Abstract
Background Carotid atherosclerosis is a major contributor in the etiology of ischemic stroke. Although intraplaque hemorrhage (IPH) is known to increase stroke risk and plaque burden, its long-term effects on plaque dynamics remain unclear. This study aimed to evaluate the long-term impact of IPH on carotid plaque burden progression using deep learning-based segmentation on multi-contrast magnetic resonance vessel wall imaging (VWI).
Methods Twenty-eight asymptomatic subjects with carotid atherosclerosis underwent an average of 4.7 ± 0.6 VWI scans over 5.8 ± 1.1 years. Deep learning pipelines were developed and validated to segment the carotid vessel walls and IPH. Bilateral plaque progression was analyzed using generalized estimating equations, and linear mixed-effects models evaluated long-term associations between IPH occurrence, IPH volume, and plaque burden (%WV) progression.
Results IPH was detected in 23/50 of arteries. Of arteries without IPH at baseline, 11/39 developed new IPH that persisted, while 5/11 arteries with baseline IPH exhibited it throughout the study. Bilateral plaque growth was significantly correlated (r = 0.54, p < 0.001), but this symmetry was weakened with IPH presence. The progression rate for arteries without IPH was -0.001 %/year (p = 0.90). However, IPH presence or development at any point was associated with a 2.3% absolute increase in %WV on average (p < 0.001). The volume of IPH was also positively associated with increased %WV (p = 0.005).
Conclusions Deep learning-based segmentation pipelines were utilized to identify IPH, quantify IPH volume, and measure their effects on carotid plaque burden during long-term follow-up. Findings demonstrated that IPH may persist for extended periods. While arteries without IPH demonstrated minimal progression under contemporary treatment, presence of IPH and greater IPH volume significantly accelerated long-term plaque growth.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was funded by National Institutes of Health under grant R01-HL103609, R01-NS125635 and R01-NS127317.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
University of Washington Human Subject Division gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.