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Abstract 11 

Background 12 

Infectious disease outbreaks present unique challenges to study designs for vaccine evaluation. Test-13 

negative case-control (TNCC) studies have been used to estimate vaccine efficacy previously, and 14 

have been proposed for Ebola virus disease (EVD) vaccines. However, there are key differences in 15 

how cases and controls are recruited during outbreaks that have implications for the reliability of 16 

vaccine efficacy estimates from these studies. 17 

Methods 18 

We use a modelling approach to quantify TNCC bias for a prophylactic vaccine distributed across 19 

varying study and epidemiological scenarios. Our model accounts for vaccine distribution 20 

heterogeneity and for the two potential routes of recruitment: self-reporting and contact-tracing. 21 

We derive the TNCC estimator for this model and suggest ways to translate outbreak response data 22 

into the parameters of the model. 23 

Results 24 

We found systematic biases in vaccine estimates from a TNCC study in our model of outbreak 25 

conditions. Biases are introduced due to differential recruitment from self-report and contact-26 

tracing, and by clustering of participation in vaccination. We estimate the magnitude of these biases, 27 

and highlight options to manage them via restricted recruitment. For the motivating example of 28 

EVD, the absolute bias should be less 10%. 29 

Conclusions 30 

A TNCC study may generate biased estimates of vaccine efficacy during outbreaks. Bias can be 31 

limited via recruitment that either minimizes heterogeneity in vaccination in the recruited 32 

population or excludes recruitment of contact-traced individuals. TNCC studies for outbreak 33 

infections should record the reason for testing to quantify potential bias in the vaccine efficacy 34 

estimate. Perfectly distinguishing the recruitment route may be difficult in practice, so it will be 35 

challenging to entirely remove this bias.  36 

 37 

 38 

Key Messages 39 

- Test-Negative Case-Control (TNCC) studies can be biased when follow-up of cases leads to 40 

recruitment, which may happen during outbreak response. 41 

- The absolute bias can be quantified using epidemiological measures. 42 

- Bias can be limited by ensuring homogeneous vaccine coverage amongst potential recruits. 43 

- Bias can be eliminated if excluding recruits from contact-tracing is practical. 44 

- Based on assumptions about the outbreak in Nord Kivu DRC starting in 2018, a TNCC vaccine 45 

study there would have a maximum absolute bias of less than 10% due to these effects. 46 

  47 
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Background 48 

Study designs to evaluate vaccine efficacy for new vaccines during outbreaks are challenging for 49 

logistical, epidemiological, social, and ethical reasons (1-7). Outbreaks can overwhelm local health 50 

systems, subsequently enabling other crises, complicating both response efforts and research (8-11). 51 

However, some key pathogens are only routinely observable under these conditions, like Ebola virus 52 

disease (EVD) and others on the World Health Organization (WHO) R&D Blueprint priority list (12).  53 

During outbreaks of highly pathogenic infections there may be pressure to introduce experimental 54 

vaccines as quickly as possible (13, 14), as well as resistance to classical randomised controlled trials 55 

(15). For EVD, the existence of a licensed vaccine (16-19) further complicates trials for new vaccines. 56 

Such circumstances require alternative evaluation strategies, and the test-negative case-control 57 

(TNCC) design has been proposed to evaluate a two-dose vaccine in eastern Democratic Republic of 58 

Congo (DRC) (20-22). This design estimates vaccine efficacy from the odds ratio for test outcome 59 

conditional on vaccination status, and has lower misclassification bias than traditional case-control 60 

studies (23, 24).  61 

TNCC studies have been used estimate the efficacy of vaccines against influenza (25), rotavirus (26-62 

28), pneumococcus (29), and other pathogens (30, 31). The design can also assess interventions such 63 

as vector control and risk-factor management (32-34). TNCC studies recruit people with symptoms, 64 

test those recruits using a highly sensitive and specific method to separate cases (test-positives) 65 

from controls (test-negatives), and finally sort them by vaccination status (35). These TNCC studies 66 

can be retrospective, potentially using stratification by other factors to limit confounding. For 67 

influenza, TNCC studies usually recruit people seeking care for influenza-like illness, ascertain 68 

vaccine status by self-report, and determine infection status by RT-PCR, though specifics vary (25, 69 

