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Abstract 19 

Genome-wide association studies (GWAS) and family-based studies have revealed partly overlapping 20 

genetic architectures between various psychiatric disorders. Given clinical overlap between disorders, our 21 

knowledge of the genetic architectures underlying specific symptom profiles and risk factors is limited. 22 

Here, we aimed to derive distinct profiles relevant to mental health in healthy individuals and to study 23 

how these genetically relate to each other and to common psychiatric disorders. Using independent 24 

component analysis, we decomposed self-report mental health questionnaires from 136,678 healthy 25 

individuals of the UK Biobank, excluding data from individuals with a diagnosed neurological or 26 

psychiatric disorder, into thirteen distinct profiles relevant to mental health, capturing different symptoms 27 

as well as social and risk factors underlying reduced mental health. Utilizing genotypes from 117,611 of 28 

those individuals with White English ancestry, we performed GWAS for each mental health profile and 29 

assessed genetic correlations between these profiles, and between the profiles and common psychiatric 30 

disorders and cognitive traits. We found that mental health profiles were genetically correlated with a 31 

wide range of psychiatric disorders and cognitive traits, with strongest effects typically observed between 32 

a given mental health profile and a disorder for which the profile is common (e.g. depression symptoms 33 

and major depressive disorder, psychosis and schizophrenia). Strikingly, although the profiles were 34 

phenotypically uncorrelated, many of them were genetically correlated with each other. This study 35 

provides evidence that statistically independent mental health profiles partly share genetic underpinnings 36 

and show genetic overlaps with psychiatric disorders, suggesting that shared genetics across psychiatric 37 

disorders cannot be exclusively attributed to the known overlapping symptomatology between the 38 

disorders.  39 
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Introduction 40 

Psychiatric disorders are highly polygenic, exhibiting a multitude of significantly associated genetic 41 

variants with small effect sizes. Recent large-scale genome-wide association studies (GWAS) have 42 

identified a large number of single-nucleotide polymorphisms (SNP) associated with psychiatric disorders 43 

such as schizophrenia (SCZ)1, bipolar disorder (BD)2, major depression (MD)3, attention deficit 44 

hyperactivity disorder (ADHD)4, autism spectrum disorders (ASD)5, post-traumatic stress disorder 45 

(PTSD)6, and anxiety (ANX)7. In addition to substantial polygenicity, previous findings have documented 46 

genetic overlap between disorders8–11, even in the absence of genetic correlations expressed as additive 47 

genetic effects for two traits, as recently demonstrated for schizophrenia and educational attainment12,13. 48 

Adding to the complexity, psychiatric disorders also overlap with multiple complex traits, such as BMI14, 49 

cardio-metabolic diseases15 and a number of psychosocial and other risk factors for reduced mental 50 

health16–18. The latter are particularly challenging in the context of genetics, since genetic overlap may not 51 

necessarily point to causative effects but rather point at common underlying factors19,20. Taken together, 52 

the landscape of current psychiatric genetics suggests highly complex patterns of associations and unclear 53 

specificity for many common psychiatric disorders. 54 

 55 

While GWAS studies have allowed to disentangle parts of the genetic architecture of psychiatric 56 

disorders, these methods alone are not sufficient to answer some of the challenges posed in psychiatric 57 

genetics. One of those challenges is the lack of clinical demarcation between psychiatric disorders. For 58 

example, patients with the same diagnosis may not necessarily exhibit common symptoms21 and patients 59 

with different diagnoses may show highly overlapping clinical phenotypes22. The notion that mental 60 

disorders like schizophrenia and bipolar disorders reflect biologically heterogeneous categories is also 61 

supported by neuroimaging studies23,24. Nonetheless, a majority of large-scale genetic studies use a 62 

classical case-control design based on a categorical operationalization of disease without stratifying other 63 

measures such as symptoms, functioning or symptom severity. Likewise, control groups are rarely 64 

screened for subthreshold symptoms. For example in the case of psychosis, approximately 6% of the 65 

general population are reported to have a psychotic experience in their lifetime, and only a minority of that 66 

group will develop a diagnosed psychiatric illness such as schizophrenia or bipolar disorder25. Finally, the 67 

likelihood of inducing selection bias when drawing cases and controls from different populations are high 68 

