.780)				
High ESR	193	245	4	0.788 (0.732 - 0.834)	0.795 (0.701 - 0.866)				
High procalcitonin	152	594	12	0.256 (0.222 - 0.293)	0.175 (0.071 - 0.370)				
High D-dimer	117	504	7	0.232 (0.197 - 0.271)	0.188 (0.095 - 0.338)				
Radiological featur	es on CT	thorax							
No lesion on CT	95	894	16	0.106 (0.088 - 0.128)	0.078 (0.035 - 0.165)				
Patchy	231	551	11	0.419 (0.379 - 0.461)	0.418 (0.314 - 0.530)				
consolidation									
Ground glass	416	754	15	0.552 (0.516 - 0.587)	0.693 (0.487 - 0.843)				
opacities									
Peripheral	177	229	6	0.773 (0.714 - 0.823)	0.849 (0.516 - 0.967)				
distribution									
Bilateral or ≥ 3	721	953	15	0.757 (0.728 - 0.783)	0.711 (0.575 - 0.817)				
lobe involvement									

437

438 *†* Effect size measure is mean for age. For all other variables, it is the proportion of individuals (i.e.

439 events) out of total sample size.

440 ‡ Biochemical parameters have been interpreted as low / high based on reference ranges considered in

each study.

442

31

444 **Table S4:** Results of all univariate meta-regression analyses examining the moderator effects of

the covariates on the prevalence of combined severe or critical illness in COVID-19.

Model	Variable	Coefficient †	SE	95%CI	Ζ	р						
Demog	raphic variables		•									
1	Intercept	-5.921	1.236	-8.344 to -3.498	-4.789	< 0.001						
	Age	0.093	0.026	0.043 to 0.144	3.634	< 0.001						
	$k = 26, \tau 2 = 0.781,$	I2 = 88.428, QM	= 13.206									
2	Intercept	-1.400	0.310	-2.006 to -9.794	-4.524	< 0.001						
	Age \leq 18 years	-3.450	1.287	-5.972 to -5.927	-2.680	0.007						
	$k = 21, \tau 2 = 1.172,$	I2 = 91.709, QM	= 7.182									
3	Intercept	-3.599	0.461	-4.502 to -2.695	-7.806	< 0.001						
	Age ≥ 60 years	8.367	1.720	4.997 to 11.738	4.866	< 0.001						
	$k = 15, \tau 2 = 0.573,$	$k = 15, \tau 2 = 0.573, I2 = 77.484, QM = 23.679$										
4	Intercept	-0.491	1.196	-2.836 to 1.853	-0.411	0.681						
	Female	-2.836	2.517	-7.769 to 2.397	-1.127	0.260						
	$k = 26, \tau 2 = 1.771,$	I2 = 94.515, QM	= 1.270									
Past m	edical history											
5	Intercept	-2.344	0.471	-3.267 to -1.421	-4.978	< 0.001						
	DM-2	3.632	2.161	-0.603 to 7.868	1.681	0.093						
	$k = 20, \tau 2 = 1.532,$	I2 = 93.418, QM	= 2.826									
6	Intercept	-2.966	0.556	-4.056 to -1.877	-5.338	< 0.001						
	Hypertension	8.381	2.456	3.567 to 13.194	3.413	< 0.001						
	$k = 17, \tau 2 = 1.009,$	I2 = 88.950, QM	= 11.646									
7	Intercept	-2.112	0.476	-3.045 to -1.179	-4.436	< 0.001						
	Cardiac disease	4.801	2.649	-0.392 to 9.993	1.812	0.070						
	$k = 16, \tau 2 = 1.211,$	I2 = 91.573, QM	= 3.283		-							
8	Intercept	-2.274	0.654	-3.555 to -5.992	-3.476	< 0.001						
	Chronic liver	4.698	15.493	-25.668 to 35.064	0.303	0.762						
	disease											
	$k = 16, \tau 2 = 3.223,$	I2 = 94.655, QM	= 0.092									
9	Intercept	-2.411	0.507	-3.405 to -1.417	-4.756	< 0.001						
	Chronic kidney	21.831	10.504	1.244 to 42.419	2.078	0.038						
	disease											
	$k = 16, \tau 2 = 2.235,$	I2 = 93.455, QM	= 4.320									
10	Intercept	-2.366	0.441	-3.230 to -1.501	-5.363	< 0.001						
	Malignancy	24.845	10.920	3.442 to 46.247	2.275	0.023						
	$k = 17, \tau \overline{2} = 0.960,$	I2 = 89.464, QM	= 5.176									
11	Intercept	-1.827	0.399	-2.609 to -1.345	-4.580	< 0.001						
	COPD	27.432	12.227	3.467 to 51.397	2.243	0.025						
	$k = 11, \tau 2 = 0.733,$	I2 = 91.466, QM	= 5.033									

