Abstract
Titrating the relative importance of endogenous and exogenous drivers for dynamical transitions in host-pathogen systems remains an important research frontier towards predicting future outbreaks and making public health decisions. In Japan, respiratory syncytial virus (RSV), a major childhood respiratory pathogen, displayed a sudden, dramatic shift in outbreak seasonality (from winter to fall) in 2016. This shift was not observed in any other countries. We use mathematical models to identify processes that could lead to this outcome. In line with previous analyses, we identify a robust quadratic relationship between mean specific humidity and transmission, with minimum transmission occurring at intermediate humidity. This drives semiannual patterns of seasonal transmission rates that peak in summer and winter. Under this transmission regime, a subtle increase in population-level susceptibility can cause a sudden shift in seasonality, where the degree of shift is primarily determined by the interval between the two peaks of seasonal transmission rate. We hypothesize that an increase in children attending childcare facilities may have contributed to the increase in susceptibility through increased contact rates with susceptible hosts. Our analysis underscores the power of studying infectious disease dynamics to titrate the roles of underlying drivers of dynamical transitions in ecology.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Prime Contract No. 75N91019D00024, Task Order No. 75N91023F00016. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the U.S. Government. S.W.P. is a Peter and Carmen Lucia Buck Foundation Awardee of the Life Sciences Research Foundation. I.H. received postdoctoral funding from the High Meadows Environmental Institute of Princeton University. B.T.G. and C.J.E.M. acknowledge support from Princeton Catalysis Initiative and Princeton Precision Health.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.