and may impose confounds in case-control designs26. Thus, whereas studies using the classical case-69 

control design have been instrumental and produced a strong body of discoveries in psychiatric genetics, 70 

these designs have limitations that may prevent us from discovering signal more closely related to clinical 71 

characteristics of the disorder. In addition, case-control designs require immense effort and resources 72 

given that the high polygenicity of common psychiatric disorders requires vast sample sizes to detect 73 

effects27.  74 
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 75 

Recent large-scale population level efforts such as the UK Biobank28 now provide alternatives for the 76 

study of psychiatric disorders. The mental health data available in UK Biobank includes data from more 77 

than 150,000 individuals and covers questions on current and previous symptoms in different psychiatric 78 

domains29. For example, a recent study revealed genetic associations with psychotic experiences in the UK 79 

Biobank and reported genetic correlations between psychotic experience and common psychiatric 80 

disorders30. While this study formed two groups of subjects (with and without psychotic experience) 81 

others have suggested continuous measures of psychopathology obtained from questionnaire data, such as 82 

the p-factor31. While bundling variance of psychopathology in a single common factor can be a useful 83 

proxy of mental health vulnerability, the specificity of the p-factor to disorder-specific mechanisms is 84 

limited31. Independent component analysis32,33 provides a complementary approach to decompose the 85 

variance from mental health questionnaires into independent latent variables. For example, using 86 

independent component analysis on mental health questionnaires of children and adolescents, Alnæs and 87 

colleagues have identified a set of independent components reflecting symptoms of attention deficit, 88 

psychosis, depression, anxiety, and more34. Independent components obtained from mental health 89 

questionnaires may each capture either global (e.g. joint symptoms of depression, stress and anxiety) or 90 

specific aspects (e.g. pure psychosis symptoms) of mental health in a data-driven fashion, thereby yielding 91 

multiple distinct profiles relevant to mental health symptoms beyond a common p-factor. 92 

 93 

Here, in order to disentangle the genetic architecture underlying psychiatric symptoms and traits as well as 94 

psychosocial and other risk factor for reduced mental health we investigated structures of 95 

psychopathology and corresponding genetics using independent component analysis in the UK Biobank 96 

mental health data. This allowed us to study the genetic relationships between statistically independent 97 

profiles relevant to mental health, and between these profiles and psychiatric disorders as well as cognitive 98 

traits. We focused our analysis on data from individuals who had no previous diagnosis with a 99 

neurological or psychiatric disorder, yielding novel insights into variation in mental health in a healthy 100 

(undiagnosed) population. Given that preclinical symptoms in healthy individuals may share biological 101 

mechanisms with symptoms in diagnosed individuals, we hypothesized that the genetic architecture of 102 

specific variations in mental health in healthy (undiagnosed) individuals overlaps with specific major 103 

psychiatric disorders. However, we did not have an a-priori hypothesis for the degree of specificity. The 104 

known pleiotropy between major psychiatric disorders (reproduced in Suppl. Fig. 1) might reflect similar 105 

symptoms or risk factors occurring in different disorders or similar mechanisms underlying different 106 

symptoms or risks. We therefore investigated if statistically independent mental health profiles are also 107 

genetically independent or if they share a common genetic architecture, which may yield insights into the 108 

sources of pleiotropy in psychiatric genetics.  109 
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 110 

Methods and Materials 111 

Sample and exclusion criteria 112 

We accessed data from the UK Biobank28 with permission  no. 27412, and included data from individuals 113 

who had participated in an online follow-up questionnaire on mental health (UK Biobank category 136). 114 

All participants provided signed informed consent before inclusion in the study. UK Biobank was 115 

approved by the National Health Service National Research Ethics Service (ref. 11/NW/0382). 116 

Participants with a diagnosed psychiatric or neurological disorder (F or G ICD10 diagnosis) were 117 

excluded from the analysis except for those with a nerve, nerve root and plexus disorders (categories G50 118 

to G59). In addition, we excluded participants with more than 10% missing answers in the mental health 119 

questionnaires. This resulted in mental health data from 136,678 individuals, which was used in an 120 

independent component analysis. For the genetic analysis, we selected data from all White English 121 

individuals with available genotypes, yielding a set of 117,611 participants aged 47-80 years (mean: 64, 122 