32

	-					
12	Intercept	-2.020	0.713	-3.416 to -5.623	-2.835	0.005
	Low immunity	66.920	78.023	-86.003 to 219.842	0.858	0.391
	$k = 3, \tau 2 = 0.733, I2$	2 = 71.082, QM =	= 0.736			1
13	Intercept	-8.862	6.638	-21.872 to 4.148	-1.335	0.182
	Smoking	127.878	101.797	-71.641 to 327.397	1.256	0.209
	$k = 3, \tau 2 = 0.048, I2$	2 = 50.308, QM =	= 1.578			
14	Intercept	-2.088	0.618	-3.299 to -2.876	-3.377	< 0.001
	Pregnant	-4.395	6.052	-16.256 to 7.466	-0.726	0.468
	$k = 10, \tau 2 = 2.133, 1$	12 = 90.869, QM	= 0.527			
Present	ting symptoms					
15	Intercept	-1.287	0.486	-2.240 to -2.334	-2.647	0.008
	Asymptomatic	-5.774	4.980	-15.534 to 3.987	-1.159	0.246
	$k = 11, \tau 2 = 1.549, 1$	2 = 92.081, QM	= 1.344			
16	Intercept	-8.760	2.003	-12.685 to -4.835	-4.374	< 0.001
	Fever	8.772	2.378	4.111 to 13.432	3.689	< 0.001
	$k = 23, \tau 2 = 0.641, 1$	2 = 86.409, QM	= 13.607		1	1
17	Intercept	-3.308	0.987	-5.242 to -1.374	-3.353	< 0.001
	Cough	2.736	1.492	-0.187 to 5.665	1.834	0.067
	$k = 24, \tau 2 = 1.280, 1$	2 = 92.822, QM	= 3.365		1	1
18	Intercept	-1.698	0.456	-2.590 to -7.854	-3.725	< 0.001
	Sore throat	-0.410	1.971	-4.272 to 3.452	-0.208	0.835
	$k = 15, \tau 2 = 1.035, 1$	2 = 89.939, QM	= 0.043		1	1
19	Intercept	-3.773	1.205	-6.134 to -1.411	-3.131	0.002
	Tachypnea	5.104	2.616	-0.023 to 19.231	1.951	0.051
	$k = 7, \tau 2 = 1.774, I2$	e = 89.572, QM =	= 3.806	L	1	1
20	Intercept	-1.997	0.354	-2.691 to -1.322	-5.636	< 0.001
	Dyspnea	3.056	1.392	0.327 to 5.784	2.195	0.028
	$k = 19, \tau 2 = 0.680, 1$	2 = 88.759, QM	= 4.817			
21	Intercept	-2.227	0.749	-3.695 to -6.758	-2.972	0.003
	Myalgia	3.541	2.648	-1.648 to 8.731	1.338	0.181
	$k = 13, \tau 2 = 1.323, 1$	2 = 91.941, QM	= 1.789			
22	Intercept	-2.466	0.685	-3.809 to -1.124	-3.600	< 0.001
	Fatigue	2.702	1.388	-0.018 to 5.421	1.947	0.052
	$k = 11, \tau 2 = 0.730, 1$	2 = 87.246, QM	= 3.791			
23	Intercept	-0.803	0.471	-1.727 to 1.129	-1.705	0.088
	Headache	-5.361	3.194	-11.621 to 4.899	-1.679	0.093
	$k = 15, \tau 2 = 1.153.$	2 = 93.398, OM	= 2.817	1	1	1
24	Intercept	-2.590	0.566	-3.699 to -1.482	-4.579	< 0.001
	Diarrhea	11.680	5.237	1.415 to 21.944	2.230	0.026
	$k = 20, \tau 2 = 1.139, T$	2 = 91.537, QM	= 4.974	I	1	1

