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Abstract 11 

Background 12 

The triage of patients in pre-hospital care is a difficult task, and improved risk 13 

assessment tools are needed both at the dispatch center and on the ambulance to 14 

differentiate between low- and high-risk patients. This study develops and validates a 15 

machine learning-based approach to predicting hospital outcomes based on routinely 16 

collected prehospital data. 17 

Methods 18 

Dispatch, ambulance, and hospital data were collected in one Swedish region from 2016 19 

- 2017. Dispatch center and ambulance records were used to develop gradient boosting 20 

models predicting hospital admission, critical care (defined as admission to an intensive 21 

care unit or in-hospital mortality), and two-day mortality. Model predictions were used to 22 

generate composite risk scores which were compared to National Early Warning System 23 

(NEWS) scores and actual dispatched priorities in a similar but prospectively gathered 24 

dataset from 2018. 25 

Results 26 

A total of 38203 patients were included from 2016-2018. Concordance indexes (or area 27 

under the receiver operating characteristics curve) for dispatched priorities ranged from 28 

0.51 – 0.66, while those for NEWS scores ranged from 0.66 - 0.85. Concordance ranged 29 

from 0.71 – 0.80 for risk scores based only on dispatch data, and 0.79 – 0.89 for risk 30 
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scores including ambulance data. Dispatch data-based risk scores consistently 31 

outperformed dispatched priorities in predicting hospital outcomes, while models 32 

including ambulance data also consistently outperformed NEWS scores. Model 33 

performance in the prospective test dataset was similar to that found using cross-34 

validation, and calibration was comparable to that of NEWS scores. 35 

Conclusions 36 

Machine learning-based risk scores outperformed a widely-used rule-based triage 37 

algorithm and human prioritization decisions in predicting hospital outcomes. 38 

Performance was robust in a prospectively gathered dataset, and scores demonstrated 39 

adequate calibration. Future research should investigate the generality of these results 40 

to prehospital triage in other settings, and establish the impact of triage tools based on 41 

these methods by means of randomized trial. 42 

  43 
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Introduction 44 

Emergency care systems in the developed world face increasing burdens due to an 45 

aging population [1–4], and in prehospital care it is often necessary to prioritize high-risk 46 

patients in situations where resources are scarce. Prehospital care systems have also 47 

increasingly sought to identify patients not in need of emergency care, and to direct 48 

these patients to appropriate forms of alternative care both upon contact via telephone 49 

with the dispatch center, and upon the arrival of an ambulance to a patient [5–12]. 50 

Performing these tasks safely and efficiently requires not only well-trained prehospital 51 

care providers and carefully considered clinical guidelines, but also the employment of 52 

triage algorithms able to perform risk differentiation across the diverse cohort of patients 53 

presenting to prehospital care systems. 54 

Systems to differentiate high- and low-risk patients in prehospital care have typically 55 

relied on rule-based algorithms. Many common algorithms seek to identify specific high-56 

acuity conditions within certain subsets of patients such as cardiac arrest, trauma, or 57 

stroke [13–15]. Other algorithms are intended for use within a broader cohort of patients, 58 

including Critical Illness Prediction (CIP) scores and the National Early Warning System 59 

(NEWS) [16–19], and the Medical Priority Dispatching System (MPDS) [20] for 60 

Emergency Medical Dispatching (EMD). In applying such tools, providers commonly 61 

“over-triage” patients, as false negatives are thought to be associated with far greater 62 

costs than false positive findings [21–24]. In the context of trauma care, the American 63 

College of Surgeons Committee on Trauma (ACS-CoT) recommend that decision rules 64 

to identify patients suitable for direct transport to a level-1 trauma center have a 65 
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sensitivity of 95%, while an appropriate level of specificity may be as low as 65% 66 

[24,25]. We identified no guidelines establishing appropriate levels of sensitivity for 67 

decision rules intended to identify patients suitable for referral to alternate forms of care 68 

by prehospital care providers. Given the costs of missing true emergencies in this 69 

application, the required level of sensitivity may be similarly high. 70 

In the context of Emergency Department (ED) triage, Machine Learning (ML) based 71 

triage algorithms can out-perform their rule-based counterparts in predicting general 72 

measures of patient outcome [26–29]. We identified no research relating to the ability of 73 

prehospital data to similarly predict hospital outcomes, though there are indications that 74 

ML techniques may be effective in identifying specific high-acuity conditions such as 75 

cardiac arrest at the dispatch center [30]. ML-based approaches offer the potential to 76 

integrate large and complex sets of predictors, and automatically calculate risk scores 77 

for use by care providers. By using prehospital data to predict hospital outcomes, it may 78 

be possible to enhance the ability of prehospital care providers to safely identify patients 79 

not in need of hospital care. Such low-risk patients could then be directed to less 80 

intensive forms of care (e.g. transport to a primary care facility or a home visit by a 81 

mobile care physician), thus alleviating the increasingly vexing problem of overcrowding 82 

at EDs [31–33]. Such scores could also be used to improve the overall accuracy of 83 

ambulance dispatching systems, ensuring that high-risk patients are prioritized over 84 

those with less need for emergency care. 85 

In this study, we developed machine learning models to predict patient outcomes in a 86 

broad cohort of patients at two distinct points in the chain of emergency care: In the 87 

EMD center prior to ambulance dispatch, and on the ambulance after making contact 88 
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with the patient. We investigated the feasibility of using these methods to improve the 89 

decisional capacity prehospital care providers in these settings by comparing their 90 

accuracy with a previously validated triage algorithm (NEWS), and with prioritization 91 

decisions made by nurses at the EMD center per current clinical practice. 92 

Methods 93 

Source of Data 94 

This study took place in the region of Uppsala, Sweden, with a size of 8 209 km2, and a 95 

population of 376 354 in 2018. The region is served by two hospital-based EDs, a single 96 

regional EMD center staffed by Registered Nurses (RNs) employing a self-developed 97 

