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Summary 

 

Background: COVID-19 pandemic has developed rapidly and the ability to stratify the most 

vulnerable patients is vital. However, routinely used severity scoring systems are often low on 

diagnosis, even in non-survivors. Therefore, clinical prediction models for mortality are 

urgently required.  

Methods: We developed and internally validated a multivariable logistic regression model to 

predict inpatient mortality in COVID-19 positive patients using data collected retrospectively 

from Tongji Hospital, Wuhan (299 patients). External validation was conducted using a 

retrospective cohort from Jinyintan Hospital, Wuhan (145 patients). Nine variables commonly 

measured in these acute settings were considered for model development, including age, 

biomarkers and comorbidities. Backwards stepwise selection and bootstrap resampling were 

used for model development and internal validation. We assessed discrimination via the C 

statistic, and calibration using calibration-in-the-large, calibration slopes and plots. 

Findings: The final model included age, lymphocyte count, lactate dehydrogenase and SpO2 

as independent predictors of mortality. Discrimination of the model was excellent in both 

internal (c=0·89) and external (c=0·98) validation. Internal calibration was excellent 

(calibration slope=1). External validation showed some over-prediction of risk in low-risk 

individuals and under-prediction of risk in high-risk individuals prior to recalibration. 

Recalibration of the intercept and slope led to excellent performance of the model in 

independent data.  

Interpretation: COVID-19 is a new disease and behaves differently from common critical 

illnesses. This study provides a new prediction model to identify patients with lethal COVID-

19. Its practical reliance on commonly available parameters should improve usage of limited 

healthcare resources and patient survival rate.   
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Research in context 

 
Evidence before this study 

Since the outbreak of COVID-19, there has been a pressing need for development of a 

prognostic tool that is easy for clinicians to use. Recently, a Lancet publication showed that in 

a cohort of 191 patients with COVID-19, age, SOFA score and D-dimer measurements were 

associated with mortality. No other publication involving prognostic factors or models has been 

identified to date.   

Added value of this study 

In our cohorts of 444 patients from two hospitals, SOFA scores were low in the majority of 

patients on admission. The relevance of D-dimer could not be verified, as it is not included in 

routine laboratory tests. In this study, we have established a multivariable clinical prediction 

model using a development cohort of 299 patients from one hospital. After backwards selection, 

four variables, including age, lymphocyte count, lactate dehydrogenase and SpO2 remained in 

the model to predict mortality. This has been validated internally and externally with a cohort 

of 145 patients from a different hospital. Discrimination of the model was excellent in both 

internal (c=0·89) and external (c=0·98) validation. Calibration plots showed excellent 

agreement between predicted and observed probabilities of mortality after recalibration of the 

model to account for underlying differences in the risk profile of the datasets. This 
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demonstrated that the model is able to make reliable predictions in patients from different 

hospitals. In addition, these variables agree with pathological mechanisms and the model is 

easy to use in all types of clinical settings.  

Implication of all the available evidence 

After further external validation in different countries the model will enable better risk 

stratification and more targeted management of patients with COVID-19. With the nomogram, 

this model that is based on readily available parameters can help clinicians to stratify COVID-

19 patients on diagnosis to use limited healthcare resources effectively and improve patient 

outcome.  
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Introduction 

Since the outbreak of coronavirus disease 2019 (COVID-19) in December 2019 in China, there 

have been over 200,000 confirmed cases, with 10-20% developing severe COVID-19 and 

approximately 5% requiring intensive care1,2. Although the number of daily cases has 

significantly reduced in China because of intensive control procedures, the numbers in the rest 

of world are continuing to increase. More than 10,000 deaths have been reported but the 

estimated mortality rate (3%) is much lower than Severe Acute Respiratory Syndrome (SARS) 

in 2003 (9·6%, 774 died of 8096 infected) and Middle East Respiratory Syndrome (MERS) in 

2012 (34·4%, 858 died of 2494 infected)3. Although the vast majority of cases of COVID-19 

are not life-threatening, stratification of these patients becomes increasingly important as large 

populations are expected to be infected globally.  

The deaths and morbidity from COVID-19 infection are primarily due to respiratory failure, 

although a few people have died of multiple organ failure (MOF) or chronic comorbidities4,5. 

Therefore, reduced oxygen saturation is the major indicator of disease severity. However, 

symptoms at onset are relatively mild and a substantial proportion of patients have no obvious 

symptoms prior to the development of respiratory failure4,5. Clinically, it is difficult to stratify 

patients who may develop lethal COVID-19 until respiratory failure develops. Since early 

identification and effective treatment can reduce mortality and morbidity as well as relieve 

resource shortages, there is an urgent need for effective prediction models to identify patients 

who are most likely to develop respiratory failure and poor outcomes.  