30). 70 

To obtain unbiased estimates, the following criteria must be met: i) transmission occurs in a 71 

population with partial vaccine coverage; ii) test-negative rates are unaffected by vaccination status; 72 

iii) given symptoms in an individual, care-seeking behaviour does not vary by underlying cause; iv) an 73 

individual’s past recruitment as a control (even multiple times) must not prevent subsequent 74 

recruitment as a case; and v) there is no misclassification of individuals’ infection or vaccine status 75 

(33, 36).  76 

We examined how outbreaks present novel misclassification problems for TNCC studies, and how 77 

this can bias TNCC vaccine efficacy estimates. We quantified how that bias varies with differences in 78 

vaccine distribution, recruitment, risk of infection, and testing practice, and we identified steps to 79 

mitigate this bias. 80 

Methods 81 

Key Differences During EVD Outbreaks 82 

EVD tests are used both to make treatment decisions for individuals and to trigger public health 83 

responses to the outbreak (e.g. post-mortem testing). During EVD outbreaks, suspect cases are 84 

tested for distinct reasons: either presence of multiple symptoms or contact with a known case, plus 85 

fever (37, 38). We treat these testing reasons as distinct recruiting sources: people who self-report 86 

seeking care for EVD-like symptoms (analogous to influenza studies); and people identified via active 87 

contact-tracing from a confirmed case. Depending on how data are collected, individual testing 88 

reasons may be unavailable. For clarity, we provide specific definitions for our model terms (Table 1). 89 

(Table 1 here). 90 
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Vaccination Model 91 

Vaccinated individuals avoid infection if exposed to EVD with probability E, the true vaccine efficacy. 92 

The study measures 𝐸̂, the estimated vaccine efficacy. Vaccines may have further complications, 93 

such as multiple doses or a delay to protection, but we model a scenario where protection has 94 

already occurred in the recruitable population. Aside from preventing EVD, vaccination has no 95 

effect. 96 

We represent vaccine distribution by dividing the recruitable population into two types of 97 

individuals: those who participate in the vaccination campaign and those who do not (Figure 1). They 98 

are participating and non-participating (Table 1), and the fraction is pin (Table 2). Among 99 

participating individuals, only some receive the vaccine, leading to vaccine coverage level, L. We 100 

assume individuals cluster by participation status, so the contacts of self-reporting cases always have 101 

the same participation status as the associated case. Aside from these distinctions, all individuals are 102 

identical. 103 

Ideally, a study would recruit only participating individuals, but they may not be distinguishable in 104 

practice. Indeed, in reality there may be many distinct populations, for example areas with different 105 

vaccination coverage; we consider just two to focus on the impact of heterogeneity.  106 

TNCC Recruitment Model 107 

We identify recruits by their testing route, either self-reported or contact-traced from a confirmed 108 

case (Table 1 and Figure 1). In the Supplement, we generalise these as primary and secondary 109 

recruitment routes. We assume that introduced cases in the recruitable population are found before 110 

any contacts have become symptomatic and therefore infectious (though they may be infected but 111 

not yet symptomatic), consistent with the typical experience in the rVSV trial in DRC (39). Thus, in 112 

the model all self-reported cases result from external introductions, and all contact-traced recruits 113 

are only exposed to a one case. 114 

Consistent with the field alerts process, we model self-reporting as presenting with multiple EVD-like 115 

symptoms caused either by EVD (a self-reported test-positive) or not (a self-reported test-negative). 116 

Participating and non-participating individuals are assumed to have equal rates of EVD and non-EVD 117 

exposure, but on average participating individuals have fewer EVD infections due to the vaccine. 118 

During an outbreak, EVD and non-EVD exposure rates may vary, but our analysis only depends on 119 

the long-term average relative rate of these processes. We can then define parameters as per self-120 

reported test-positive, and we use the background self-reporting test-negatives per test-positive 121 

rate, B, to represent the self-reporting process overall (Table 2). 122 

We also represent contact-traced testing based on the field alerts process. Fever is common in EVD-123 

prone areas and we therefore assume that meeting this criterion and testing contacts is frequent. 124 