Clinical Decision Support System (CDSS), and 18 RN-staffed ambulances. The CDSS 98 

consists of an interface wherein dispatchers first seek to identify a set life-threatening 99 

conditions (cardiac/respiratory arrest or unconsciousness), and then document the 100 

primary complaint of the patient. Based on the documented complaint, a battery of 101 

questions is presented, the answers to which determine the priority of the call, or open 102 

additional complaints. While the specific set of questions are idiosyncratic to this and 3 103 

other Swedish regions, its structure is similar to other dispatch CDSS such as the 104 

widely-used MPDS [20]. 105 

Ambulance responses are triaged by an RN to one of four priority levels, with 1A 106 

representing the highest priority calls (e.g. cardiac/respiratory arrest), and 1B 107 

representing less emergent calls still receiving a “lights and sirens” (L&S) response. 108 
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Calls with a priority of 2A represent urgent, but non-emergent ambulance responses, 109 

while 2B calls may be held to ensure resource availability. 110 

Records from January 2016 to December 2017 were extracted to serve as the basis for 111 

all model development. Upon finalizing the methods to be reported upon, records from 112 

January to December 2018 were extracted to form a test dataset to investigate the 113 

prospective performance of the models. The data in this study were extracted from 114 

databases owned by the Uppsala ambulance service containing dispatch, ambulance, 115 

and hospital outcome data collected routinely for quality assurance and improvement 116 

purposes. Ambulance records were deterministically linked to dispatch records based on 117 

unique record identifiers available in both systems. Hospital records were extracted from 118 

the regional Electronic Medical Records (EMR) system based on patient Personal 119 

Identification Numbers (PINs) collected either by dispatchers or ambulance crews. This 120 

study was approved by the Uppsala regional ethics review board (dnr 2018/133). 121 

Participants 122 

Inclusion and exclusion criteria were defined so as to enable comparison with other 123 

studies of ML based triage systems in the ED, and with previously validated risk 124 

assessment instruments. All dispatch records associated with a primary ambulance 125 

response to a single-patient incident (i.e., excluding multi-patient traffic accidents and 126 

planned inter-facility transports) were selected for inclusion. Records lacking 127 

documentation in the CDSS used at the EMD center were excluded, as were records in 128 

which an invalid PIN or multiple PINs were documented. Dispatch records with no 129 

associated ambulance journal (e.g. calls cancelled en route, or where no patient was 130 
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found), and records indicating that the patient was treated and left at the scene of the 131 

incident were excluded. We further excluded records where no EMR system entry 132 

associated with the patient at the appropriate time could be identified (typically due to 133 

documentation errors, or transports to facilities outside of the studied region), and EMR 134 

system records indicating that the patient was transported to a non-ED destination 135 

(e.g. a primary/urgent care facility, or a direct admission to a hospital ward). We also 136 

excluded patients with ambulance records missing measurements of more than two of 137 

the vital signs necessary to calculate a NEWS score. Patients under the age of 18 were 138 

excluded as NEWS scores are not valid predictors of risk for pediatric patients. 139 

Outcomes 140 

We selected three outcome measures based on their face validity in representing a 141 

range of outcome acuity levels, and based to their use in previous studies; 1) patient 142 

admission to a hospital ward [26–28,34], 2) the provision of critical care, defined as 143 

admission to an Intensive Care Unit (ICU) or in-hospital mortality [26,28], and 3) all-144 

cause patient mortality within two days [18,19]. 145 

While each of these outcomes represent an important aspect of the overall risks 146 

associated with a patient, no single outcome measure was thought to provide a full 147 

picture of patient acuity. As such, we chose to combine these outcomes by predicting 148 

the likelihood of each outcome occurring independently, and then combining predictions 149 

into a single composite risk score. This is a novel approach, as previous researchers 150 

have either investigated only single measures of patient outcome [27,28], or binned 151 

scores across specific ranges of predicted likelihoods [26,34]. The method we propose 152 
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results in composite risk scores reflecting the normalized mean likelihood of several 153 

outcomes with face validity as being representative of patient acuity occurring, without 154 

incurring the loss of information associated with binning continuous variables. We 155 

applied no weights in the compositing process, as the relative importance of these 156 

measures in in establishing the overall acuity of the patient is not known. 157 

Predictors 158 

Predictors extracted from the dispatch system included patient demographics (age and 159 

gender), the operational characteristics of the call (Hour and month that the call was 160 

received, haversine distance to the nearest ED, and prior contacts with the EMD center 161 

by the patient), and the clinical characteristics of the call as documented in the existing 162 

rule-based CDSS. We included the 59 complaint categories, and the 1592 distinct 163 

question and answer combinations available in the CDSS as potential predictors in our 164 

models. Each of the questions in the CDSS was encoded with a 1 representing a 165 

positive answer to the question, and 0 representing a negative answer to the question. 166 