SD: 7.66, age at mental health assessment) and comprised 56.2% females. 123 

 124 

Processing of mental health data 125 

Fig. 1A depicts the analysis workflow. The UK Biobank database contains about 140 questions on mental 126 

health and risk factors related to reduced mental health. The questions on the mental health risk factors are 127 

retrospective (e.g. “have you ever …”, “at any point in your lifetime …” etc.). This warrants some caution 128 

in the interpretation, since retrospective analysis yields lower power than a prospective design. We 129 

selected only primary questions that were answered by all participants, excluding follow-up questions. Of 130 

the 60 resulting questions that were available, we removed questions that asked specifically about 131 

symptoms occurring in the past two weeks to remove potential short-term temporal effects. Furthermore, 132 

we excluded questions where more than 10% of the responses were missing (1 question excluded). In the 133 

resulting set of 43 questions (Suppl. Table 1), we imputed missing data using k-nearest neighbor 134 

imputation with k=3 with the bnstruct package35 in R36 and z-standardized the data (Suppl. Fig. 2).   135 
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Fig. 1. Workflow and variable weight matrix of the resulting decomposition A Outline of the analysis

workflow. B Weight matrix reflecting how each mental health question loaded on each IC. Brighter colors
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 137 

The resulting data covering 43 questions from 136,678 individuals was decomposed using independent 138 

component analysis (ICA). ICA is a statistical clustering method that decomposes multiple related 139 

variables into statistically independent components. The resulting components show a high degree of 140 

within-cluster correlation, but no correlation between the clusters. Of note, the number of components 141 

needs to be pre-specified, and this selection of appropriate model order is to a certain degree a subjective 142 

task where depending on the stringency of the criteria defined for model order selection it is possible to 143 

obtain several different solutions that meet the requirements for an appropriate threshold. Here, we used 144 

icasso37 in MATLAB in combination with visual inspection of the loadings of the questions on the 145 

components. The PCA identified 13 components with an eigenvalue larger than 1, and stability (Iq) was 146 

effectively 1. A model order lower than 13 would group together questions into components which we 147 

preferred to keep separate. A model order larger than 13 was not reasonable as it would yield components 148 

that largely reflect single items. We therefore concluded that a model order of 13 independent components 149 

yields the best clustering solution where the resulting components are stable and highly interpretable. The 150 

individual scores for each of the 43 questions were subsequently residualized for age (both linear and 151 

quadratic term), sex, and the first 20 genetic principal components. Next, we decomposed the items into 152 

13 independent components using the fastICA algorithm as implemented in R38. Fig. 1B depicts how each 153 

of the 43 items loaded on the components, indicating independent components (ICs) that captured 154 

questions on sexual abuse (IC1), psychosis (IC2), anxiety, depression and mental distress (IC3), a 155 

diagnosis with a life-threatening illness (IC4), social instability (IC5), traumatic experiences (IC6), stress 156 

in the past month (IC7), experiences of feeling loved (IC8), thoughts around self-harm behavior (IC9), 157 

general happiness (IC10), addiction behavior and manic experiences (IC11), experiences of emotional 158 

abuse (IC12), and alcohol abuse (IC13). Of note, we here introduced this labeling of the ICs only to 159 

improve legibility of the results yet caution is warranted as the label is not necessarily encompassing all 160 

facets of a given component. The labels only highlight some of the core domains of questions weighing 161 

strongly on a given components, yet all interpretations need to be made in the light of the ICA framework 162 

(Fig. 1B) 163 

 164 

The distribution of IC2 indicated very few non-zero scores (Suppl. Fig. 3). This component loaded mostly 165 

on psychosis questions (Fig. 1B), indicating that only few of the included healthy individuals had 166 

symptoms in this domain. We therefore conducted an additional supplemental analysis in which we 167 

indicate higher loading, darker colors indicate lower loading. All 43 questions were captured by at least 

one of the 13 independent components. To facilitate interpretation, loadings of IC1, IC2, IC5, IC9, IC10, 