Labo	ratory investigations 3	•							
25	Intercept	-0.521	0.404	-1.311 to 8.272	-1.291	0.197			
	Nucleic acid test	-1.370	0.423	-2.199 to -9.545	-3.235	0.001			
	positive								
	$k = 21, \tau 2 = 1.477, 1$	[2 = 94.363, 0	QM = 10.464		1	1			
26	Intercept	-1.904	0.734	-3.343 to -3.465	-2.594	0.009			
	Leukopenia	-0.357	1.926	-4.132 to 3.418	-0.185	0.853			
	$k = 15, \tau 2 = 2.855, 1$	2 = 96.044, 0	QM = 0.034		1	1			
27	Intercept	-3.166	0.857	-4.845 to -1.487	-3.696	< 0.001			
	Leukocytosis	8.608	5.659	-2.482 to 19.699	1.521	0.128			
	$k = 15, \tau 2 = 2.690, T$	2 = 95.111, 0	QM = 2.314		1	1			
28	Intercept	-3.945	1.260	-6.414 to -1.476	-3.132	0.002			
	Thrombocytopenia	10.488	5.507	-0.306 to 21.282	1.904	0.057			
	$k = 8, \tau 2 = 2.917, I2$	2 = 94.454, Q	M = 3.627		I	1			
29	Intercept	-3.871	0.840	-5.518 to -2.224	-4.607	< 0.001			
	Lymphopenia	4.734	1.574	1.649 to 7.823	3.008	0.003			
	$k = 16, \tau 2 = 1.213, 1$	$k = 16, \tau 2 = 1.213, I2 = 90.850, QM = 9.046$							
30	Intercept	-4.437	0.686	-5.781 to -3.192	-6.467	< 0.001			
	High LDH	5.769	1.164	3.488 to 8.054	4.957	< 0.001			
	$k = 9, \tau 2 = 0.278, I2$	2 = 58.546, Q	M = 24.572						
31	Intercept	-1.507	0.734	-2.945 to -5.869	-2.053	0.040			
	Low Albumin	1.299	1.384	-1.414 to 4.312	0.938	0.348			
	$k = 6, \tau 2 = 1.210, I2 = 89.774, QM = 0.880$								
32	Intercept	-4.645	1.018	-6.641 to -2.649	-4.562	< 0.001			
	High CRP	4.688	1.392	1.959 to 7.417	3.367	< 0.001			
	$k = 16, \tau 2 = 0.697, 1$	$k = 16, \tau 2 = 0.697, I2 = 85.579, QM = 11.335$							
33	Intercept	2.608	6.597	-10.323 to 15.538	0.395	0.693			
	High ESR	-5.846	8.398	-22.305 to 11.613	-0.696	0.486			
	$k = 4, \tau 2 = 1.636, I2$	2 = 84.528, Q	M = 0.485		I	1			
34	Intercept	-2.535	0.965	-4.427 to -0.643	-2.626	0.009			
	High procalcitonin	1.146	2.476	-3.707 to 5.999	0.463	0.644			
	$k = 11, \tau 2 = 3.562, 1$	$k = 11, \tau 2 = 3.562, I2 = 95.576, QM = 0.214$							
35	Intercept	-2.962	0.289	-3.528 to -2.395	-10.253	< 0.001			
	High D-dimer	6.110	0.830	4.484 to 7.736	7.365	< 0.001			
	$k = 7, \tau 2 = 0.000, I2$	2 = 0.000, QN	1 = 54.243						
Radio	ological features on C	F thorax							
36	Intercept	-1.016	0.468	-1.932 to -8.798	-2.170	0.030			
	No lesions on CT	-10.053	3.413	-16.743 to -3.363	-2.945	0.003			
	$k = 15, \tau 2 = 1.239, 1$	2 = 89.806, 0	QM = 8.675	1	I	ı			
37	Intercept	-2.639	1.142	-4.878 to -2.461	-2.311	0.021			
	Patchy	1.121	2.265	-3.318 to 5.559	0.495	0.621			
	consolidations								
	$k = 10, \tau 2 = 1.261, 1$	12 = 88.147, 0	QM = 0.245	1	I				

•••

38	Intercept	-2.231	1.134	-4.454 to -7.938	-1.967	0.049
	Ground glass	0.089	1.650	-3.144 to 3.322	0.054	0.957
	opacities					
	$k = 14, \tau 2 = 2.583, I$	2 = 94.256, QN	M = 0.003			
39	Intercept	-6.172	3.565	-13.159 to 7.816	-1.731	0.083
	Peripheral	3.966	3.959	-3.794 to 11.725	1.002	0.317
	distribution					
	$k = 6, \tau 2 = 1.767, I2$	= 83.815, QM	= 1.003			
40	Intercept	-4.974	1.267	-7.457 to -2.492	-3.927	< 0.001
	Bilateral or ≥ 3	4.435	1.627	1.246 to 7.624	2.725	0.006
	lobe involvement					
	$k = 14, \tau 2 = 0.696, I$	2 = 87.270, QN	M = 7.428			

- 449 [†] Coefficients represent logit-transformed proportions; positive coefficients suggest increased risk and
- 450 negative coefficients suggest decreased risk.

451 ‡ Biochemical parameters have been interpreted as low / high based on reference ranges considered in

- 452 each study.

35

462 **Table S5:** Results of all univariate meta-regression analyses examining the moderator effects of

the covariates on the prevalence critical illness in COVID-19.