Questions with multiple potential answers were encoded on a numerical scale in cases 167 

where the answers were ordinal (e.g., “How long have the symptoms lasted?”), and as 168 

dummy variables if the answers were non-ordered. The recommended priority of the call 169 

based on the existing rule-based triage system was also included as a predictor in the 170 

dispatch dataset. 171 

Predictors extracted from ambulance records represented the information which would 172 

be available at the time of patient hand-over to ED staff, and included the primary and 173 

secondary complaints, additional operational characteristics (times to reach the incident, 174 
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on scene, and to the hospital), vital signs, patient history, medications and procedures 175 

administered, and the clinical findings of ambulance staff. Descriptive statistics for the 176 

included predictors are reported in S1 Table. 177 

To provide a basis for comparison, we extracted the dispatched priority of the call as 178 

determined by the RN handling the call at the EMD center, and retrospectively 179 

calculated NEWS scores for each included patient. If multiple vital sign measurements 180 

were taken, the first set was used both as model predictors and to calculate NEWS 181 

scores. 182 

Missing data 183 

Missing vital sign measurements in ambulance records are not likely to be missing 184 

completely at random, and must be considered carefully [35,36]. Based on exploratory 185 

analysis and clinical judgement, we surmised that records missing at most two of the 186 

vital signs constituting the NEWS score fulfilled the missing at random assumption 187 

necessary to perform multiple imputation. Missing vitals were multiply imputed five times 188 

using predictive mean matching over 20 iterations as implemented in the ‘mice’ R 189 

package [37]. The characteristics of the imputed data were examined, and we chose to 190 

use the median of the imputed vital signs to calculate NEWS scores. Multiply imputed 191 

data were not used as predictors, with missing data handled natively by the ML models 192 

used here. 193 
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Statistical analysis 194 

We entered each set of predictors transformed as previously described into gradient 195 

boosting models as implemented in the XGBoost R package [38]. This algorithm 196 

involves the sequential estimation of multiple weak decision trees, with each additional 197 

tree reducing the error associated with the previously estimated trees [39]. Model 198 

predictions were combined into composite risk scores by scaling each set of outcome 199 

predictions to have a population mean of zero and a standard deviation of one. These 200 

were then averaged and a log transformation was applied to improve calibration, 201 

resulting in a composite risk score following a normal distribution. 202 

We investigated model discrimination using Receiver Operating Characteristics (ROC) 203 

curves, using the area under these curves (a measure equivalent to the concordance 204 

index, or c-index of the model) as summary performance measures [39]. 205 

Precision/Recall curves and their corresponding areas under the curve are included in 206 

S2 Analysis. 95% confidence intervals for descriptive statistics and c-index values were 207 

generated based on the percentiles of 1000 basic bootstrap samples (using stratified 208 

resampling for c-index values) as implemented in the ‘boot’ R package [40]. Model 209 

calibration overall and in a number of sub-populations was investigated visually using 210 

lowess smoothed calibration curves, and summarized using the mean absolute error 211 

between predicted and ideally calibrated probabilities using the ‘val.prob’ function from 212 

the ‘rms’ R package [41]. 213 

We considered the performance of the models in the prospective dataset to be the best 214 

metric of future model performance, though results in this field have previously been 215 
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reported based on cross-validation [26,34] or randomly selected hold-out samples [28]. 216 

In this paper we report our main findings based on model performance in a prospective 217 

test dataset, an include results based on cross-validation for comparison. Model 218 

performance in the training dataset was estimated using 5-fold cross-validation (CV), 219 

and model performance in the testing dataset was based on models estimated using the 220 

full training dataset. 221 

Readers interested in further details of the methods employed to produce the results 222 

reported here are encouraged to peruse the commented source code found in S6 Code. 223 

All model development and validation was performed using R version 3.5.3 [42]. 224 

Results 225 

Participants 226 

A total of 68 668 records were collected, of which 45 045 were in the training dataset, 227 

and 23 623 were in the test dataset as reported in Table 1. Overall, 30 465 records 228 

(44%) were excluded due all criteria. A lower proportion of records were excluded from 229 

the test dataset, primarily due to fewer non-matched ambulance and hospital records. 230 

  231 
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Table 1. Results of applying exclusion criteria 232 

 Training dataset (2016-2017) Test dataset (2018) 

 Excluded, 
 N 

Excluded, 
percent 

Remaining, 
N 

Excluded, 
N 

Excluded, 
percent 

Remaining, 
N 

Original   45045   23623 

No dispatch CDSS data 2358 5.5 42687 857 3.8 22766 

Missing PIN 2113 5.2 40574 1244 5.8 21522 

No ambulance journal 2526 6.6 38048 933 4.5 20589 

No ambulance transport 3879 11.4 34169 2461 13.6 18128 

No hospital journal 3958 13.1 30211 1429 8.6 16699 

No ED visit 2939 10.8 27272 1590 10.5 15109 

Missing > 2 vitals 1336 5.2 25936 829 5.8 14280 

Patient age < 18 1328 5.4 24608 685 5 13595 

Final 20437 45.4 24608 10028 42.5 13595 

 233 

Summary statistics describing the characteristics of all patients included in the study 234 

(across both training and testing sets), both in total and stratified by dispatched priority 235 

are presented in table 2. We found that ambulance predictors and outcomes were 236 

generally distributed such that higher priority calls had higher levels of patient acuity, 237 

with the notable exception of hospital admission which remained constant at around 238 

50% regardless of dispatched priority. Higher priority patients were generally younger, 239 

more often male, and had a higher proportion of missing vital signs. Overall, at least one 240 

vital sign was missing in a quarter of ambulance records, with the most commonly 241 

missing vital sign measurement being the patient’s body temperature. Temperature was 242 

missing in 15% of cases, and other vital signs were missing in less than 5% of cases as 243 

reported in S1 Table. Multiple imputation of these vital signs resulted in good 244 

convergence and similarity to non-imputed data, and NEWS scores based on sets of 245 

imputed scores did not differ significantly in terms of predictive value.  246 
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Table 2 Descriptive statistics of included population 247 

 Priority  

  1A 1B 2A 2B Total 

N  1283 15533 17227  4160 38203 
Age,  

mean 
56.2 

(54.8-57.4) 
64.5 

(64.1-64.8) 
67.5 

(67.2-67.8) 
67.3 

(66.6-67.9) 
65.9 

(65.7-66.1) 
Female,  
percent 

46.1 
(43.3-48.9) 