The average number of tested contacts is λ, which is the same irrespective of EVD exposure or 125 

participation status (Supplement Section S2.3 relaxes this assumption). 126 

Translating outbreak metrics to estimate bias 127 

To evaluate a particular study’s potential bias, we need real-world outbreak response metrics to 128 

estimate model parameters. For studies augmenting an ongoing outbreak response, data already 129 

collected could be used. For example, data on the number of tested individuals, stratified by test 130 

outcome and testing route could be used to bound model parameters (Table 2). 131 

The model also depends on how the study vaccination is distributed, represented by participating 132 

fraction and coverage, pin and L. Depending on the study protocol, these could be ascertained in 133 

different ways (Supplement Section S7). 134 
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Summary of assumptions  135 

• Cases and their contacts have the same participation status. 136 

• All individuals have the same exposure risk to EVD and other causes of EVD-like symptoms, 137 

average number of contacts, and risk of infection per contact. 138 

• Non-vaccination among participating individuals happens randomly. 139 

• There are different testing criteria for self-reporting and contact-tracing individuals. 140 

• Self-reporting cases are identified before anyone they have infected becomes symptomatic, 141 

and contact tracing prevents transmission amongst contacts. 142 

(Table 2 here) 143 

TNCC Estimator for Outbreak Context 144 

There are twelve recruitment categories in our model, based on participation and vaccination status, 145 

test outcome, and testing route (Figure 1). The conventional TNCC estimator: 146 

estimated

efficacy
= 1 −

# vaccinated, test-positive

# unvaccinated, test-positive
×

# unvaccinated, test-negative

# vaccinated, test-negative
 147 

can be written with these categories as: 148 

𝐸̂ = 1 −
𝑉+

′+𝑉+
′′

𝑁+
′ +𝑁+

′′+𝑈+
′ +𝑈+

′′ ×
𝑁−

′ +𝑁−
′′+𝑈−

′ +𝑈−
′′

𝑉−
′+𝑉−

′′         ( 1 ) 149 

with participation status by letter, testing route by superscript, and test outcome by subscript 150 

(Figure 1). The expected counts of these categories can be expressed with the six model parameters 151 

we defined (full derivation in Supplement S3-S4): 152 

𝐸̂ = 1 − (1 − 𝐸) [1 +
𝐸𝑅′′

1+𝑅′′(1−𝐿𝐸)

𝐿(1−𝑝in)

1−𝐿𝑝in
]

−1 𝐵+[1+
𝐿𝑝in

1−𝐿𝑝in

𝐿𝐸(1−𝑝in)

1−𝐿𝐸𝑝in
](𝜆−𝑅′′)

𝐵+
1−𝐿𝐸

1−𝐿𝐸𝑝in
(𝜆−𝑅′′(1−𝐸))

    ( 2 ) 153 

The terms to the right only cancel under very specific circumstances, thus the bias is generally non-154 

zero and the magnitude includes all model parameters. We refactor Eq. 2 with alternative 155 

parameters relating to recruitment and epidemiological measures relating to the outbreak 156 

(Supplement Section S4). We use this form to explore the bias and to evaluate potential maximum 157 

bias under specific outbreak scenarios: 158 

𝐸̂ = 1 − (1 − 𝐸) [1 +
𝐸

𝑝𝑡𝜌

1−𝑓−

1+
𝑝𝑡𝜌

1−𝑓−
(1−𝐿𝐸)

𝐿(1−𝑝in)

1−𝐿𝑝in
]

−1
1+[1+

𝐿𝑝in
1−𝐿𝑝in

𝐿𝐸(1−𝑝in)

1−𝐿𝐸𝑝in
]

𝜌

𝑓−
(1−𝑝𝑡)

1+
1−𝐿𝐸

1−𝐿𝐸𝑝in

𝜌

𝑓−
(1−𝑝𝑡(1−𝐸))

    ( 3 ) 159 

 160 

TNCC Estimator Bias 161 

Across a wide range of self-reporting test-negative fractions (𝑓−), contact-tracing test-positive 162 

fractions (𝑝𝑡), participating fractions (𝑝in), and recruitment route ratios (ρ), the absolute error in 𝐸̂ is 163 

≤ 0.1 (Figure 2). If information from the outbreak response indicates these parameter values are 164 

reasonable, then our model indicates study bias lies in that range. If that level of bias is not 165 

acceptable, or if the study or outbreak parameters are outside of this range, we have identified two 166 

avenues to limit bias, either restricting recruitment to participating or self-reporting individuals only. 167 

