Abstract
The COVID-19 pandemic has underscored the importance of virus surveillance in public health and wastewater-based epidemiology (WBE) has emerged as a non-invasive, cost-effective method for monitoring SARS-CoV-2 and its variants at the community level. Unfortunately, current variant surveillance methods depend heavily on genomic databases with data derived from clinical samples, which can become less sensitive and representative as clinical testing and sequencing efforts decline.
In this paper, we introduce HERCULES (High-throughput Epidemiological Reconstruction and Clustering for Uncovering Lineages from Environmental SARS-CoV-2), an unsupervised, database-independent method that uses long-read sequencing of a single 1 Kb fragment of the Spike gene. HERCULES identifies and quantifies mutations and lineages without requiring database-guided deconvolution, enhancing the detection of novel variants. We evaluated HERCULES on Norwegian wastewater samples collected from July 2022 to October 2023 as part of a national pilot on WBE of SARS-CoV-2. Strong correlations were observed between wastewater and clinical sample data in terms of prevalence of mutations and lineages. Furthermore, we found that SARS-CoV-2 trends in wastewater samples were identified one week earlier than in clinical data.
Our results demonstrate HERCULES’ capability to identify new lineages before their detection in clinical samples, providing early warnings of potential outbreaks. The methodology described in this paper is easily adaptable to other pathogens, offering a versatile tool for environmental surveillance of new emerging pathogens.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was funded by the Norwegian Institute of Public Health (NIPH)
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced is deposited online at the European Nucleotide Archive under the project PRJEB76651. The source code and Docker images are available on GitHub (https://github.com/garcia-nacho/HERCULES)