IC11, and IC12 were inverted so that all components showed the same direction of effect (higher 

component score indicating increased scoring on the items). 
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dichotomized IC2 such that loadings lower than 1 were labeled as “no/few symptoms”, and loadings equal 168 

to or higher than 1 were labeled as “with symptoms”. 169 

 170 

Processing of genetic data 171 

From the UK Biobank v3 imputed genetic data, we removed SNPs with an imputation quality score below 172 

0.5, with a minor allele frequency below 0.001, missing in more than 5% of individuals, and that failed the 173 

Hardy-Weinberg equilibrium test at p < 1e-9. We removed also individuals with more than 10% missing 174 

data. We performed a genome-wide association analysis (GWAS) on each of the 13 independent 175 

components in PLINK 239,40. Using a publicly available conversion toolbox for GWAS summary statistics 176 

(github.com/precimed/python_convert), we removed the MHC region and calculated a z-score for every 177 

SNP (8,165,726 SNPs after QC). We utilized linkage-disequilibrium score regression10,41 to estimate 178 

genetic correlations between each of the independent components, and between the components and 179 

publicly available GWAS summary statistics for SCZ1, BD2, MD42, ADHD4, ASD5, PTSD6, ANX7, as 180 

well as intelligence43, and educational attainment44 (Suppl. Table 2). For all aforementioned GWASs, we 181 

used those versions that did not have UK Biobank participants included. From the MD GWAS, we 182 

removed participants from the 23andMe dataset as well, leaving only cases with a diagnosed major 183 

depressive disorder (MDD). Prior to estimating genetic correlations, we set a threshold that only ICs with 184 

a heritability 1.96 times larger than its standard error should be included in the analysis and only those 185 

where visual quality control of corresponding Q-Q plots indicated genetic signal. These quality control 186 

steps were implemented to ensure that we did not make inferences on data that did not provide sufficient 187 

variance explained by genetics. Partitioned heritability45 was estimated using the LDSC toolbox41 and Q-Q 188 

plots were generated using custom scripts in R. Finally, we processed the GWAS summary statistics of 189 

each independent component through the Functional Mapping and Annotation toolbox (FUMA) to map 190 

lead SNPs onto genes46. FUMA parameters were kept as default, and we used the FUMA default 191 

European ancestry reference panel. 192 

 193 

Code and data availability 194 

Code and GWAS summary statistics will be made publicly available via GitHub (github.com/norment) 195 

upon acceptance of the manuscript. Furthermore, the derived independent components (individual level 196 

data) will be made available to the UK Biobank upon acceptance (derived variable return) to allow its use 197 

in future UK Biobank studies. 198 

  199 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2020.03.30.20045591doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.30.20045591


Roelfs et al. | Genetics of profiles relevant to mental health 
 

9 
 

Results  200 

Fig. 2 depicts SNP-based heritability (h2) for the 13 ICs (Suppl. Table 3 for additional statistics)201 

Heritability was generally low, yet all components yielded a heritability that was higher than 1.96 times202 

the standard error. IC13, capturing questions on alcohol abuse had the highest heritability (h2 = 0.0763203 

SE = 0.0055), closely followed by IC3, capturing anxiety, depression, and mental distress (h2 = 0.0744204 

SE = 0.0052). The lowest heritability among the components was for IC2, reflecting psychosis questions205 

(h2 = 0.0089, SE = 0.0043), likely owing to the low number of individuals with psychosis symptoms206 

(Suppl. Fig. 3). We therefore performed a supplemental analysis to investigate if dichotomization of this207 

IC would benefit the analysis (Suppl. Fig. 4). In brief, as dichotomization only slightly improved208 

heritability estimates, we kept IC2 as a continuous component for the main analysis to stay consistent with209 

the other components, yet we provide results with the dichotomized component in Suppl. Fig. 4. In210 

addition to passing the heritability criterion of 1.96 times the standard error, the Q-Q plots of all ICs211 

passed visual quality control (Suppl. Fig. 5) warranting inclusion of all components into subsequent212 

genetic correlation analyses. 213 

 214 

 

Fig. 2. Heritability estimates of the independent components SNP-based heritability for each IC 

sorted by decreasing heritability (h2). Heritability calculated using the LDSC toolbox41. Error bars 

reflect standard errors. 
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Except for IC4, all ICs showed genome wide significant SNPs at a threshold of 5e-8 (Suppl. Fig. 6). Using 216 