Restricting Recruitment to Participating Individuals 168 

Ideally, a study would achieve high participation in the recruitable population. This may be possible 169 

if community engagement increases participation, or if there is additional data collected that allows 170 
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exclusion of non-participants, though identification of these individuals may be difficult. Even if the 171 

study is constrained to only participating individuals, i.e. so 𝑝in = 1, some bias remains due to 172 

recruitment of contact-traced individuals but it no longer depends on the vaccine coverage (see 173 

Supplement Section S5.1). However, perfect participation is unlikely, and the bias is sensitive to 174 

other factors even when participation is high (Figure 3). 175 

If the participating fraction decreases, generally the magnitude of bias in the estimate increases. Bias 176 

generally peaks when the true efficacy is around 50%, and goes to zero as efficacy goes to 0 or 100%. 177 

Because initial cases are more likely to be non-participating individuals, contact-traced individuals 178 

from those cases are biased towards non-participation as well. Thus, bias trends toward 179 

overestimation as contact-traced individuals more frequently test positive. This can reverse for high 180 

levels of contact-traced recruitment, when most contact-traced individuals are test-negative. All 181 

other factors being equal, more coverage means more extreme bias as participating and non-182 

participating individuals diverge. 183 

Restricting Recruitment to Self-Reported individuals 184 

The bias can also be corrected by restricting recruitment to self-reported individuals only. If perfectly 185 

achieved then the bias is 0 (see Supplement S5.2). However, while there is a clear need to track 186 

cases during an outbreak response, there is less motivation to carefully monitor test-negatives. Thus, 187 

it may be possible to distinguish testing routes for test-positives, but not for test-negatives. If that 188 

applies, the resulting estimator bias is: 189 

𝐸 − 𝐸̂ = −(1 − 𝐸)𝐸 [
(1−𝐿𝐸)𝑅′′−𝐿

1−𝑝in
1−𝐿𝑝in

(𝜆−𝑅′′)

𝐵(1−𝐿𝐸𝑝in)+(1−𝐿𝐸)(𝜆−𝑅′′(1−𝐸))
]      ( 4 ) 190 

Minimising, and ultimately eliminating bias in Equation (4) still depends on maximising pin. One way 191 

of achieving high pin is excluding non-participants; this suggests a trade-off between precision and 192 

bias; if the study invests the effort to exclude non-participants it may make sense to include contact-193 

traced recruits. 194 

If contact-traced test-positives are excluded retrospectively, the resulting bias magnitude can be 195 

lower even if contact-traced test-negatives are included due to misclassification (Figure 3 vs Figure 196 

4). However, the direction of bias changes with changing participation rates: the neutral line falls at 197 

higher contact-tracing test-positive fractions when participation decreases. The magnitude of bias at 198 

the extremes of the contact-tracing test-positive fractions is driven largely by the amount of self-199 

reporting test-negatives. Other factors being equal, fewer self-reported test-negatives means a 200 

lower self-reporting test-negative fraction (0.8 instead of 0.99) and higher recruitment route ratio 201 

(0.3 instead of 0.1), both of which correspond to more extreme bias. 202 

Quantifying Potential Bias from Outbreak Response Metrics 203 

To quantify the range of bias for a study in DRC, we determined the plausible range of outbreak 204 

response metrics and corresponding model parameters, where SR+ was 100-150, CT+ was 100-400, 205 

SR− was 6500-7000, and CT− was 900-1200. 206 

When restricting recruitment to participating individuals only, the bias in vaccine efficacy is less than 207 

3% overestimation (Figure 5, left panel), but can increase up to >15% overestimate for high coverage 208 

and low participation (Figure 5, right panel; 90% coverage, 40% participation). As more non-209 

participating individuals are included, increasing coverage increases bias, corresponding to the 210 

increasing distinction in infection risk between participation groups. For these outbreak response 211 

metrics, the estimate of vaccine efficacy consistently exceeds the true efficacy. 212 
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When restricting recruitment to self-reported individuals only, with no misclassification of testing 213 

route for test-negatives, the bias is 0 (Figure 6, left panel). As the misclassification rate increases 214 

from 0 to 100%, the bias increases and tends toward underestimation, though the range of possible 215 

bias includes overestimation. For the most extreme case, including all of contact-traced test-216 

negatives for a low participation fraction and a high-coverage, the bias spans roughly 1% 217 

