Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains a public health challenge worldwide. The gastrointestinal tract has emerged as an important site of infection and has been implicated as a reservoir for long-term infection, particularly for post-acute COVID-19 syndrome. However, whether vaccine-induced systemic antibodies can prevent intestinal infection with SARS-CoV-2 is unclear. Compared to Vero cells commonly used to assess SARS-CoV-2 neutralization, the intestinal epithelium has a functional interferon response and expresses higher levels of ACE2, enzymes, and antibody-binding Fc receptors that may impact SARS-CoV-2 immune elimination.
Methods We evaluated the potential of antibodies from both naturally infected and vaccinated human subjects to inhibit SARS-CoV-2 infection of the intestinal epithelium. Serum samples were collected from human volunteers who had undergone natural infection with SARS-CoV-2 in 2020 (n=5) or who had received the Pfizer BNT162b2 COVID-19 vaccine (n=13). Banked sera collected in 2016 served as negative controls (n=2). SARS-CoV-2 (WA01, Delta or Omicron) was pre-treated with sera and then used to infect iPSC-derived human intestinal organoids (HIO) or Caco-2 colonic epithelial cells, and SARS-CoV-2 infection was quantified by plaque assay, PCR, or immunofluorescence (IF) after 48-96 h.
Results Both HIOs and Caco-2 cells supported robust infection with SARS-CoV-2. In HIOs, pretreatment of SARS-CoV-2 with a high titer post-vaccine serum completely blocked replication of WA01. Similarly, sera from both naturally infected donors collected in 2020 and sera from individuals who had received a BNT162b2 vaccine significantly inhibited replication of the WA01 strain in Caco-2 cells. In contrast, none of the sera significantly inhibited infection with the Delta variant of SARS-CoV-2. For Omicron, only sera from individuals who had received an Omicron-based vaccine significantly inhibited infection with SARS-CoV-2 in the plaque assay. Across all virus types, sera from individuals who had received Omicron-based BNT162b2 boosters were the most effective at reducing infection in Caco-2 cells.
Conclusion Our results suggest that vaccine-induced antibody responses to SARS-CoV-2 are protective in the gut. Our study also supports previous reports indicating that SARS-CoV-2 vaccines need to be adapted to circulating virus strains to convey full protection from infection.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Yes
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Not Applicable
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Serum samples were collected with written informed consent from adult volunteers with approval from the Institutional Review Board at Montana State University (protocol # JH041020).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Not Applicable
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Not Applicable
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Not Applicable
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.