A robust, highly discriminatory and validated clinical prognosis model is required for 

stratification of these patients. Currently, very few reports propose reliable prediction models, 

which have been constructed using Transparent Reporting of a multivariable prediction model 

for Individual Prognosis Or Diagnosis (TRIPOD) guidance with internal and external 

validation6. One report based on a cohort of 191 COVID patients in early stages of the 
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pandemic showed that age, Sequential Organ Failure Assessment (SOFA) score and D-dimer 

are independent risk factors of mortality7. However, D-dimer is not a routinely available 

clinical measurement and SOFA can be relatively low in COVID-19 patients on admission, but 

in the aforementioned report some patients in late stage of COVID-19 were transferred to its 

study hospitals7. This might explain the difference in SOFA scores.   

In this study, we aimed to employ routine, widely available clinical test data to predict mortality 

of COVID-19 hospitalised patients using multivariable regression analysis in a cohort of 299 

cases. The model has been established and validated with a new cohort of 145 patients with 

COVID-19 from a different hospital. Through this study, we hope that the experience from the 

outbreak in China will assist the rest of the world in better stratification of COVID-19 patients 

to achieve better outcomes for patients.  

Methods 

Study design and patients  

This was a retrospective observational study performed in officially designated treatment 

centers for confirmed patients with COVID-19 in Wuhan at the center of the outbreak in China. 

The protocol was approved by the local Institutional Ethics Committee (Approval Number: 

KY-2020-10.02). First cohort of 299 patients admitted in Tongji hospital within January and 

February 2020 were enrolled into this study for model development. Second cohort of 151 

patients admitted to Jinyintan hospital who were included in a previous study were reused for 

model validation. All patients were diagnosed by positive tests of novel coronavirus nucleic 

acids (SARS-CoV-2), according to WHO interim guidance8. Only patients who were 

discharged from hospital or had died were included in this study. Six patients in the second 

cohort, who died very quickly after admission and did not received any laboratory testing, were 

excluded. Patients younger than 18 years of age were also excluded.  

Data collection 
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Clinical data, including demographic information, chronic comorbidities, biomarkers of 

infection and other laboratory tests were collected from the local Online Medical System. The 

time from onset of symptoms to hospital admission was also recorded. SOFA was calculated 

within 24h of admission. For patients who did not have arterial blood gas analysis, peripheral 

capillary oxygen saturation (SpO2) to estimate the arterial oxygen partial pressure (PaO2) and 

the recorded fraction of inspired oxygen (FiO2) were used. The SOFA score for the respiratory 

system was calculated according to PaO2/FiO2 (P/F) ratio when patients received non-invasive 

or invasive mechanical ventilation. All patients were closely followed until they died or were 

discharged from the hospital. Hospital mortality and length of hospital stay were also recorded. 

Statistical analysis 

Data were fully anonymized before data cleaning and analyses. We followed the TRIPOD 

guidance for development, validation and reporting of multivariable prediction models6. 

Analyses were performed in R version 3.5.19. The development model was built using the data 

from Tongji Hospital. We performed logistic regression analysis with the outcome variable 

defined as mortality. Variables were selected a priori based on previous clinically-related 

studies, completeness across both sites, clinical knowledge and practicality of measurement in 

acute medical emergencies. Variables were excluded if they had high collinearity with global 

scores. The number of predictors was restricted based on the total number of outcomes in the 

development dataset10. Analysis was conducted for the following nine variables: age, 

hypertension, diabetes, SpO2, systolic blood pressure, albumin, lactate dehydrogenase (LDH), 

lymphocyte count and platelet count. Organ-specific markers, such as alanine transaminase 