Model	Variable	Coefficient †	SE	95%CI	Ζ	р
Demog	raphic variables		I			1
1	Intercept	-8.153	2.031	-12.134 to -4.173	-4.014	< 0.001
	Age	0.115	0.041	0.033 to 6.196	2.774	0.006
	$k = 24, \tau 2 = 1.094, 1$	12 = 85.333, QM	= 7.694			
2	Intercept	-2.407	0.527	-3.440 to -1.374	-4.567	< 0.001
	Age ≤ 18 years	-7.526	6.892	-21.034 to 5.981	-1.092	0.275
	$k = 18, \tau 2 = 1.635, 1$	12 = 87.100, QM	= 1.193	I		
3	Intercept	-5.479	0.884	-7.211 to -3.747	-6.200	< 0.001
	Age ≥ 60 years	8.868	2.647	3.678 to 14.757	3.349	< 0.001
	$k = 13, \tau 2 = 0.981, 1$	12 = 69.156, QM	= 11.219			1
4	Intercept	-1.157	1.429	-3.957 to 1.644	-0.809	0.418
	Female	-3.934	3.082	-9.975 to 2.157	-1.276	0.202
	$k = 24, \tau 2 = 1.890, 1$	12 = 90.774, QM	= 1.629		•	
Past m	edical history					
5	Intercept	-2.712	0.510	-3.711 to -1.713	-5.319	< 0.001
	DM-2	0.581	2.220	-3.770 to 4.932	0.262	0.794
	$k = 19, \tau 2 = 1.405, 1$	12 = 89.782, QM	= 0.068			
6	Intercept	-4.091	0.676	-5.416 to -2.765	-6.050	< 0.001
	Hypertension	8.385	2.518	3.450 to 13.321	3.330	< 0.001
	$k = 17, \tau 2 = 0.615, 1$	12 = 74.934, QM	= 11.090		·	
7	Intercept	-3.386	0.657	-4.674 to -2.597	-5.150	< 0.001
	Cardiac disease	6.745	2.970	0.924 to 12.565	2.271	0.023
	$k = 15, \tau 2 = 1.058, 1$	12 = 86.342, QM	= 5.158		·	
8	Intercept	-2.632	0.494	-3.600 to -1.664	-5.329	< 0.001
	Chronic liver	-1.965	11.525	-24.553 to 21.623	-0.170	0.865
	disease					
	$k = 15, \tau 2 = 1.332, 1$	12 = 84.529, QM	= 0.029			
9	Intercept	-2.850	0.463	-3.757 to -1.944	-6.161	< 0.001
	Chronic kidney	11.613	8.335	-4.722 to 27.949	1.393	0.163
	disease					
	$k = 15, \tau 2 = 1.185, 1$	12 = 84.105, QM	= 1.942			
10	Intercept	-2.718	0.428	-3.556 to -1.886	-6.355	< 0.001
	Malignancy	20.308	9.919	0.866 to 39.752	2.047	0.041
	$k = 16, \tau 2 = 0.497, 1$	I2 = 75.460, QM	= 4.191		<u>.</u>	
11	Intercept	-2.140	0.468	-3.057 to -1.223	-4.573	< 0.001
	COPD	-3.422	14.786	-32.402 to 25.557	-0.231	0.817
	$k = 11, \tau 2 = 1.028, 1$	12 = 89.416, QM	= 0.054			

Prese	nting symptoms					
12	Intercept	-3.186	1.049	-5.243 to -1.129	-3.036	0.002
	Asymptomatic	-9.113	12.896	-34.389 to 16.162	-0.707	0.480
	$k = 9, \tau 2 = 4.359, I2$	2 = 90.352, QM	= 0.499			
13	Intercept	-10.098	3.624	-17.201 to -2.995	-2.786	0.005
	Fever	8.525	4.236	0.224 to 16.827	2.013	0.044
	$k = 20, \tau 2 = 1.946,$	I2 = 89.018, QN	A = 4.051			
14	Intercept	-4.429	1.361	-7.096 to -1.762	-3.255	0.001
	Cough	2.421	2.119	-1.732 to 6.574	1.142	0.253
	$k = 21, \tau 2 = 2.096, \tau$	I2 = 90.704, QN	A = 1.305			
15	Intercept	-2.901	0.617	-4.110 to -1.693	-4.706	< 0.001
	Sore throat	-0.011	2.573	-5.054 to 5.733	-0.004	0.997
	$k = 14, \tau 2 = 1.552,$	I2 = 87.761, QN	M = 0.000			
16	Intercept	-6.493	3.574	-13.498 to 6.513	-1.816	0.069
	Tachypnea	4.139	6.653	-8.901 to 17.179	0.622	0.534
	$k = 7, \tau 2 = 9.745, I2$	2 = 92.103, QM	= 0.387			
17	Intercept	-3.919	0.701	-5.293 to -2.546	-5.592	< 0.001
	Dyspnea	5.263	2.589	0.187 to 19.339	2.033	0.042
	$k = 17, \tau 2 = 1.935,$	I2 = 90.510, QN	A = 4.131			
18	Intercept	-2.954	0.729	-4.382 to -1.526	-4.055	< 0.001
	Myalgia	2.311	2.833	-3.241 to 7.864	0.816	0.415
	$k = 13, \tau 2 = 1.128,$	I2 = 82.759, QN	M = 0.666		·	
19	Intercept	-5.730	1.452	-8.575 to -2.884	-3.947	< 0.001
	Fatigue	6.841	3.255	0.462 to 13.221	2.102	0.036
	$k = 9, \tau 2 = 1.883, I2$	2 = 75.036, QM	= 4.418		·	
20	Intercept	-2.093	0.707	-3.478 to -4.718	-2.962	0.003
	Headache	-7.333	6.010	-19.113 to 4.446	-1.220	0.222
	$k = 15, \tau 2 = 1.972,$	I2 = 92.662, QN	A = 1.489			
21	Intercept	-3.018	0.673	-4.337 to -1.699	-4.485	< 0.001
	Diarrhea	4.228	5.997	-7.525 to 15.981	0.705	0.481
	$k = 18, \tau 2 = 1.279,$	I2 = 86.591, QN	A = 0.497			
Labor	ratory investigations :	*				
22	Intercept	-728.908	26694.139	-53048.459 to	-0.027	0.978
				51594.644		
	Nucleic acid test	725.702	26694.139	-51593.849 to	0.027	0.978
	positive			53945.253		
	$k = 18, \tau 2 = 2.861,$	I2 = 94.023, QN	M = 0.001	1	1	
23	Intercept	-2.923	0.688	-4.272 to -1.575	-4.249	< 0.001
	Leukopenia	-0.149	1.679	-3.440 to 3.141	-0.089	0.929
	$k = 15, \tau 2 = 1.763,$	I2 = 87.768, QN	M = 0.008	1	1	
24	Intercept	-3.734	0.742	-5.189 to -2.279	-5.030	< 0.001
	Leukocytosis	6.462	4.651	-2.655 to 15.578	1.389	0.165
	$k = 15, \tau 2 = 1.617,$	I2 = 83.727, QN	A = 1.930			