FUMA, we discovered 7 independent loci for IC13, 2 for IC2, IC7, and IC8, 1 locus for IC1, IC3, IC5, 217 

IC10, IC11 and IC12, and IC4, IC6, and IC9 had no significant genetic risk loci. Suppl. Table 4 provides a 218 

list of mapped genes for all ICs, illustrating that IC13 had the most mapped genes among all ICs (74 219 

mapped genes). 220 

 221 

We assessed genetic correlations between each of the 13 ICs and a set of psychiatric disorders as well as 222 

cognitive traits. Out of 117 comparisons, 70 were significant after FDR correction (α = 0.05), which 223 

amounts to 59%. Fig. 3 depicts all genetic correlations with ICs, sorted separately for each disorder or 224 

cognitive trait (sorted by absolute genetic correlation). Suppl. Fig. 7 shows the same genetic correlations 225 

separated by IC. We found that in most cases the strongest genetic correlation was with the IC most 226 

closely related to that disorder or trait. For example, anxiety most strongly correlated with IC3, which 227 

reflects anxiety, depression, and mental distress (genetic correlation rg = 0.70, pFDR < .00027). SCZ was 228 

most highly correlated with IC2, which represents psychosis questions (rg = 0.54, pFDR = .001). The 229 

highest genetic correlation of BD was with IC11, which represents addiction and mania (rg = 0.5, pFDR = 230 

6.5e-12). For PTSD, the component reflecting traumatic experience (IC6) only ranked sixth among the 231 

sorted associations, yet the two ICs showing strongest association with PTSD reflected anxiety, 232 

depression, and mental distress (IC3; rg = 0.53, pFDR = .0017) and diagnosed with life-threatening illness 233 

(IC4; rg = 0.51, pFDR = .080), both of which are closely related to PTSD. ASD correlated strongest with 234 

IC2 (reflecting psychosis; rg = 0.40, pFDR = .031) and ADHD correlated strongest with IC8 (Felt loved; rg 235 

= -0.51, pFDR = 4.7e-21). Educational attainment and intelligence were both strongest negatively correlated 236 

with the IC reflecting social instability (IC5, rg = -0.74 and rg = -0.76, respectively; both pFDR < 2.5e-74). 237 

In general, the strongest associations among all ICs, either positive or negative were with MDD while the 238 

weakest associations were with educational attainment.  239 

 240 
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Fig. 3. Genetic correlation between the independent components and disorders and cognitive 

traits For each disorder, the associations with ICs are sorted by decreasing absolute genetic correlation 

such that the most leftward box reflects the strongest association between a given disorder and the 13 

ICs. Numbers in brackets under each IC label denote the genetic correlation (rg). Size of the boxes 

reflect the standard error. Significant correlations (p < FDR) are indicated with a black border. 

 241 

Next, we assessed the genetic correlations between the ICs. Independent components are statistically242 

independent by design, and thus on the phenotype level the ICs were not correlated with each other (Fig.243 

4, lower half; correlations essentially zero). However, almost half of the IC pairs were nonetheless244 

significantly genetically correlated with each other (45%, p < FDR). IC3 (anxiety, depression, mental245 

illness) was genetically correlated with 10 other ICs. IC9 (self-harm) was correlated with 9 other ICs and246 

IC6 (traumatic experiences) and IC8 (felt loved) were each genetically correlated with eight other ICs.247 

IC11 (addiction/mania) and IC12 (emotional abuse) were each genetically correlated with seven other ICs.248 

IC1 (sexual abuse) and IC5 (social instability) were both genetically correlated with six other ICs. IC2249 
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(psychosis) was correlated with 5 other ICs. IC4 (diagnosed with life-threatening illness) and IC13250 

(alcohol abuse) were both genetically correlated with 4 other ICs. And IC7 (stress last month) and IC10251 

(general happiness) were both genetically correlated with 3 other ICs. No IC had no significant genetic252 

correlations with other ICs. The analysis therefore revealed a large amount of genetic correlations despite253 

statistical (phenotypic) independence of the symptom profiles. 254 

 255 

 