(ALT) and blood urea nitrogen (BUN) were not included in the original development model 

because of collinearity with global markers, particularly LDH. SOFA score was not included 

for this reason, as explained in Results. D-dimer, interleukin (IL)-6 and cardiac troponin I (cTnI) 

were excluded from the analysis because they were not routinely tested in the cohorts. LDH 
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was selected as a general marker for cell injury or death and since blood gas analysis were not 

commonly used in these hospitals, SpO2 was selected to reflect respiratory function and was 

modelled as a continuous variable to maximize statistical power11. Albumin was selected as a 

marker for the acute phase response instead of C reactive protein (CRP) because of CRP 

collinearity with LDH. Age is known risk factor for mortality from severe respiratory infections, 

including COVID-19. Lymphocyte count and platelet counts were reported in a previous 

publication of COVID-19 and selected7,12. In this study, lymphocyte count was log transformed 

due to extreme values. Systolic blood pressure (SBP), diabetes and hypertension were selected 

based on previous publications7. All nine selected variables were input into the multivariable 

model and backwards stepwise selection was performed with improvement in goodness-of-fit 

assessed by a reduction in the Akaike Information Criterion (AIC). A nomogram of the selected 

final model was used for graphical representation of the prediction model and was produced 

with R function regplot – this was chosen to offer maximum use of the prediction model in 

clinical practice without the need for internet access13,14.  

Model performance was assessed via measures of discrimination and calibration. To assess 

discrimination, the C statistic was used. For calibration, patients in the development database 

were split into deciles, ordered by their probability of death. For each decile, the mean of the 

predicted probability of death was calculated and compared with the mean observed probability 

of death. Calibration plots were constructed including locally estimated scatterplot smoothing 

(loess) regression lines15.  

Internal validity was assessed with bootstrapping (1000 replications) of the entire model 

building process including backwards stepwise selection of all potential predictors. 

Bootstrapped samples were created by drawing random samples with replacement from the 

development database. The prediction model was fitted on each bootstrap sample and tested on 

the original sample. Overfitting was assessed in each bootstrap replication. This allowed 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2020. ; https://doi.org/10.1101/2020.03.28.20045997doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.28.20045997
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

calculation of optimism and optimism adjusted discrimination and calibration statistics. The 

final development model coefficients were then adjusted for optimism using the optimism 

adjusted calibration slope for shrinkage15.  

To assess external validity, the final optimism-adjusted model was applied to an independent 

data set, from Jinyintan hospital. External validity of the model was assessed using the C 

statistic, calibration-in-the-large, calibration slope and the calibration plot. Recalibration was 

conducted updating the intercept, and the intercept and slope. 

Results  

Patient cohorts 

The development cohort included 299 patients who were admitted in Tongji Hospital. Data 

completeness is presented in supplementary Table 1. There were 155 deaths, the median age 

of patients was 65 years (IQR: 54-73) and 48·2% were male (Table 1). The validation cohort 

that included 145 patients was younger: age 56 years (IQR 47-68) with a higher percentage of 

males (65·5%) than in the developmental cohort (P<0·001). The median (IQR) time from onset 

of symptoms to hospital admission was no different in the developmental 10 [7-14] and 

validation 10 [7-13] cohorts. More patients had hypertension (42·6% vs 26·9%) and heart 

failure (4·4% vs 0.7%) in the development than validation cohorts, whilst diabetes (18·5% vs 

11·7%), chronic obstructive pulmonary disease (COPD) (5·0% vs 3·4%) and others (6·4% vs 

4·8) showed no statistical difference. SOFA scores were statistically higher in the development 

than validation cohorts (2·0 [2·0-4·0] vs 1·0 [0·0-3·0]) but both were very low compared to 

common critical illnesses. Table 2 shows that non-survivors were significantly older than 

survivors (69 years (IQR 61·75 to 75·00) vs. 52·50 (IQR 43·75-64·00), p<0·001). Patients with 

hypertension, showed a significantly higher mortality rate (p<0·001).  

Model development 
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In the developmental cohort (Tongji Hospital), 268/299 patients had complete data for all nine 

variables. The final multivariable model included age (adjusted OR 1·054; 95% CI 1·028 to 

1·083), LDH (adjusted OR 1·004; 95% CI 1·002 to 1·006), log lymphocyte count (adjusted 

OR 0·296; 95% CI 0·148 to 0·541) and SpO2 (adjusted OR 0·897; 95% CI 0·831 to 0·958) 

(Table 3). The final model showed excellent discrimination (C statistic = 0·89) and was well 

calibrated (slope =1 and calibration-in-the-large =0·00), as shown in the calibration plot (Table 

4 and Figure 1). The final model for mortality is presented as a nomogram and an example of 

how to use the nomogram is presented for a patient aged 59, with LDH of 482, SpO2 of 85% 

and lymphocyte count of 0·64 (Figure 2). 

Internal validation 

Interval validation was run using bootstrap resampling and showed a small amount of 

overfitting. Bootstrapping with backwards stepwise selection provided a shrinkage factor of 

0.900. After adjusting for overfitting the final model retained high discrimination (C statistic= 

0·880) and calibration-in-the-large of 0·006 (Table 4). The shrinkage factor was applied to the 

β coefficients of the multivariable model to provide optimism adjusted coefficients (Table 3). 