37

	I	1	1	1	1	1
25	Intercept	-3.319	0.906	-5.095 to -1.543	-3.663	< 0.001
	Thrombocytopenia	4.623	3.915	-3.049 to 12.296	1.181	0.238
	$k = 8, \tau 2 = 1.198, I2$	2 = 85.576, QN	1 = 1.395			
26	Intercept	-4.303	0.979	-6.222 to -2.383	-4.393	< 0.001
	Lymphopenia	3.533	1.996	-0.378 to 7.444	1.770	0.077
	$k = 15, \tau 2 = 1.264, T$	I2 = 81.627, Q	M = 3.134			
27	Intercept	-3.882	0.707	-5.267 to -2.496	-5.491	< 0.001
	High LDH	3.392	1.137	1.164 to 5.621	2.984	0.003
	$k = 8, \tau 2 = 0.315, I2$	2 = 51.385, QN	1 = 8.904		•	•
28	Intercept	-2.131	0.308	-2.735 to -1.527	-6.914	< 0.001
	Low Albumin	0.994	0.517	-0.019 to 2.318	1.923	0.055
	$k = 5, \tau 2 = 0.081, I2$	2 = 27.279, QN	1 = 3.697		1	1
29	Intercept	-6.561	1.654	-9.803 to -3.319	-3.967	< 0.001
	High CRP	5.696	2.155	1.471 to 9.921	2.642	0.008
	$k = 14, \tau 2 = 0.741, T$	$12 = 74.102, Q^2$	M = 6.983		1	1
30	Intercept	-2.584	0.805	-4.161 to -1.936	-3.209	0.001
	High procalcitonin	-6.018	4.132	-14.116 to 2.081	-1.456	0.145
	$k = 10, \tau 2 = 2.030, T$	12 = 78.770, Q	M = 2.121			
31	Intercept	-3.367	0.736	-4.808 to -1.925	-4.577	< 0.001
	High D-dimer	6.185	2.671	0.950 to 11.421	2.315	0.021
	$k = 5, \tau 2 = 0.221, I2$	2 = 39.400, QN	1 = 5.361			
Radiol	ogical features on C	F thorax				
32	Intercept	-2.481	0.621	-3.698 to -1.265	-3.998	< 0.001
	No lesions on CT	-6.518	3.726	-13.821 to 2.786	-1.749	0.080
	$k = 14, \tau 2 = 1.473, T$	$12 = 79.098, Q^2$	M = 3.059			
33	Intercept	-2.430	1.574	-5.514 to 9.656	-1.544	0.123
	Patchy	-2.949	3.633	-10.070 to 4.171	-0.812	0.417
	consolidations					
	$k = 10, \tau 2 = 2.026, T$	$12 = 77.274, Q^2$	M = 0.659			
34	Intercept	-1.955	0.893	-3.705 to -6.204	-2.188	0.029
	Ground glass	-1.912	1.387	-4.630 to 8.856	-1.379	0.168
	opacities					
	$k = 14, \tau 2 = 1.354, T$	$12 = 81.205, Q^2$	M = 1.901		1	1
35	Intercept	-5.393	3.288	-11.838 to 1.452	-1.640	0.101
	Peripheral	1.619	3.529	-5.297 to 8.536	0.459	0.646
	distribution					
	$k = 5, \tau 2 = 0.617, I2$	2 = 32.942, QN	1 = 0.211		1	1
36	Intercept	-4.371	1.735	-7.772 to -1.978	-2.519	0.012
	Bilateral or ≥ 3	1.857	2.445	-2.935 to 6.657	0.759	0.448
	lobe involvement					
	$k = 12, \tau 2 = 1.547, T$	12 = 84.184, Q	M = 0.577		1	1

465 [†] Coefficients represent logit-transformed proportions; positive coefficients suggest increased risk and

466 negative coefficients suggest decreased risk.

- 467 ‡ Biochemical parameters have been interpreted as low / high based on reference ranges considered in
- each study.

39

484 **Table S6:** Results of all univariate meta-regression analyses examining the moderator effects of

the covariates on the case-fatality rate in COVID-19.