49.4 
(48.6-50.1) 

53.9 
(53.2-54.6) 

54.5 
(52.9-56.0) 

51.9 
(51.4-52.4) 

Transported L&S, 
percent 

38.7 
(36.0-41.5) 

24.6 
(23.9-25.2) 

4.3 
(4.0-4.6) 

2.2 
(1.7-2.6) 

13.5 
(13.1-13.8) 

Ambulance intervention*, 
 percent 

87.9 
(86.0-89.6) 

87.4 
(86.9-87.9) 

71.1 
(70.5-71.8) 

62.1 
(60.6-63.5) 

77.3 
(76.9-77.7) 

Missing vitals, 
percent 

33.8 
(31.4-36.3) 

25.7 
(25.0-26.4) 

24.4 
(23.7-25.1) 

23.8 
(22.5-25.0) 

25.2 
(24.7-25.6) 

NEWS value, 
mean 

5.80 
(5.60-6.01) 

3.76 
(3.71-3.83) 

2.97 
(2.93-3.02) 

2.40 
(2.32-2.48) 

3.33 
(3.29-3.36) 

Prior contacts 
within 30 days, mean 

0.21 
(0.17-0.24) 

0.17 
(0.16-0.18) 

0.17 
(0.16-0.18) 

0.23 
(0.21-0.25) 

0.18 
(0.17-0.18) 

Intensive Care Unit, 
percent 

10.0 
(8.3-11.6) 

3.5 
(3.2-3.7) 

1.7 
(1.5-1.8) 

1.6 
(1.2-2.0) 

2.7 
(2.5-2.8) 

In-hospital death, 
percent 

8.7 
(7.2-10.3) 

4.0 
(3.7-4.4) 

3.7 
(3.4-4.0) 

3.9 
(3.4-4.5) 

4.0 
(3.8-4.2) 

Critical care, 
percent 

16.1 
(14.1-18.2) 

6.8 
(6.4-7.2) 

4.9 
(4.6-5.2) 

4.9 
(4.3-5.6) 

6.0 
(5.8-6.3) 

Admitted,  
percent 

51.9 
(49.2-54.6) 

52.3 
(51.5-53.1) 

52.3 
(51.6-53.1) 

49.2 
(47.7-50.8) 

52.0 
(51.5-52.4) 

2-day mortality, 
percent 

4.8 
(3.7-5.9) 

1.6 
(1.4-1.8) 

0.7 
(0.6-0.9) 

0.7 
(0.5-1.0) 

1.2 
(1.1-1.3) 

Statistics are reported with their bootstrapped 95% confidence interval 248 

* Interventions include Medication administration, Oxygen administration, IV placement, 249 

Spinal/longbone immobilization, 12-lead EKG capture/transmission to hospital, 250 

Transport using lights and sirens (L&S), Hospital pre-arrival notification, and 251 

administration of CPR.   252 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted October 5, 2019. ; https://doi.org/10.1101/19007021doi: medRxiv preprint 

https://doi.org/10.1101/19007021
http://creativecommons.org/licenses/by-nd/4.0/


15 

 

Model performance 253 

Receiver operating characteristics curves across the three hospital outcomes for each of 254 

the risk prediction scores, as well as for the dispatched priority of the call are presented 255 

in fig 1. We found that for all investigated outcomes, risk scores based on ambulance 256 

data outperformed all other instruments investigated. NEWS scores had a greater 257 

overall c-index than dispatch data-based models for critical care and two-day morality, 258 

but at threshold values corresponding to high levels of sensitivity, dispatch data-based 259 

risk predictions provided similar levels of specificity. In predicting critical care, NEWS 260 

scores were unable to achieve a level of sensitivity corresponding to ACS-CoT 261 

guidelines, with a decision rule based on a NEWS score of 1 or more yielding a 262 

sensitivity (and 95% CI) of 0.92 (0.90 - 0.94) and a specificity of 0.24 (0.24 - 0.25). At the 263 

same level of sensitivity, the dispatch and ambulance data-based risk score yielded 264 

specificities of 0.27 (0.27 - 0.28) and 0.36 (0.35 - 0.37) respectively. With regards to 2-265 

day mortality, a decision rule based on NEWS score of 2 or above yields a sensitivity of 266 

0.95 (0.92 - 0.98), corresponding to the ACS-CoT recommendation, while providing a 267 

specificity of 0.41 (0.40 - 0.42). At equivalent levels of sensitivity, the dispatch and 268 

ambulance based risk scores provide specificities of 0.28 (0.27 - 0.28) and 0.52 (0.51 - 269 

0.53) respectively. 270 

  271 
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 272 

Table 3 summarizes the discrimination of the risk assessment instruments for each 273 

outcome in the test dataset using the c-index of the model and its 95% confidence 274 

interval. ML models based on ambulance data outperformed NEWS scores in terms of 275 

c-index for all outcomes. The dispatch data based risk predictions outperformed NEWS 276 

in predicting hospital admission, while NEWS scores outperformed the dispatch data 277 

based predictions for critical care and two-day mortality in terms of overall 278 

discrimination. All risk assessment instruments outperformed dispatched priorities in 279 

Fig 1. Receiver Operating Characteristics in predicting hospital outcomes 

 

Dotted line corresponds to 95% sensitivity as recommended by the ACS-CoT 
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predicting hospital outcomes, which were found to have some predictive power for 280 

critical care and two day mortality, but none for hospital admission. We found no 281 

significant differences between model performance using cross-validation and validation 282 

in the test dataset. 283 

 284 

Table 3. Concordance indexes in predicting hospital outcomes 285 

Validation 
method Outcome Dispatched 

priority 
NEWS 
Score 

Dispatch 
risk score 

Ambulance 
risk score 

Test 

Hospital admission 0.51 
(0.50-0.52) 