overestimate to 5% underestimate (Figure 6, right panel; 90% coverage, 40% participation). As with 218 

restricting recruitment to participating individuals, the magnitude of the bias increases with 219 

coverage amongst participating individuals. 220 

Discussion 221 

Previous work has explored biases in TNCC studies due to care-seeking or other confounding and 222 

selection effects (35, 40, 41), test or vaccine status misclassification errors (25, 42-44), and vaccine 223 

mechanism (36, 45). We demonstrated that the particular epidemiology of an outbreak can also 224 

generate bias in the vaccine efficacy estimates in a TNCC study. If a study cannot distinguish self-225 

reported and contact-traced recruits or whether recruits were generally amongst a vaccinating 226 

group, then the vaccine efficacy estimate is potentially biased. These are both real, practical 227 

problems: in addition to general difficulty of collecting data during an outbreak, it may be difficult to 228 

achieve uniform levels of vaccine coverage when rolling out a vaccine in an emergency setting, 229 

particularly in highly mobile populations or those affected by civil unrest. 230 

The bias in our model arises from the interaction of heterogeneous vaccination distribution and the 231 

inclusion of tested individuals from contact-tracing. Because initial cases found through self-232 

reporting are more likely to be non-participating individuals (and thus non-vaccinating), including 233 

contact-traced recruits overrepresents those individuals in the estimator. This in turn can tilt the bias 234 

either towards or away from null, depending on how infection risk and testing criteria in the contact-235 

traced individuals differs from that in the general population. If the self-reporting process leads to 236 

many more test-negative recruits than recruits from contact-tracing (either positive or negative), 237 

then the bias from contact-tracing is relatively smaller. If it does not, then the relative number of 238 

cases versus controls from contact-tracing will determine the general direction of bias; more cases 239 

will lead to overestimation, more controls to underestimation. 240 

We showed that the range of potential bias can be quantified with some epidemiological data from 241 

the outbreak. For the range of outbreak response metrics we used to represent the EVD outbreak in 242 

DRC, this is less than 10% if the study can achieve high participation (𝑝in ≥ 0.6) with moderate 243 

coverage (𝐿 ≤ 0.7).  244 

Practically, it may be possible to limit but not eliminate these drivers of the bias. For the EVD 245 

epidemic in eastern DRC, responders try to test individuals that meet one of the outbreak 246 

“suspected case” definitions, which combine different levels of symptoms and potential contact with 247 

known cases (37, 38). This practice would likely continue in populations that received a study 248 

vaccine, meaning this testing process would be the likely source for a retrospective TNCC study of a 249 

new vaccine. 250 

We framed our analysis in terms of event counts, but it can also be thought of in terms of testing 251 

thresholds. For example, we frame contact-tracing recruitment as a number of contacts and the 252 

number of cases amongst them, and the resulting efficacy estimator error is driven by the ratio of 253 

those values. In an infectious disease sense, this ratio is the transmission probability, but it could 254 

instead be interpreted as precision of the criteria for testing (i.e. positive-predictive value): are the 255 

alert criteria such that we test fewer contacts and a larger percentage are positive (higher precision) 256 

or do we test more frequently to ensure no positives are missed (lower precision)? A similar analogy 257 
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applies for testing outside contact-tracing. During an outbreak, the response may prefer less 258 

stringent testing criteria to ensure as many cases as possible are identified to aid control. For both 259 

the self-reported and contact-traced testing, the vaccine efficacy estimate bias is generally lower 260 

when testing criteria are less stringent in this sense, consistent with a control-oriented outbreak 261 

response. 262 

Our analysis describes vaccination during EVD outbreaks, but our work has general implications for 263 

evaluating interventions in other outbreak settings. We have focused on self-reporting and contact-264 

tracing, but the challenges are generic when there are distinct but potentially indistinguishable 265 

primary and secondary recruiting processes. For example, more active general-population 266 

surveillance could still qualify as the primary recruitment in our model, as long as it was random with 267 

respect to intervention status. Likewise, geographic follow-up could be a secondary process, as long 268 

as intervention status was correlated with the secondary process (e.g. for dengue, adjacent 269 

households followed up, as long as vector control reached some areas and not others). 270 