Model	Variable	Coefficient †	SE	95%CI	Ζ	р
Demog	raphic variables	·				<u>.</u>
1	Intercept	-13.847	2.681	-19.101 to -8.593	-5.165	< 0.001
	Age	0.198	0.052	0.096 to 9.299	3.838	< 0.001
	$k = 25, \tau 2 = 0.506, 1$	12 = 50.639, QM	= 14.733			
2	Intercept	-3.250	0.553	-4.334 to -2.166	-5.874	< 0.001
	Age \leq 18 years	-39.307	18.722	-76.002 to -2.613	-2.100	0.036
	$k = 20, \tau 2 = 0.755, l$	2 = 57.711, QM	= 4.408			
3	Intercept	-6.156	1.012	-8.140 to -4.172	-6.081	< 0.001
	Age \geq 60 years	7.499	2.949	1.720 to 13.278	2.543	0.011
	$k = 14, \tau 2 = 0.731, 1$	12 = 44.403, QM	= 6.468			
4	Intercept	-4.422	1.938	-8.221 to -3.623	-2.281	0.023
	Female	-0.868	3.930	-8.570 to 6.834	-0.221	0.825
	$k = 25, \tau 2 = 2.986, l$	2 = 84.794, QM	= 0.049			-
Past m	edical history					
5	Intercept	-3.966	0.865	-5.660 to -2.271	-4.587	< 0.001
	DM-2	-4.139	4.769	-13.485 to 5.257	-0.868	0.385
	$k = 19, \tau 2 = 2.493, l$	2 = 85.131, QM	= 0.754			-
6	Intercept	-4.843	0.937	-6.680 to -3.396	-5.167	< 0.001
	Hypertension	6.070	3.098	-0.002 to 12.143	1.959	0.050
	$k = 17, \tau 2 = 0.818,$	2 = 62.909, QM	= 3.839		1	4
7	Intercept	-5.658	1.528	-8.653 to -2.663	-3.703	< 0.001
	Cardiac disease	6.298	5.635	-4.746 to 17.343	1.118	0.264
	$k = 16, \tau 2 = 3.590, 1$	2 = 87.325, QM	= 1.249			-
8	Intercept	-5.096	1.329	-7.701 to -2.491	-3.833	< 0.001
	Chronic liver	2.410	21.686	-40.093 to 44.913	0.111	0.912
	disease					
	$k = 17, \tau 2 = 3.515, 1$	12 = 84.824, QM	= 0.012			
9	Intercept	-4.976	1.169	-7.267 to -2.685	-4.256	< 0.001
	Chronic kidney	-4.095	24.503	-52.120 to 43.938	-0.167	0.867
	disease					
	$k = 17, \tau 2 = 3.415, 1$	12 = 85.031, QM	= 0.028			
10	Intercept	-5.202	1.169	-7.492 to -2.912	-4.452	< 0.001
	Malignancy	25.193	22.794	-19.482 to 69.869	1.105	0.269
	$k = 18, \tau 2 = 2.874,$	12 = 86.440, QM	= 1.222		•	<u>.</u>
11	Intercept	-4.718	1.206	-7.081 to -2.355	-3.913	< 0.001
	COPD	11.975	37.673	-61.863 to 85.813	0.318	0.751
	$k = 10, \tau 2 = 3.332, 1$	12 = 90.202, QM	= 0.101			

Prese	nting symptoms								
12	Intercept	-3.582	0.815	-5.179 to -1.985	-4.397	< 0.001			
	Asymptomatic	-22.825	23.869	-69.607 to 23.957	-0.956	0.339			
	$k = 10, \tau 2 = 0.832, I2 = 53.265, QM = 0.914$								
13	Intercept	-16.665	6.768	-29.930 to -3.401	-2.462	0.014			
	Fever	13.979	7.552	-0.823 to 28.781	1.851	0.064			
	$k = 21, \tau 2 = 2.575,$	I2 = 81.750, QI	M = 3.426		I				
14	Intercept	-4.380	1.630	-7.574 to -1.186	-2.688	0.007			
	Cough	-0.590	2.693	-5.867 to 4.688	-0.219	0.827			
	$k = 22, \tau 2 = 2.526,$	I2 = 79.906, QI	M = 0.048		I				
15	Intercept	-4.031	1.764	-7.488 to -9.574	-2.285	0.022			
	Sore throat	-12.722	13.745	-39.662 to 14.219	-0.926	0.355			
	$k = 14, \tau 2 = 3.976,$	I2 = 82.831, QI	M = 0.857		I				
16	Intercept	-4.512	1.018	-6.507 to -2.518	-4.434	< 0.001			
	Tachypnea	3.019	2.240	-1.371 to 7.419	1.348	0.178			
	$k = 6, \tau 2 = 0.000, I2 = 0.000, QM = 1.816$								
17	Intercept	-5.384	0.963	-7.272 to -3.497	-5.592	< 0.001			
	Dyspnea	5.208	2.959	-0.592 to 11.528	1.760	0.078			
	$k = 17, \tau 2 = 1.833, I2 = 78.737, QM = 3.097$								
18	Intercept	-5.809	1.825	-9.386 to -2.232	-3.183	0.001			
	Myalgia	3.859	5.323	-6.575 to 14.292	0.725	0.469			
	$k = 13, \tau 2 = 3.173,$	I2 = 78.683, QI	M = 0.525		1	1			
19	Intercept	-4.991	0.697	-6.357 to -3.625	-7.162	< 0.001			
	Fatigue	2.601	1.314	0.025 to 5.178	1.979	0.048			
	$k = 10, \tau 2 = 0.000,$	I2 = 0.000, QM	[= 3.917		1	4			
20	Intercept	-3.100	0.975	-5.010 to -1.189	-3.180	0.001			
	Headache	-13.603	10.138	-33.474 to 6.268	-1.342	0.180			
	$k = 15, \tau 2 = 2.078,$	12 = 83.381, Q1	M = 1.800	·					
21	Intercept	-5.158	1.600	-8.294 to -2.223	-3.224	0.001			
	Diarrhea	0.674	12.728	-24.272 to 25.629	0.053	0.958			
	$k = 18, \tau 2 = 4.168,$	I2 = 87.268, QI	M = 0.003						
Labo	ratory investigations	+ +							
22	Intercept	-277.080	203424.495	-398981.762 to	-0.001	0.999			
				398427.693					
	Nucleic acid test	272.246	203424.495	-398432.438 to	0.001	0.999			
	positive			398976.929					
	$k = 18, \tau 2 = 2.967,$	I2 = 85.532, QI	M = 0.000						
23	Intercept	-5.304	2.008	-9.239 to -1.369	-2.642	0.008			
	Leukopenia	-2.851	4.864	-12.385 to 6.682	-0.586	0.558			
	$k = 14, \tau 2 = 7.059,$	I2 = 89.937, QI	M = 0.344						
24	Intercept	-7.326	1.868	-10.987 to -3.665	-3.922	< 0.001			
	Leukocytosis	20.497	7.588	5.624 to 35.369	2.701	0.007			
	$k = 14, \tau 2 = 0.790, I2 = 55.410, QM = 7.296$								

