Abstract
Converging neuroimaging, genetic, and post-mortem evidence show a fundamental role of synaptic deficits in schizophrenia pathogenesis. However, the underlying molecular and cellular mechanisms that drive the onset and progression of synaptic pathology remain to be established. Here, we used synaptic density positron emission tomography (PET) imaging using the [11C]UCB-J radiotracer to reveal a prominent widespread pattern (pFWE < 0.05) of lower synaptic density in individuals with schizophrenia (n=29), compared to a large sample of healthy controls (n=93). We found that the spatial pattern of lower synaptic density in schizophrenia is spatially aligned (rcca = 0.67; p < 0.001) with higher normative distributions of GABAA/BZ, 5HT1B, 5HT2A, and 5HT6, and lower levels of CB1 and 5HT1A. Competing neighborhood deformation network models revealed that regional synaptic pathology strongly correlated with estimates predicted using a model constrained by both interregional structural connectivity and molecular similarity (.42 < r < .61; pFWE < 0.05). These data suggest that synaptic pathology in schizophrenia is jointly constrained by both global axonal connectivity and local molecular vulnerability. Simulation-based network diffusion models were used to identify regions that may represent the initial sources of pathology, nominating left prefrontal areas (pFWE < 0.05) as potential foci from which synaptic pathology initiates and propagates to molecularly similar areas. Overall, our findings provide in vivo evidence for widespread deficit in synaptic density in schizophrenia that is jointly constrained by axonal connectivity and molecular similarity between regions, and that synaptic deficits spread from initial source regions to axonally connected and molecularly similar territories.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was supported in part by the National Institute on Drug Abuse (NIDA) grant R01 DA052454-03 (GAA), U54 AA027989 (KC), Dana Foundation David Mahoney program (RR).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics committee of Yale University name gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.