0.66 
(0.66-0.67) 

0.73 
(0.72-0.74) 

0.79 
(0.78-0.79) 

Critical Care 0.57 
(0.56-0.58) 

0.75 
(0.73-0.76) 

0.71 
(0.69-0.72) 

0.79 
(0.78-0.80) 

Two-day mortality 0.66 
(0.63-0.70) 

0.85 
(0.83-0.89) 

0.80 
(0.77-0.82) 

0.89 
(0.87-0.91) 

Cross-
Validated 

Hospital admission 0.50 
(0.50-0.51) 

0.68 
(0.67-0.68) 

0.72 
(0.72-0.73) 

0.79 
(0.78-0.79) 

Critical Care 0.57 
(0.56-0.58) 

0.76 
(0.75-0.77) 

0.70 
(0.69-0.71) 

0.79 
(0.79-0.81) 

Two-day mortality 0.62 
(0.59-0.63) 

0.85 
(0.84-0.87) 

0.80 
(0.77-0.82) 

0.89 
(0.88-0.91) 

C-indexes are reported with their bootstrapped 95% confidence interval 286 

  287 
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We found that both NEWS and ML-based risk scores demonstrated some deviation from 288 

ideal calibration as reported in S3 Fig. In terms of mean average error, NEWS scores 289 

demonstrated better overall calibration in predicting hospital admission and critical care, 290 

but not two-day mortality as reported in S4 Table. In investigating model calibration in 291 

sub-populations stratified by age, gender, dispatched priority and patient complaint, 292 

some sub-populations did deviate from ideal calibration among both NEWS scores and 293 

ML risk scores, though deviations were not consistent across outcomes. 294 

The relative gain in predictive value provided by the 15 most important predictors 295 

included in the ambulance data-based models is reported in Fig 2, in order of 296 

descending mean gain across the 3 outcomes. Patient age and the provision of oxygen 297 

(coded as the liter per minute flow) ranked highest, followed by a number of patient vital 298 

signs. Whether or not the patient was transported using lights and sirens to the hospital 299 

was a strong predictor of outcomes. A number of measures of call duration (time to the 300 

hospital, time on-scene, and time between call receipt and ambulance dispatch), the 301 

distance to the nearest ED, and time of day of the call also ranked highly. A summary of 302 

the gain provided by all included variables is provided in S1 Table. 303 
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Discussion 304 

Limitations 305 

We limited this study to the investigation of a composite score based on an unweighted 306 

average of model predictions for three specific hospital outcomes. In doing so, we make 307 

the assumption that each of these outcomes is equally important in determining the 308 

overall risks associated with the patient. A sensitivity analysis provided in S5 Table 309 

demonstrated that while the predictive value of the risk scores did shift in favor of more 310 

heavily weighted outcomes across a range of weights, the differences did not impact the 311 

Fig 2. Importance of variables in predicting hospital outcomes in Ambulance models 

 

Variables are arranged in order of descending mean gain across the models predicting the outcomes 
included in the ambulance data-based risk score 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted October 5, 2019. ; https://doi.org/10.1101/19007021doi: medRxiv preprint 

https://doi.org/10.1101/19007021
http://creativecommons.org/licenses/by-nd/4.0/


20 

 

main findings of this study. The unweighted average furthermore offered a good 312 

compromise in terms of discrimination for each of the constituent outcomes. The most 313 

appropriate set of outcomes and associated weights to employ is nevertheless 314 

dependent on the intended application of the risk scores, and we recognize that we have 315 

examined only one of many potentially valid sets of outcome measures to employ in 316 

prehospital risk assessment. 317 

We observed a rate of loss to follow up of around 5-10% upon the application of each of 318 

our exclusion criteria. To assess and ameliorate risks associated with data quality 319 

issues, we manually spot-checked records to ensure the accuracy of our automated 320 

data extraction methods and addressed systematic data extraction issues where we 321 

found them, which could account for the lower rate of loss to follow-up we observed in 322 

the test dataset as reported in Table 1. The linkage rates found in this study were similar 323 

or superior to other studies of prehospital data [43–45]. We also observed c-index 324 

values for NEWS scores similar to those found in previous studies; Lane et al. [18] 325 

identified c-indexes of 0.85 for NEWS scores in predicting two-day mortality, similar to 326 

our value of 0.85 (0.82-0.86). Results were also similar to those identified by Pirneskoski 327 

et al. [19], who found a c-index value of 0.84 for NEWS scores in predicting 1-day 328 

mortality. Such agreement suggests that the quality of the data in this study is 329 

comparable to that of previously published research in the field. 330 

While the ML models reported on in this single-site study performed well in prospective 331 

validation, they are not likely to generalize well if applied directly to other contexts. 332 

Guidelines regarding hospital admission and intensive care for instance may vary, 333 

potentially biasing outcome predictions if these models were applied directly in other 334 
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settings. Such idiosyncrasies are likely to exist among predictor variables as well: 335 

Oxygen was found to have been administered to 17% of patients in this study for 336 

instance, a rate which appears to be lower than that found in other contexts [46,47]. In 337 

settings where oxygen is administered more liberally, it is not likely to be as strongly 338 

associated with patient acuity. The ML framework we employ is however highly flexible, 339 

and is likely to produce good results if models were to be trained “from scratch” on other 340 

similar datasets. As such, rather than seek to apply the specific models developed in this 341 

study to other settings, we encourage researchers to generate and validate novel 342 

models based on the framework we propose in other settings. To enhance 343 

reproducibility, we sought to adhere to TRIPOD guidelines in reporting our results 344 

regarding the development and validation of these models [48], and it is hoped that the 345 

source code found in S6 Code will facilitate the replication of-, and improvement upon 346 

our results. 347 

Interpretation 348 

In this study, we found that risk scores generated using ML models based on ambulance 349 

data outperformed NEWS scores in predicting hospital outcomes. Risk scores based on 350 

data gathered at the EMD center outperformed the prioritizations made by dispatch 351 

nurses, and performed comparably to NEWS scores (which are based on physiological 352 

data gathered upon patient contact) in settings where high sensitivity is demanded. 353 