Λ	1
-	т.

25	Intercept	-5.628	2.680	-10.880 to -3.375	-2.100	0.036			
	Thrombocytopenia	-2.645	12.249	-26.652 to 21.362	-0.216	0.829			
	$k = 8, \tau 2 = 7.292, I2$	$k = 8, \tau 2 = 7.292, I2 = 89.313, QM = 0.047$							
26	Intercept	-10.089	4.017	-17.961 to -2.216	-2.512	0.012			
	Lymphopenia	8.553	6.098	-3.398 to 24.574	1.403	0.161			
	$k = 15, \tau 2 = 6.297, 1$	2 = 87.338, Q	M = 1.967		•	ł			
27	Intercept	-9.907	3.336	-16.444 to -3.369	-2.970	0.003			
	High LDH	8.923	4.123	0.842 to 17.604	2.164	0.030			
	$k = 9, \tau 2 = 0.938, I2$	2 = 46.607, QN	1 = 4.684		•	ł			
28	Intercept	-6.740	1.325	-9.336 to -4.143	-5.088	< 0.001			
	Low Albumin	4.782	1.433	1.973 to 7.591	3.337	< 0.001			
	$k = 6, \tau 2 = 0.000, I2$	z = 0.000, QM	= 11.136		•	ł			
29	Intercept	-22.970	10.385	-43.324 to -2.616	-2.212	0.027			
	High CRP	23.196	11.885	-0.097 to 46.499	1.952	0.051			
	$k = 15, \tau 2 = 1.120, 1$	2 = 63.919, Q	M = 3.809						
30	Intercept	-6.882	4.270	-15.250 to 1.486	-1.612	0.107			
	High procalcitonin	-12.881	22.821	-57.609 to 31.847	-0.564	0.572			
	$k = 10, \tau 2 = 11.734, I2 = 89.835, QM = 0.319$								
Radio	logical features on C	Г thorax							
32	Intercept	-2.321	0.316	-2.939 to -1.791	-7.344	< 0.001			
	No lesions on CT	-1941.342	3948.493	-9680.245 to 5797.561	-0.492	0.623			
	$k = 13, \tau 2 = 0.000, 1$	12 = 0.000, QN	1 = 0.242			•			
33	Intercept	-4.454	2.631	-9.609 to 2.702	-1.693	0.090			
	Patchy	-1.290	5.246	-11.572 to 8.992	-0.246	0.806			
	consolidations								
	$k = 9, \tau 2 = 2.859, I2$	z = 72.114, QN	I = 0.060		•				
34	Intercept	-1.341	1.554	-4.387 to 1.746	-0.863	0.388			
	Ground glass	-8.374	5.039	-18.250 to 1.552	-1.662	0.097			
	opacities								
	$k = 13, \tau 2 = 2.225, l$	12 = 77.488, Q	M = 2.762						
35	Intercept	-9.953	4.723	-19.210 to -2.695	-2.107	0.035			
	Bilateral or ≥ 3	7.011	6.069	-4.883 to 18.956	1.155	0.248			
	lobe involvement								
	$k = 12, \tau 2 = 3.840,$	$k = 12, \tau 2 = 3.840, I2 = 86.622, QM = 1.335$							

486

487 † Coefficients represent logit-transformed proportions; positive coefficients suggest increased risk and

488 negative coefficients suggest decreased risk.

489 ‡ Biochemical parameters have been interpreted as low / high based on reference ranges considered in

each study.