External validation 

External validation is required because the accuracy of a predictive model will always be high 

if it is validated on the development cohort used to generate the model16,17. In this study, we 

applied our final prediction model with optimism adjusted coefficients to the validation dataset. 

There were 145 patients in the validation dataset of whom 69 patients (47·6%) died. Of the 145 

patients, 127 had complete data for the four variables in the final developmental model (age, 

lymphocyte count, SpO2 and LDH) The C statistic for the discrimination of the developed 

model in the independent data was 0·980 (0·958 to 1·000) and the model had reasonable 

calibration (slope and calibration-in-the-large) (Table 5). Figure 3 suggests some mis-

calibration of the model in the independent data with over-estimation of risk of mortality in 
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low-risk individuals and under-estimation of risk in high-risk individuals. After recalibration 

of the intercept, the discrimination of the model was the same (as expected given that 

recalibration does not influence the ranking of individuals according to the model) as was the 

calibration slope. Calibration-in-the-large was 0·00 (-0·477 to 0·471). The calibration plots 

still suggest mis-calibration of the model (Figure 3c). When both intercept and slope were 

recalibrated the calibration slope was 1·00 (0·675 to 1·477) and the plot then demonstrated 

good calibration (Figure 3d). 

Discussion 

Most routine scoring systems, such as SOFA, which are very useful in the intensive care unit 

(ICU) for sepsis and other critical illnesses18-20, were very low in COVID-19 patients on 

admission with median SOFA score of 2. However, 155/299 and 69/145 patients in the 

development and validation cohorts died in the hospital, respectively. This poor outcome 

strongly indicates that these routine scoring systems used in general wards and ICU cannot 

accurately assess the severity and predict the mortality of patients with COVID-19. We have 

therefore used a hospitalized study population from Wuhan Tongji Hospital to develop a 

clinical prediction model using available demographic and clinical indicators. The most 

informative factors in COVID-19 positive patients were age, LDH, lymphocyte count and SpO2. 

The developed statistical model had good discrimination and minimal model optimism. In 

external validation using an independent cohort from Jinyintan hospital, the model had 

excellent discrimination but needed recalibrating to account for the different underlying risk 

profile in the independent dataset. Specifically, the development and validation cohorts are 

temporally distinct as the validation cohort were from earlier in the COVID-19 outbreak. In 

addition, they are from different sites within Wuhan and the demographics are distinct, with 

patients admitted to the Jinyintan hospital being younger with a male majority and less patients 

with hypertension and low SOFA scores (1.0 [0-3] vs 2.0 [2.0-4.0]. However, the nomogram 
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of the final model after optimization can be used by clinicians to give a prediction of mortality 

and thus inform treatment choice and guide patient and family counselling.   

Old age is a major factor of mortality from infection21. This is consistent with the current data 

from China on COVID-19 with less than 1% in children <10 years old, increasing to 2%, 4% 

and 10% in age 11-40, 41-70, and >70, respectively. However, the majority of people infected 

are 30-70 years old (approximately 80% of the total cases), thereby making it difficult to stratify 

the majority of cases according to age. Patient comorbidities, including hypertension, diabetes, 

did not significantly contribute to the model, although mortality rates were significantly higher 

in patients with hypertension.  

The pathological feature of COVID-19 is mainly that of a viral pneumonia with alveolar 

oedema and blockage of small bronchi to compromise gas exchange within the lungs. 

Therefore, PaO2 will drop when severe pneumonia develops. Since arterial blood gas (ABG) 

analysis is an invasive and complex process, which requires arterial blood taking and use of a 

ABG analyzer, SpO2 measurement is much more used for continuous analysis of blood oxygen 

saturation in patients to estimate the arterial oxygen partial pressure (PaO2)
22. Moreover, many 

mobile phone brands contain built-in sensors and SpO2 can be measured by patients themselves. 

In our cohorts, many patients had no blood gas data and therefore SpO2 was used as a variable 

in our model. Although SpO2 is not as accurate as PaO2 in critical illnesses, it could give the 

first indication of compromised lung gas exchange in the early stages of COVID-19, which 

would then be verified by ABG measurement upon admission to hospital.  