Model performance was similar when validated internally using cross-validation and 354 

when evaluated in a prospectively gathered dataset, suggesting that the performance of 355 

the models is likely to remain stable upon being implemented within the studied context. 356 

ML-based risk scores demonstrated acceptable levels of calibration both overall and 357 
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stratified by age, gender, priority and common call types, and were only mildly sensitive 358 

to the selection of alternate sets of weights. Overall, these findings suggest that the 359 

application of machine learning methods to routinely collected dispatch and ambulance 360 

data is a feasible approach to improving the ability of prehospital care providers to 361 

assess the risks associated with their patients in terms of the need for hospital care. 362 

During the development of the methods reported here, we investigated the performance 363 

of a number of ML techniques including regularized logistic regression, support vector 364 

machines, random forests, gradient boosting, and deep neural networks in the training 365 

dataset. As in previous studies [27,49–51], we found that the XGBoost algorithm 366 

performed at least as well as other methods we applied to these data in terms of 367 

discrimination. We also found that the XGBoost algorithm had several practical benefits, 368 

including being invariant to monotonic transformations of the predictors (thus simplifying 369 

the data transformation pipeline) [39], and appropriately handling missing data using a 370 

sparsity-aware splitting algorithm [38]. While providing good discrimination, the approach 371 

does have some drawbacks including being somewhat difficult to interpret, the inability 372 

to update models without access to the full original dataset, and that the models are not 373 

inherently well calibrated as logistic regression for instance is. 374 

We found the overall calibration of our composite risk scores to be satisfactory, despite 375 

their nature as an average of multiple outcomes.  Examination of calibration across sub-376 

populations yielded interesting results which could be further examined. We found 377 

NEWS scores for instance to systematically under-estimate the probability of hospital 378 

admission among older patients - Such miscalibration could be the result of an over-379 

estimation of risks among older patients in the hospital admission process, but could 380 
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also represent an underlying bias in NEWS scores as currently calculated. Interestingly, 381 

all risk scores tended to underestimate the probability of two-day mortality for the oldest 382 

quartile of patients. While the usual caution in interpreting post-hoc sub-group analyses 383 

is warranted, we found analyses of this type to be useful in developing the models 384 

reported here, and in considering how to proceed with their application to clinical 385 

practice.  386 

While dispatcher prioritizations did have a statistically significant predictive value for 387 

critical care and two-day mortality, their discrimination was poor in comparison with all 388 

other risk assessment instruments with regards to hospital outcomes. This may in part 389 

be due to dispatchers prioritizing ambulance responses with an eye to the need for 390 

prehospital rather than in-hospital care. These aspects of patient care often coincide, but 391 

can in some cases differ. Cases of severe allergic reactions for instance call for a high 392 

priority ambulance response, but following treatment in the field by ambulance staff, 393 

often require only minimal in-hospital care. Effectively capturing this dimension of patient 394 

risk necessitates the definition of a different set of outcome measures than those 395 

reported here, and should be investigated in further studies. 396 

We limited our analysis to hospital outcomes in order to allow for the direct comparison 397 

of models based on data collected at multiple points in the prehospital chain of care, and 398 

to facilitate comparison with other published research based on ED data. We also 399 

considered outcome measures based on ambulance data to be at greater risk for bias, 400 

as we suspect that the behavior of ambulance nurses may to some extent be influenced 401 

by the triage decisions of dispatch nurses. It should also be noted that the inclusion 402 

criteria used in this study were restrictive in that they excluded patients left at the scene 403 
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of the incident, and patients transported to non-ED destinations. Upon implementation of 404 

these methods, care must be taken to ensure that the criteria used to include patients in 405 

a training dataset results in a population of patients similar to those upon whom the risk 406 

assessment tools will be applied. 407 

Our models generally had lower levels of overall predictive value than found in previous 408 

studies investigating these outcomes based on data collected at the ED. This could in 409 

part be explained by population differences, given that the population of ambulance-410 

transported patients investigated here constitutes a sum-population of the highest-acuity 411 

patients cared for at the ED [52–54]. The population in this study for instance had an 412 

average rate of in-hospital mortality of 4%, compared with the 0.5% rate found by Levin 413 

et al. [26], while our hospital admission rate was 52% as compared with the 30% found 414 

by Hong et al. [27], both of whom studied the full population of ED patients. It is also the 415 

case that the data available in records of prehospital care tend to be less detailed, 416 

lacking granular information regarding for instance the patient’s past medical history and 417 

laboratory test results. Such data have been found to provide substantial improvements 418 

to patient outcome predictions [27,29]. This study demonstrates that despite these 419 

barriers, prehospital data does have value in predicting hospital outcomes. We identified 420 

no studies of ED triage models which included prehospital data and as such, we suggest 421 

that one avenue for improving the performance of in-hospital triage models may be to 422 

include variables drawn from dispatch and ambulance records. 423 

In conclusion, these results demonstrate that machine learning offers a viable approach 424 

to improving the accuracy of prehospital risk assessments, both in relation to existing 425 

rule-based triage algorithms, and current practice. Further research should investigate if 426 
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the inclusion of additional unstructured data such as free-text notes and dispatch center 427 

call recordings could further improve the predictive value of the models reported here. 428 