This analysis of the TNCC design under outbreak conditions does not consider other possible sources 271 

of bias, such as different exposure risk between groups, testing errors, errors in ascertaining vaccine 272 

status especially when there may be multiple vaccines or a long period between vaccination and 273 

exposure, or other data problems that could occur. Further investigation of the reliability of TNCC 274 

studies for vaccine efficacy estimation during outbreaks remains critical. However, as we have 275 

shown, use of this design in an outbreak setting will need to account for the realities of control 276 

activities, and plan to collect data on testing route or otherwise accommodate the mix of 277 

recruitment routes.  278 

Adoption of a TNCC design to evaluate a new vaccine in DRC may increase pressure for similar 279 

studies that do not have an explicit, randomised control group in future outbreaks of similarly highly 280 

pathogenic diseases. Understanding the biases and limitations of the TNCC design will therefore be 281 

critical to evaluate vaccines that are currently being developed against these pathogens. 282 
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Tables 410 

Table 1: Definitions of terms used in this analysis. 411 

Term Definition 

Recruitable 
population 

The total population who may later be recruited into the study. 

Vaccination 
campaign 

Administration of the target vaccine to some of the recruitable 
population. 

Study A TNCC study of the target vaccine against EVD in the recruitable 
population. 

Participating The individuals in the recruitable population who could be vaccinated, 
with vaccination homogeneously distributed. Non-participating refers to 
the complementary portion of the recruitable population: none of these 
individuals receive the vaccine. 

Recruitment Testing for potential EVD infection and being counted in the study; 
distinct from participating (in vaccination). Occurs via two routes: self-
reporting and contact-tracing. 

Self-reporting Testing of individuals without a known link to a previous case. 

Contact-tracing Testing of individuals who have an association with a confirmed EVD 
case. 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.06.20016576doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.06.20016576


Table 2: Parameter Summary. This table summarizes the measurements and model parameters used in this 412 
analysis. We also introduce an alternative parameterization of the recruitment model, which is less intuitive 413 
when describing the model but more useful for understanding the impact on bias. 414 

Vaccination Parameters 

Symbol Name Description Calculation 

𝐸 True vaccine efficacy  The probability of preventing disease given 
an EVD exposure 

Estimation target  

𝐸̂ Estimated vaccine 
efficacy 

 Estimator,  
Equations 1-3 

pin participating fraction The fraction of the recruitable population 
with some vaccine coverage; the non-
participating fraction, 1-pin, has no vaccine 
coverage 

see Supplement Section 
S7 

L vaccine coverage Among participating individuals, the 
achieved vaccine coverage 

see Supplement Section 
S7 

Outbreak Response Metrics 

SR+ Self-reported test-
positive 

Total number of individuals who test 
positive when they self-report to a health 
centre  

Estimated from outbreak 
response metrics if 

available, either before 
or after start of vaccine 

campaign 
SR- Self-reported test-

negative 
Number who test negative when they self-
report to a health centre  

CT+ Contact-traced test-
positive 

Number who test positive after 
identification by contact-tracing from a 
known case 

CT- Contact-traced test-
negative 

Number who test negative after 
identification by contact-tracing from a 
known case 

Recruitment Parameters 

B Self-reporting test-
negative rate 

The expected number of self-reporting 
test-negatives per self-reporting test-
positive case 

SR−

SR+

 

λ Contact-tracing test 
rate 

The expected number of tested contacts 
per self-reporting test-positive case 

CT+ + CT−

SR+

 

R” Contact-tracing test-
positive rate 

The expected number of new infections 
amongst tested contacts of a known case, 
when the study vaccine is not present, per 
self-reporting test-positive case 

CT+

SR+

 

Alternative Recruitment Parameters 

𝑓−  Self-reporting test-
negative fraction 

The proportion of self-reporting individuals 
that test-negative 
 

𝐵

𝐵 + 1
 or  

SR−

SR+ + SR−

   

𝜌  Recruitment route 
ratio 

The ratio of contact-tracing recruitment to 
self-reporting recruitment 

𝜆

𝐵 + 1
 or 

CT+ + CT−

SR+ + SR−

 

𝑝𝑡   Contact-tracing test-
positive fraction 

The test-positive fraction of direct contact-
tracing recruitment in the absence of 
vaccination 

𝑅′′

𝜆
 or 

CT+

CT+ + CT−

   