Lymphopenia is very common in patients with influenza virus infection and bacterial infection, 

particularly in sepsis23,24. CD4 and CD8 T cell apoptosis causes prolonged infection by 

promoting virus survival25, and induces immune suppression to increase mortality in patients 

with sepsis26. In this study, we found a dramatic difference in lymphocyte counts between 

survivors and non-survivors. In non-survivors, the peripheral lymphocyte counts were very low 
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on admission, indicating that extensive lymphocyte death occurred following infection. LDH 

is released into circulation after cell injury or death27 and serves as an index of the extent of 

cellular damage by the virus or the host immune response28.  

This study has several limitations. At this stage in the global outbreak of COVID-19, no 

published studies have developed and validated prediction models for assessing the probability 

of mortality in hospitalized patients. A most recent report proposed SOFA score, age and D-

dimers as the important prognostic markers7. However, in our cohorts, the SOFA score was 

very low although there is statistical difference between survivors and non-survivors. This 

difference may be due to some patients being treated in other hospitals prior to transfer in the 

previously reported study7. In addition, SOFA score relies on blood gas analysis, which cannot 

be easily done continually, in clinics and in under-resourced settings, thus making it difficult 

for clinicians to use readily. In addition, since D-dimer is not routinely requested, too many 

patients in our cohorts had no test performed, making it is difficult for us to verify published 

results. Organ-specific injury markers were not included in the model, including cTnI due to 

missing data (not routinely measured), as well as ALT and BUN due to high co-linearity with 

other variables within the model. Therefore, the choice of potential prognostic factors could 

not be informed by a systematic review of existing prediction models. Similarly, there are no 

published estimates of discrimination and calibration to compare this study to. Additionally, 

the event rate is limited, especially in the independent dataset where at least 100 events would 

be preferable29. A multicenter study with a larger cohort for model development and also for 

validation would add more power, reduce bias, and make the findings more generically 

applicable.   

There is also inherent bias in the recruitment of patients because the Jinyintan hospital was the 

first officially designated receiving hospital in Wuhan for all COVID-19 cases at the start of 

the outbreak. The recruited patients were mainly self-referrals, but some were referred by other 
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hospitals immediately after a positive diagnostic test. Self-referred patients are more likely to 

have severe symptoms that cause them to seek emergency medical help. Likewise, other 

hospitals are more likely to test patients who have more pronounced symptoms, thus creating 

an inherent bias in the patient sample. Therefore, the cohort may not accurately represent 

patients with mild or asymptomatic COVID-19. These results need to be further validated with 

patients who are hospitalized for different severities of illness. 

Despite these limitations, the obvious advantage of the model developed here is that the panel 

of variables used to build the model are basic demographics and values from accessible clinical 

tests that are recorded routinely in the acute clinical setting. With the vivid nomogram, this 

model will enable the majority of clinicians to assess the severity of patient illness without 

difficulty, particular in very busy clinical settings. We were also able to externally validate our 

model in an independent dataset. The discrimination of the model was high in both internal and 

external validation showing that the model is able to accurately differentiate high and low risk 

individuals. The prediction models are based on and validated in Chinese hospitalized COVID-

19 positive populations and should therefore be applicable to other sites within China and may 

also be translatable into other sites during the global outbreak. However, separate validation 

will be required in other patient populations before widespread application.  

In conclusion, traditional early warning scores and organ injury markers do not help to predict 

severity and mortality in patients with COVID-19. Here, we have developed and validated a 

clinical prediction model using readily available clinical markers which is able to accurately 

predict mortality in people with COVID-19. This model can therefore be used in current 

pandemic regions to identify patients who are at risk of severe disease at an early enough stage 

to initialize intensive supportive treatment and to guide discussions between clinicians, patients 

and families. It has the potential to be used throughout the world following additional validation 
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in relevant worldwide datasets, with recalibration as necessary to account for differing risk 

profiles of patients.  
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Tables 

Table 1: Basic demographics and clinical features of patients in the developmental and validation datasets.  

(For continuous variables median and IQR are reported) 

 

 
Developmental Validation   

 
Tongji (N=299) Jinyintan (N=145) Total (N=444) P value 

Age (Years)     65·0 (54·0, 73·0) 56·0 (47·0, 68·0) 62·0 (50·8, 71·0) < 0·001 

Gender 
   < 0·001 

     Male 144 (48·2%) 95 (65·5%) 239 (53·8%)  

     Female 155 (51·8%) 50 (34·5%) 205 (46·2%)  