42

491 **References of Appendix**

- 4921Cai J, Xu J, Lin D, Yang Z, Xu L, Qu Z, et al. A Case Series of children with 2019 novel
- 493 coronavirus infection: clinical and epidemiological features. *Clin Infect Dis.* 2020.
- 494 2 Chen C, Yan JT, Zhou N, Zhao JP, Wang DW. [Analysis of myocardial injury in patients
- 495 with COVID-19 and association between concomitant cardiovascular diseases and severity of
- 496 COVID-19]. Zhonghua Xin Xue Guan Bing Za Zhi. 2020; 48: E008.
- 497 3 Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and
- 498 intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a
- retrospective review of medical records. *Lancet*. 2020; 395: 809-15.
- 500 4 Chen L, Liu HG, Liu W, Liu J, Liu K, Shang J, et al. [Analysis of clinical features of 29
- patients with 2019 novel coronavirus pneumonia]. *Zhonghua Jie He Hu Xi Za Zhi*. 2020; 43:
 E005.
- 5 Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, *et al.* Epidemiological and clinical
 characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive
 study. *Lancet.* 2020; 395: 507-13.
- 506 6 Chen W, Lan Y, Yuan X, Deng X, Li Y, Cai X, *et al.* Detectable 2019-nCoV viral RNA
 507 in blood is a strong indicator for the further clinical severity. *Emerg Microbes Infect.* 2020; 9:
 508 469-73.
- 509 7 Li K, Wu J, Wu F, Guo D, Chen L, Fang Z, *et al.* The Clinical and Chest CT Features
 510 Associated with Severe and Critical COVID-19 Pneumonia. *Invest Radiol.* 2020.
- Li YY, Wang WN, Lei Y, Zhang B, Yang J, Hu JW, *et al.* [Comparison of the clinical
- 512 characteristics between RNA positive and negative patients clinically diagnosed with 2019 novel
- 513 coronavirus pneumonia]. *Zhonghua Jie He He Hu Xi Za Zhi*. 2020; 43: E023.

514	9 Liu C, Jiang ZC, Shao CX, Zhang HG, Yue HM, Chen ZH, <i>et al.</i> [Preliminary study of		
515	the relationship between novel coronavirus pneumonia and liver function damage: a multicenter		
516	study]. Zhonghua Gan Zang Bing Za Zhi. 2020; 28: 148-52.		
517	10 Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma JP, et al. Clinical characteristics of		
518	novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020.		
519	11 Liu W, Tao ZW, Lei W, Ming-Li Y, Kui L, Ling Z, et al. Analysis of factors associated		
520	with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J		
521	(Engl). 2020.		
522	12 Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical		
523	indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life		
524	Sci. 2020; 63: 364-74.		
525	13 Tian S, Hu N, Lou J, Chen K, Kang X, Xiang Z, et al. Characteristics of COVID-19		
526	infection in Beijing. J Infect. 2020.		
527	14 Wang D, Ju XL, Xie F, Lu Y, Li FY, Huang HH, et al. [Clinical analysis of 31 cases of		
528	2019 novel coronavirus infection in children from six provinces (autonomous region) of northern		
529	China]. Zhonghua Er Ke Za Zhi. 2020; 58: E011.		
530	15 Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138		
531	Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China.		
532	JAMA. 2020.		
533	16 Wang L, Gao YH, Lou LL, Zhang GJ. The clinical dynamics of 18 cases of COVID-19		
534	outside of Wuhan, China. Eur Respir J. 2020.		
535	17 Wu J, Liu J, Zhao X, Liu C, Wang W, Wang D, et al. Clinical Characteristics of Imported		
536	Cases of COVID-19 in Jiangsu Province: A Multicenter Descriptive Study. Clin Infect Dis. 2020		

	44		
537	18	Wu WS, Li YG, Wei ZF, Zhou PH, Lyu LK, Zhang GP, et al. [Investigation and analysis	
538	on characteristics of a cluster of COVID-19 associated with exposure in a department store in		
539	Tianjin]. Zhonghua Liu Xing Bing Xue Za Zhi. 2020; 41: 489-93.		
540	19	Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features in pediatric patients	
541	with COVID-19 infection: Different points from adults. Pediatr Pulmonol. 2020.		
542	20	Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, et al. Clinical findings in a group	
543	of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China:		
544	retrospective case series. BMJ. 2020; 368: m606.		
545	21	Xu YH, Dong JH, An WM, Lv XY, Yin XP, Zhang JZ, et al. Clinical and computed	
546	tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. J Infect.		
547	2020.		
548	22	Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of	
549	critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered,		
550	retrospective, observational study. Lancet Respir Med. 2020.		
551	23	Yao Y, Tian Y, Zhou J, Ma X, Yang M, Wang S. Epidemiological characteristics of	
552	2019-ncoV infections in Shaanxi, China by February 8, 2020. Eur Respir J. 2020.		
553	24	Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic	
554	Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA. 2020.		
555	25	Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics	
556	of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020.		
557	26	Zhang MQ, Wang XH, Chen YL, Zhao KL, Cai YQ, An CL, et al. [Clinical features of	
558	2019 novel coronavirus pneumonia in the early stage from a fever clinic in Beijing]. Zhonghua		
559	<i>Jie He Hu Xi Za Zhi</i> . 2020; 43: E013.		

45

- 560 27 Zhao W, Zhong Z, Xie X, Yu Q, Liu J. Relation Between Chest CT Findings and Clinical
- 561 Conditions of Coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study. AJR Am J
- 562 *Roentgenol.* 2020: 1-6.
- 563 28 Zhu ZW, Tang JJ, Chai XP, Fang ZF, Liu QM, Hu XQ, et al. [Comparison of heart
- failure and 2019 novel coronavirus pneumonia in chest CT features and clinical characteristics].
- 565 Zhonghua Xin Xue Guan Bing Za Zhi. 2020; 48: E007.

566