 415 
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Figures 416 

 417 

Figure 1. The modelled population and recruitment into the TNCC study. (a) Individuals and their contacts 418 
either participate in vaccination (filled circles) or do not (open circles). (b) The fraction that participate (and 419 
thus may be vaccinated) is pin. Of those that participate, some are not vaccinated (e.g. because they are 420 
ineligible) (light blue) and some are vaccinated (dark blue). The vaccine coverage in participants is L. In the 421 
recruitable population, non-vaccinees are infected on EVD exposure, while vaccinees avoid disease at the 422 
vaccine efficacy, E. (c) An expected number of self-reported people test negative, B, until a test-positive is 423 
identified. This leads to an expected amount of follow-up testing, λ, which finds R” more cases if the initial 424 
case is non-participating, and (1-LE)R” if participating. The coverage, L, efficacy, E, and participating fraction, 425 
pin, determine the likelihood of observing the self-reporting case among participating vs non-participating 426 
individuals and vaccinated vs unvaccinated individuals. (d) Resulting categories that can be recruited into the 427 
study. 428 

  429 
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 430 

Figure 2: Bias Trends Across All Model Parameters. The figure illustrates the bias trends with respect to true 431 
efficacy, E, and vaccination coverage among participating individuals, L. The sixteen panels correspond to 432 
combinations of example values for: (outer columns) self-reporting test-negative fraction (𝑓− at low = 0.8 and 433 
high = 0.99); (inner columns) the recruitment route ratio (ρ at low = 0.5 and high = 2; less than 1 implies more 434 
self-reporting recruitment, greater than 1 implies more contact-tracing recruitment); (outer rows) contact-435 
tracing test-positive fraction (𝑝𝑡  at low = 0.1 and high = 0.3); and the participating fraction (pin, at low = 0.6 and 436 
high = 0.9). 437 

 438 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.06.20016576doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.06.20016576


 439 

Figure 3: Impact of Decreasing Participating Fraction Amongst Recruits. The panels show decreasing 440 
participation fraction (columns from left to right) for scenarios stratified by self-reported test-negative fraction 441 
in recruitment (0.8 and 0.99) and recruitment route ratio (0.1 and 0.3) (rows). This figure shows 70% coverage 442 
level among participating individuals, L=0.7. 443 
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 445 

Figure 4: Bias Due to Inability to Exclude Contact-Traced Test-Negatives. The panels show decreasing 446 
participation fraction (columns from left to right) for scenarios stratified by self-reported test-negative fraction 447 
in recruitment (0.8 and 0.99) and recruitment route ratio (0.1 and 0.3) (rows). This figure shows 70% coverage 448 
level among participating individuals, L=0.7. The range of bias is usually smaller than when recruitment is 449 
restricted to the participating individuals only (Figure 3). 450 
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 452 

 453 

Figure 5: Bias possible when recruiting participating individuals only. These bias envelopes were computed 454 
assuming outbreak response metrics SR− ∈ (6500, 7000), SR+ ∈ (100, 150), CT+ ∈ (100, 400), and CT− ∈455 
(900, 1200), which corresponds to 97.7-98.6% of self-reporting cases testing negative, testing 6-16 contact-456 
traced individuals per self-reported case, and 10-25% of those contact-traced individuals testing positive. If the 457 
study is restricted to recruit only the participating individuals (left-most panel), then bias can be limited to less 458 
than 3% overestimation. However, as the participating fraction falls, the error range generally increases, to 459 
>15% peak bias for high coverage (90%) and low participation (40%). Higher coverage among participating 460 
individuals generally increases bias; this reflects increasing differences between the participating and non-461 
participating individuals.  462 

 463 

 464 

Figure 6: Bias possible when recruitment is restricted to self-reported individuals only. If the study analysis is 465 
able to restrict recruits to only self-reporting individuals, then there is no bias (left panel). However, as 466 
contact-traced test-negative individuals are increasingly included (moving right across panels), bias range 467 
increases to between 1% overestimate and 5% underestimate. However, this range is notably smaller than if 468 
only restricting to participating recruits (Figure 5). As with restricting recruitment to participating individuals 469 
only, higher levels of coverage lead to wider bias range. These ranges reflect the same parameters used in 470 
Figure 5, including participating fraction 𝑝𝑖𝑛 ∈ (0.4, 1). 471 
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