Days since onset 10·0 (7·0, 14·0) 10·0 (7·0, 13·0) 10·0 (7·0, 14·0) 0.357 

Co-morbidities 
    

     Hypertension    127 (42·6%) 40 (27·6%) 167 (37·6%) 0·001 

     Diabetes 55 (18·5%) 17 (11·7%) 72 (16·3%) 0·069 

     COPD 15 (5·0%) 5 (3·4%) 20 (4·5%) 0·627 

     Heart Failure 13 (4·4%) 2 (1·4%) 15 (3·4%) 0·042 

     Smoking 10 (3·4%) 7 (4·8%) 17 (3·8%) 0·449 

     Other 19 (6·4%) 7 (4·8%) 26 (5·9%) 0·515 

Mortality, n (%) 155 (51·8%) 69 (47·6%) 224 (50·5%) 0·419 

SPO2, (%) 95·0 (90·0, 98·0) 95·0 (89·0, 97·0) 95·0 (90·0, 98·0) 0·366 

SPO2, (%) 
   0·340 

     ≥90 229 (77·4%) 95 (73·1%) 324 (76·1%)  

     <90 67 (22·6%) 35 (26·9%) 102 (23·9%)  

SOFA score 2·0 (2·0, 4·0) 1·0 (0·0, 3·0) 2·0 (1·0, 4·0) < 0·001 

Systolic blood 

pressure, 
mmHg 

132·5 (118·0, 145·0) 122·5 (117·0, 137·3) 129·5 (117·0, 143·0) 0·008 

WBC, 109/L 6·8 (4·7, 10·6) 7·6 (5·0, 11·2) 6·9 (4·8, 10·8) 0·562 

Lymphocyte count, 

109/L 
0·75 (0·50, 1·11) 0·74 (0·52, 1·13) 0·75 (0·50, 1·12) 0·703 

Platelet count, 109/L 179·5 (137·3, 247·8) 192·0 (140·5, 242·3) 182·0 (138·0, 247·3) 0·413 

D-dimer, mg/L    0·274 

     <0.5 49 (19·0%) 36 (25·9%) 85 (21·4%)  

     0.5-1.0 55 (21·3%) 28 (20·1%) 83 (20·9%)  

     ≥1.0 154 (59·7%) 75 (54·0%) 229 (57·7%)  

Albumin, g/L 33·4 (29·9, 36·2) 30·7 (27·4, 34·5) 32·5 (28·9, 35·8) < 0·001 

hs-cTnI, pg/ml    0·198 

     <28.0 173 (71·5%) 107 (77·5%) 280 (73·7%)  

     ≥28.0 69 (28·5%) 31 (22·5%) 100 (26·3%)  

ALT, U/L 26·0 (16·0, 40·8) 29·0 (19·0, 51·0) 27·0 (17·0, 45·0) 0·017 

AST, U/L 33·5 (24·0, 56·0) 36·0 (27·0, 47·5) 34·0 (25·0, 53·0) 0·400 

Bilirubin, mol/L         10·3 (7·6, 14·6) 12·5 (9·7, 17·4) 11·4 (8·2, 15·9) <0.001· 

BUN, mmol/L 5·9 (3·9, 9·2) 5·8 (4·4, 7·6) 5·9 (4·1, 8·6) 0·602 

Creatinine, U/L      74·0 (58·0, 95·0) 72·9 (58·8, 84·6) 73·2 (58·5, 93·0) 0·264 

Creatinine kinase, 

U/L  
131·0 (70·0, 380·8) 92·0 (52·0, 183·0) 101·0 (58·0, 238·0) 0·005 
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LDH, U/L  384·0 (264·0, 541·0) 333·0 (251·0, 521·0) 362·0 (260·5, 535·3) 0·199 

CRP, mg/dl 65·3 (27·4, 113·9) 58·3 (23·7, 114·5) 64·5 (25·1, 114·4) 0·442 

INR, s 1·13 (1·04, 1·25) 0·96 (0·90, 1·03) 1·07 (0·98, 1·18) <0·001 

Procalcitonin, ng/ml 0·13 (0·05, 0·37) 0·07 (0·05, 0·19) 0·10 (0·05, 0·27) 0·030 

 

Data are presented as median (IQR), or n (%). P values were calculated using Wilcoxon rank-sum test, χ2 or Fisher’s exact test. 

ALT= Alanine aminotransferase. AST= Aspartate aminotransferase. BUN=Blood urea nitrogen. COPD=chronic obstructive 

disease. CRP= C-reactive protein. hs-cTnI= high-sensitivity cardiac troponin I. INR= international normalized ratio. LDH= 

lactate dehydrogenase. SOFA= sequential organ failure assessment. SPO2= pulse oxygen saturation. WBC=white blood cell. 