Fig. 4. Phenotypic and genetic correlation between the ICs The lower half of the IC by IC matrix 

depicts phenotypic correlations, reflecting the Pearson correlation of subject level component scores 

between independent components. As expected by ICA design, correlations were close to zero. The 

upper half of the matrix depicts the genetic correlations (rg), indicating significant genetic correlations 

in 40 of 78 tests. Size of the boxes indicate standard error and significant correlations (p < FDR) are 

indicated with a black border. 
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Discussion 257 

In the present study, we decomposed mental health questionnaire data from more than 130,000 individuals 258 

into phenotypically distinct profiles relevant to mental health (independent components) that reflected 259 

compositions of symptoms, psychosocial and other risk factors for reduced mental health. We found that 260 

variations in these profiles in healthy individuals (without a neurological or psychiatric diagnosis) were 261 

genetically correlated with psychiatric disorders and cognitive traits. Strongest correlations were observed 262 

between components and disorders with known symptoms in a similar domain (e.g. psychosis symptoms 263 

with schizophrenia), but the large amount of significant correlations between disorders and mental health 264 

profiles suggested limited specificity. Indeed, we found a large proportion of significant genetic 265 

correlations between the phenotypically uncorrelated profiles, suggesting overlapping genetic 266 

architectures underlying distinct symptoms and risk factors. A number of the questions included in the 267 

analyses revolved around risk factors for mental health, such as a history of childhood abuse, sexual 268 

abuse, and an unstable home situation. Caution is warranted in the interpretation of these effects. The 269 

genetic correlation with the independent components capturing these items do not suggest that there is a 270 

genetic component to high-risk environments but rather are likely to capture second order effects. In other 271 

words, a GWAS on such these risk factors is more likely to reflect other factors underlying these risk 272 

factors than the risk factor directly.  273 

 274 

The implications of our findings are twofold. First, our results support pleiotropy in psychiatric disorders 275 

beyond overlapping symptoms (e.g. BD and MDD both involving depressive episodes), suggesting that 276 

even distinct psychiatric symptoms are genetically overlapping. Second, our findings support that normal 277 

variability in mental health within healthy individuals may inform the study of the biology of psychiatric 278 

disorders. 279 

 280 

While pleiotropy between major psychiatric disorders has been widely established9–11 (reproduced in 281 

Suppl. Fig. 1), the sources underlying pleiotropy remain largely unknown. Specifically, disorders 282 

oftentimes overlap in symptomatology and therefore the degree to which the observed genetic correlations 283 

between disorders reflect phenotypic overlap between disorders remains to be investigated. Our approach 284 

of decomposing mental health data into distinct profiles allowed us to study genetic correlations in a 285 

sample with known phenotypic correlations and to assess how these profiles correlate with the genetics of 286 

different diagnoses. We observed that most disorders correlated strongest with the independent 287 

components capturing a related phenotype. For example, the strongest association with IC3, which reflects 288 

variance in anxiety, depression, and mental distress, was with ANX, the strongest association with IC2 289 

(psychosis) was with SCZ. Therefore, the ranking of association strengths suggested a certain degree of 290 

specificity. However, that degree was strongly limited as most of the disorders and components were 291 
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significantly genetically correlated. For example, MDD showed significant correlations between all but 292 

one component, ASD correlated with all but four components, and ANX and ADHD were correlated with 293 

all but 5 components, though correlation strengths were overall lower than with MDD, possibly due to 294 

lower sample size. There were also significant associations between components and cognitive traits 295 

although overall weaker associations compared to those with disorders. About half of the genetic 296 

correlations with intelligence and educational attainment pointed in the opposite direction, considerably 297 

more than for the psychiatric disorders, reflecting higher cognitive ability with fewer psychiatric 298 

symptoms. Importantly, when looking at the correlations between mental health profiles, we found that 299 

almost half of the genetic correlation matrix between ICs yielded significant genetic correlations despite a 300 

lack of phenotypic correlations (independence of the components). This suggests that some of the same 301 

genes are involved in the genetics of distinct profiles relevant to mental health and may indirectly support 302 

pleiotropy independent of phenotypic overlap in psychiatric disorders. Whereas more research is needed 303 

before conclusions on the sources underlying the observed pleiotropy can be drawn, one possible 304 