Studies to investigate the attitudes of care providers with regards to risk assessments 429 

using ML may also prove fruitful; while ML methods can provide prehospital care 430 

providers with a more accurate risk score, the lack of direct interpretability often 431 

associated with such models may prove to be a barrier to acceptance. This study 432 

establishes only the feasibility of this approach to prehospital risk assessment, and 433 

further studies must establish the ability to influence the decisions of care providers and 434 

impact patient outcomes in prehospital care by means of prospective, preferably 435 

randomized, trial. 436 

  437 
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Supporting Information 619 

S1 Table. Predictor description 620 

Descriptions of each set of predictors included in gradient boosting models, providing 621 

information regarding the number of non-missing, non-zero values among included calls, 622 

the average gain provided by the predictor, and the number of dummy-encoded 623 

variables included from the predictor in the models. 624 

S2 Analysis. Precision/Recall analysis 625 

Provides results from a Precision/recall curve analysis as commonly reported in the 626 

machine learning literature, presented in the same manner as Figure1 and table 2 in the 627 

main analysis. 628 

S3 Fig. Model calibration curves 629 

Provides the results of model calibration analyses using lowess smoothed calibration 630 

curves for both overall calibration, and calibration among sub-populations divided by age 631 

quartile, gender, call priority, and the 5 most common call types. 632 

S4 Table. Model calibration mean average error 633 

Provides summary statistics in the form of the mean average calibration error for NEWS 634 

and ML risk scores both in the full population, and the weighted average of all 635 

investigated sub-populations. 636 

S5 Table. Sensitivity to alternate weights 637 

Reports c-indexes for risk scores across a range of alternate weighting schemes, 638 

including the performance of individual model predictions across all investigated 639 

outcomes. 640 

S6 Code. R Source code 641 

Provides all R code necessary to replicate the results reported in this manuscript in a 642 

user-provided dataset. If no dataset is provided, results are calculated in a randomly 643 

generated synthetic dataset mimicking the univariate properties of our data. Be aware 644 

that the instruments will demonstrate essentially no predictive power if data is not 645 

provided. Note to editor: Upon publication, a link to a github repository containing a 646 

maintained version of the code will be placed here. Note to preprint readers: We’ll be 647 

releasing the source code upon publication – Who knows if some eagle-eyed reviewer 648 

will spot some error? 649 
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S1 Table - Predictor description 651 

Feature 

Number of 
included calls 

with non-
zero/non-

missing value 

Percent of 
included calls 

with non-
zero/non-

missing value 

Average gain 
from inclusion 
of variables in 

ambulance 
models 

Number of 
variables from 

group included in 
any ambulance 

model 

Ambulance - Airway findings 34,719 90.9 0.212 4 
Ambulance - Pre-arrival 
notification given 5,986 15.7 1.270 1 

Ambulance - Any intervention 
provided 29,529 77.3 0.188 1 

Ambulance - Breathing findings 34,599 90.6 0.325 8 

Ambulance - Breathing sounds 31,482 82.4 0.132 3 

Ambulance - Call types 31,239 81.8 0.748 26 

Ambulance - Circulation findings 32,393 84.8 0.094 3 

Ambulance - CPR administered 55 0.1 0.297 1 

Ambulance - Critical patient 
status 3,267 8.6 0.377 1 

Ambulance - Time to dispatch 19,815 51.9 1.630 1 
Ambulance - 12-lead EKG 
taken/sent to CICU 9,128 23.9 0.335 1 

Ambulance - Patient immobilized 764 2.0 0.112 1 

Ambulance - IV placed 24,449 64.0 0.402 1 
Ambulance - Patient medical 
history 16,130 42.2 0.315 7 

Ambulance - Medications 
administered 22,365 58.5 1.208 14 

Ambulance - Oxygen 
administered (LPM) 6,522 17.1 13.909 1 

Ambulance - Lights & siren to 
hospital 5,140 13.5 4.307 1 

Ambulance - Priority to scene 38,203 100.0 0.289 1 

Ambulance - Patient medications 8,317 21.8 0.325 15 

Ambulance - Pulse quality 33,019 86.4 0.577 6 

Ambulance - Time on scene 35,315 92.4 2.887 1 

Ambulance - Skin condition 29,858 78.2 0.121 3 

Ambulance - Time to hospital 35,624 93.2 3.098 1 

Ambulance - AVPU 37,172 97.3 1.212 1 
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Feature 

Number of 
included calls 

with non-
zero/non-

missing value 

Percent of 
included calls 

with non-
zero/non-

missing value 

Average gain 
from inclusion 
of variables in 

ambulance 
models 

Number of 
variables from 

group included in 
any ambulance 

model 

Ambulance - Systolic blood 
pressure 37,710 98.7 6.932 1 

Ambulance - Respiration rate 36,567 95.7 4.824 1 

Ambulance - GCS 36,985 96.8 6.292 1 

Ambulance - Pulse rate 37,755 98.8 3.356 1 

Ambulance - SpO2 38,028 99.5 8.647 1 

Ambulance - Temperature 32,473 85.0 5.047 1 

Dispatch - Patient Age 38,203 100.0 12.050 1 

Dispatch - CDSS category 38,203 100.0 4.300 32 
Dispatch - Distance to nearest 
ED 38,141 99.8 3.256 1 

Dispatch - Patient Gender 19,814 51.9 0.300 1 

Dispatch - Hour of call 37,070 97.0 1.563 1 

Dispatch - Hours since last 
contact 38,203 100.0 0.421 1 

Dispatch - Number of prior 
contacts (30 days) 4,906 12.8 0.228 1 

Dispatch - Month of call 38,203 100.0 0.901 1 
Dispatch - Number of CDSS 
questions answered 37,374 97.8 1.409 1 