 

Table 2: Differences in demographics between COVID-19 patients who survived and died in developmental and 

validation datasets. (For continuous variables median and IQR are reported) 

 

 Developmental (Tongji) Validation (Jinyintan) 

  Survived (N=144) Died (N=155) P value Survived (N=76) Died (N=69) P value 

Age (Years)     56·0 (47·8, 67·0) 69·00 (62·0, 76·0) <0·001 47·0 (40·8, 53·3) 67·0 (61·0, 73·0) < 0·001 

Gender   0·191   0·673 

     Male 75 (52·1%) 69 (44·5%)  51 (67·1%) 44 (63·8%)  

     Female 69 (47·9%) 86 (55·5%)  25 (32·9%) 25 (36·2%)  

Days since 

onset 
10·0 (7·0, 13·0) 10·0 (7·0, 15·0) 0·267 9·0 (7·0, 12·3) 10·0 (7·0, 13·0) 0·062 

Co-morbidities       

     

Hypertension    
47 (32·6%) 80 (51·9%) <0·001 8 (10·5%) 31 (44·9%) <0·001 

     Diabetes 21 (14·6%) 34 (22·2%) 0·09 4 (5·3%) 13 (18·8%) 0·018 

     COPD 2 (1·4%) 13 (8·4%) 0·006 1 (1·3%) 4 (5·8%) 0·192 

     Heart 

Failure 
1 (0·7%) 12 (7·8%) 0·003 0 (0·0%) 1 (1·4%) 0·476 

     Smoking 5 (3·5%) 5 (3·2%) 0·914 1 (1·3%) 6 (8·7%) 0·054 

     Other 8 (5·6%) 11 (7·1%) 0·575 2 (2·6%) 5 (7·2%) 0·258 

SpO2, (%) 97·0 (95·0, 98·0) 92·0 (83·8, 96·0) <0·001 97·0 (94·8, 98·0) 89·0 (81·0, 94·0) < 0·001 

SpO2, (%)   <0·001   < 0·001 

     ≥90 136 (94·4%) 93 (61·29%)  68 (94·4%) 27 (46·6%)  

     <90 8 (5·6%) 59 (38·8%)  4 (5·6%) 31 (53·4%)  

SOFA score 2·0 (1·0, 2·0) 4·0 (2·0, 5·0) <0·001 1·0 (0·0, 1·0) 3·0(2·0, 5·0) < 0·001 

Systolic blood 

pressure, mmHg 

131·0 (120·0, 

141·3) 

133·5 (116·3, 

149·0) 
0·169 

119·0 (115·0, 

125·3) 

131·5 (122·0, 

145·3) 
< 0·001 

WBC, 109/L 5·4 (4·0, 7·2) 9·0 (5·9, 13·4) <0·001 5·6 (3·5, 8·8) 8·7 (6·7, 12·5) < 0·001 

Lymphocyte 

count, 109/L 
0·98 (0·75, 1·52) 0·57 (0·43, 0·82) <0001 1·00 (0·74, 1·31) 0·54 (0·39, 0·73) <0·001 

Platelet 

count,109/L 

207·0 (161·0, 

278·0) 

159·0 (114·5, 

220·5) 
<0·001 

194·0 (147·5, 

274·5) 

188·0 (130·0, 

228·5) 
0·065 

D-dimer, mg/L   <0·001   <0·001 

     <0.5 39 (32·0%) 10 (7·4%)  33 (45·2%) 3 (4·5%)  

     0.5-1.0 37 (30·3%) 18 (13·2%)  18 (24·7%) 10 (15·2%)  

     ≥ 1.0 46 (37·7%) 108 (79·4%)  22 (30·1%) 53 (80·3%)  

Albumin g/L 35·6 (32·7, 37·9) 31·3 (28·2, 34·3) <0·001 33·8 (30·7, 35·7) 28·5 (25·8, 30·4) <0·001 

cTnI, pg/ml   <0·001   <0·001 
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     <28.0 104 (96·3%) 69 (51·5%)  70 (98·6%) 37 (55·2%)  

     ≥28.0 4 (3·7%) 65 (48·5%)  1 (1·4%) 30 (44·8%)  