explanation for the significant correlations in the ICs could be that, since all independent components each 305 

capture a facet of mental health, there may be a number of SNPs that are involved across mental health 306 

symptoms. These SNPs may be involved in overall mental health, from psychological well-being to 307 

psychosis symptoms. Our analysis of significant SNPs in FUMA did not identify overlapping SNPs 308 

between ICs, however, this may be attributed to the relatively low number of significant loci discovered in 309 

the ICs. Advanced statistical tools and further increasing sample sizes may help pinpoint specific genes 310 

involved with different symptoms. Furthermore, it is also plausible that environmental effects may factor 311 

into the explanation of the significant genetic correlations despite phenotypic independence if the 312 

environmental factors differ markedly between the ICs.  313 

 314 

Limitations 315 

Notable strengths of the present study include the use of data-driven decomposition of mental health data 316 

in a large sample of healthy individuals and its application to study pleiotropy in psychiatric genetics. Its 317 

main limitations include the low heritability of the resulting independent components, and the limited 318 

number of individuals with psychosis symptoms yielding suboptimal distribution in IC2 (Suppl. Fig. 3). 319 

First, it is important to note that all ICs passed quality control. Heritability of all ICs exceeded our pre-320 

defined heritability threshold of 1.96 times its standard error, and all Q-Q plots indicated genetic signal 321 

(Suppl. Fig. 5).  Furthermore, low heritability can still produce good genetic signal as a result from a low 322 

number of genetic variants involved but where each has large effects13. For example, while IC2 had the 323 

lowest heritability among the ICs, it showed one of the strongest genetic signals and together with IC7 and 324 

IC8 it ranked second in terms of the number of loci discovered in FUMA, following IC13 (alcohol abuse) 325 

that showed the highest heritability, strongest genetic signal on the Q-Q plot and the largest number of 326 
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significant loci and mapped genes. Second, although sample size and symptom distributions factored into 327 

the results, these are mostly reflected in the standard error of genetic associations, not in a lack of effect. 328 

For example, ANX7 (n = 21,761) and PTSD6 (n = 9,537) GWASs have relatively little power as reflected 329 

in the larger standard errors in genetic correlations with these disorders, but nonetheless the strongest 330 

associations with these disorders were with components that match symptoms of the disorders (both 331 

correlated strongest with IC3, reflecting anxiety/depression/mental distress). Likewise, the suboptimal 332 

symptom distributions in IC2 and corresponding low heritability is reflected in large standard errors of the 333 

resulting genetic correlations but nonetheless IC2, reflecting psychosis, was most strongly associated with 334 

SCZ. Supplemental analysis with dichotomized IC2 also confirmed that the distribution alone is unlikely 335 

to explain the observed associations (Suppl. Fig. 4).   336 

 337 

Furthermore, it is important to note that while we excluded individuals with psychiatric disorders based on 338 

ICD codes we may still include individuals with (sub-threshold) psychiatric disorders that have not been 339 

diagnosed. For example, most patients with depressive symptoms in the UK will be treated by first-line 340 

care, which may not be registered in the UK Biobank47. However, distributions of z-scores on the 341 

individual questions appear quite similar between individuals without and individuals with a diagnosis 342 

(Suppl. Fig. 2). While we cannot rule out subtle contributions on IC decomposition by the potential 343 

remaining inclusion of a subset of patients in primary care, these results support that should such a 344 

confound be present, it is unlikely to have introduced enough structural variance to diminish our main 345 

findings. 346 

 347 

Conclusion 348 

In the present study, we revealed genetic overlap between statistically independent profiles relevant to 349 

mental health capturing compositions of symptoms, psychosocial and other risk factors for reduced mental 350 

health and provide evidence that variations in mental health in healthy individuals relate genetically to 351 

psychiatric disorders and cognitive traits. These findings support that pleiotropy between psychiatric 352 

disorders cannot simply be explained by overlapping symptoms or risks but may rather point to similar 353 

biological underpinnings of distinct symptoms or risks. Our results underscore the potential of data-driven 354 

approaches to the study of mental health, and suggests that supplementing the classic case-control design 355 

with a dimensional approach may improve our understanding of the genetic underpinnings of complex 356 

disorders of the mind. 357 

  358 
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