Dispatch - CDSS questions 37,151 97.2 5.696 166 
Dispatch - CDSS recommended 
priority 38,203 100.0 0.406 1 

 652 
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S2 Analysis - Precision/Recall analysis 654 

Fig 1 Equivalent 655 

Table 3 Equivalent 656 

 Area under Precision/Recall curve (95% CI) 

Validation 
method Outcome Dispatched 

priority 
NEWS 
Score 

Dispatch 
risk score 

Ambulance 
risk score 

Test 

Hospital admission 0.52 
(0.51-0.52) 

0.70 
(0.69-0.70) 

0.69 
(0.69-0.70) 

0.78 
(0.78-0.79) 

Critical Care 0.08 
(0.08-0.08) 

0.20 
(0.18-0.21) 

0.15 
(0.13-0.16) 

0.30 
(0.29-0.34) 

Two-day mortality 0.02 
(0.02-0.03) 

0.09 
(0.08-0.15) 

0.09 
(0.06-0.10) 

0.26 
(0.21-0.38) 

Cross-
Validated 

Hospital admission 0.53 
(0.52-0.53) 

0.72 
(0.71-0.72) 

0.71 
(0.71-0.72) 

0.79 
(0.78-0.79) 

Critical Care 0.09 
(0.08-0.09) 

0.21 
(0.20-0.21) 

0.13 
(0.12-0.14) 

0.30 
(0.28-0.32) 

Two-day mortality 0.02 
(0.02-0.03) 

0.09 
(0.07-0.11) 

0.06 
(0.05-0.08) 

0.24 
(0.22-0.29) 
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S3 Figure - Model calibration curves 657 

Overall 658 

 659 

Sub-group calibration 660 

By Age quartiles 661 

 662 
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By Gender 663 

 664 

By Priority 665 

 666 
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By Common call types 667 

 668 

 669 
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S4 Table - Model calibration mean average error 671 

 672 

Stratification 
variable Predictor Mean absolute error from ideal calibration 

     Hospital 
admission 

Critical 
Care 

Two-day 
mortality 

Overall 

NEWS Score 0.0112 0.0029 0.0016 

Dispatch risk score 0.0170 0.0040 0.0009 

Ambulance risk score 0.0228 0.0066 0.0011 

Age 

NEWS Score 0.0558 0.0064 0.0033 

Dispatch risk score 0.0238 0.0079 0.0021 

Ambulance risk score 0.0256 0.0093 0.0023 

Gender 

NEWS Score 0.0113 0.0055 0.0018 

Dispatch risk score 0.0172 0.0055 0.0013 

Ambulance risk score 0.0229 0.0077 0.0019 

Priority 

NEWS Score 0.0170 0.0045 0.0030 

Dispatch risk score 0.0214 0.0061 0.0028 

Ambulance risk score 0.0253 0.0071 0.0021 

Call type 

NEWS Score 0.0351 0.0068 0.0034 

Dispatch risk score 0.0245 0.0067 0.0019 

Ambulance risk score 0.0266 0.0080 0.0024 

 673 

  674 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted October 5, 2019. ; https://doi.org/10.1101/19007021doi: medRxiv preprint 

https://doi.org/10.1101/19007021
http://creativecommons.org/licenses/by-nd/4.0/


39 

 

S5 Table - Sensitivity to alternate weights 675 

Predictor 
set Weights* Hospital 

admission 
Critical 

Care 
Two-day 
mortality 

Dispatch 

100:10:1 0.74 
(0.73-0.74) 

0.68 
(0.67-0.69) 

0.75 
(0.71-0.77) 

4:2:1 0.73 
(0.73-0.74) 

0.70 
(0.68-0.72) 

0.78 
(0.75-0.81) 

1:1:1 0.72 
(0.72-0.73) 

0.71 
(0.70-0.72) 

0.79 
(0.76-0.82) 

1:2:4 0.71 
(0.71-0.72) 

0.70 
(0.69-0.72) 

0.79 
(0.77-0.82) 

1:10:100 0.70 
(0.69-0.71) 

0.68 
(0.67-0.69) 

0.79 
(0.74-0.81) 

1:0:0 0.74 
(0.73-0.75) 

0.66 
(0.64-0.68) 

0.72 
(0.70-0.74) 

0:1:0 0.68 
(0.68-0.69) 

0.72 
(0.70-0.74) 

0.78 
(0.75-0.82) 

0:0:1 0.67 
(0.67-0.68) 

0.65 
(0.63-0.66) 

0.78 
(0.75-0.80) 

Ambulance 

100:10:1 0.79 
(0.79-0.80) 

0.77 
(0.76-0.78) 

0.86 
(0.84-0.89) 

4:2:1 0.79 
(0.78-0.80) 

0.78 
(0.78-0.80) 

0.89 
(0.87-0.91) 

1:1:1 0.79 
(0.78-0.79) 

0.79 
(0.78-0.80) 

0.89 
(0.86-0.91) 

1:2:4 0.78 
(0.77-0.78) 

0.80 
(0.79-0.81) 

0.90 
(0.88-0.92) 

1:10:100 0.78 
(0.77-0.78) 

0.79 
(0.77-0.81) 

0.89 
(0.87-0.91) 

1:0:0 0.79 
(0.79-0.80) 

0.75 
(0.74-0.77) 

0.83 
(0.80-0.86) 

0:1:0 0.73 
(0.73-0.74) 

0.80 
(0.80-0.82) 

0.90 
(0.88-0.92) 

0:0:1 0.72 
(0.71-0.72) 

0.76 
(0.74-0.77) 

0.88 
(0.87-0.90) 

* Weights applied to model predictions for Hospital Admission : Critical Care : Two-day 676 

Mortality 677 
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