ALT, U/L 23·0 (15·0, 37·0) 28·0 (19·0, 44·0) 0·026 26·5 (18·0, 40·3) 41·0 (20·5, 55·5) 0·024 

AST, U/L 30·0 (21·5, 44·0) 42·0 (26·0, 64·0) <0.001 31·0 (25·8, 39·0) 42·0 (34·5, 59·5) <0.001 

Bilirubin, 

mol/L                
8·4 (6·5, 11·9) 12·7 (9·0, 18·8) <0·001 11·5 (9·1, 13·8) 15·7 (11·6, 22·6) <0·001 

BUN, mmol/L 4·4 (3·3, 6·0) 8·0 (5·7, 11·9) <0·001 4·6 (3·7, 5·8) 7·5 (6·2, 8·9) <0·001 

Creatinine, U/L      66·0 (56·0, 83·0) 85·0 (66·0, 109·0) <0·001 71·8 (57·6, 82·1) 74·4 (64·6, 92·1) 0·180 

Creatinine 

kinase, U/L      
90·5 (38·9, 383·8) 137·0 (78·0, 381) 0.052 76·5 (46·8, 144·3) 99·0 (58·0, 196) 0·052 

LDH, U/L     295 (216, 388) 505(371, 676) <0·001 264 (214, 319) 531 (413, 637) <0·001 

CRP, mg/dl 39·0 (10·7, 80·6) 97·2 (47·2, 148·8) <0.001 26·4 (7·5, 61·8) 112·1 (65·4, 160) <0·001 

INR, s 1·08 (1·02, 1·16) 1·20 (1·08, 1·38) <0.001 0·92 (0·86, 0·99) 1·01 (0·94, 1·10) <0.001 

Data are presented as median (IQR), or n (%). P values were calculated using Wilcoxon rank-sum test, χ2 or Fisher’s exact test. ALT= 

Alanine aminotransferase. AST= Aspartate aminotransferase. BUN=Blood urea nitrogen. COPD=chronic obstructive disease. CRP= 

C-reactive protein. hs-cTnI= high-sensitivity cardiac troponin I. INR= international normalized ratio. LDH= lactate dehydrogenase. 

SOFA= sequential organ failure assessment. SPO2= pulse oxygen saturation. WBC=white blood cell. 
 

Table 3: Final multivariable model in development dataset and optimism adjusted β coefficients 

 Development model Final model with 

shrinkage 

 

Variable β Coefficients (95% CI) Odds ratio (95% CI) Optimism adjusted β 

coefficients 

Age 0·053 (0·027 to 0·08) 1·054 (1·028 to 1·083) 0·047 

LDH 0·004 (0·002 to 0·006) 1·004 (1·002 to 1·006) 0·003 

Lymphocyte count -1·216 (-1·910 to -0·614) 0·296 (0·148 to 0·541) -1·094 

SPO2 -0·109 (-0·186 to -0·043) 0·897 (0·831 to 0·958) -0·098 

Intercept 5·068 (-1·797 to 12·737)  4·559 

  

 

Table 4. Internal validation: model performance 

Measure Development model Average optimism Optimism adjusted 

C statistic 0·893 (0·856 to 0·930) 0·013 0·880 

Calibration in the large 0·000 (-0·331 to 0·330) -0·006 0·006 

Calibration Slope 1·000 (0·773 to 1·264)) 0·100 0·900 

 

 

Table 5. External validation and recalibration: model performance 

Measure Validation 

without shrinkage 

Validation 

with shrinkage 

Recalibration 

(intercept only) 

Recalibration 

(intercept and slope) 

C statistic 0·980 (0·958 to 

1·000) 

0·980 (0·958 to 

1·000) 

0·980 (0·958 to 

1·000) 

0·980 (0·958 to 

1·000) 

Calibration in the 

large 

-0·192 (-0·690 to 

0·300) 

-0·195 (-0·673 to 

0·276) 

0·000 (-0·477 to 

0·471) 

0·000 (-0·725 to 

0·738) 

Calibration Slope 2·227 (1·503 to 

3·291) 

2·476 (1·671 to 

3·658) 

2·476 (1·671 to 

3·658) 

1·00 (0·675 to 1·477) 
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Figures 

 

 

 

   Figure 1 Calibration plot of the final development model. 
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Figure 2 Nomogram of the final development model. The nomogram presents the distribution of continuous 

variables and for categorical variables the relative contribution of variable to the model is reflected in the size. 

The distribution of the final score is shown for the development data and the red dots represent a randomly selected 

patient from the development dataset with probability of mortality of 0.77. 
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Figure 3. Calibration plots of external validation. A) Calibration without shrinkage B) Calibration with 

shrinkage of final model coefficients. C) Recalibration with intercept updated. D) Recalibration with slope and 

intercept updated. 
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