Abstract
Epithelial injury calls for a regenerative response from a coordinated network of epithelial stem cells and immune cells. Defining this network is key to preserving the repair process for acute resolution, but also for preventing a remodeling process with chronic dysfunction. We recently identified an immune niche for basal-epithelial stem cells using mouse models of injury after respiratory viral infection. Niche function depended on an early sentinel population of monocyte-derived dendritic cells (moDCs) that provided ligand GPNMB to basal-ESC receptor CD44 for reprogramming towards chronic lung disease. These same cell and molecular control points worked directly in mouse and human basal-ESC organoids, but the findings were not yet validated in vivo in human disease. Further, persistence of GPNMB expression in moDCs and M2-macrophages in mouse models suggested utility as a long-term disease biomarker in humans. Here we show increased expression of GPNMB localized to moDC-macrophage populations in lung tissue samples from long-term Covid, asthma, and COPD. The findings thereby provide initial evidence of a persistent and correctable pathway from acute injury to chronic disease with implications for cellular reprogramming and inflammatory memory.
New and noteworthy Recent work indicates that a sentinel immune niche provides GPNMB to epithelial stem cells to drive structural remodeling and disease as exemplified by the response to respiratory viral injury. The present study provides initial evidence that this niche can be detected in humans in the context of comparable diseases (long-term Covid, asthma, and COPD) also linked to viral infection. The results support a persistent mechanism for inflammatory disease that might be correctable with GPNMB blockade directly or indirectly through related signaling pathways.
Competing Interest Statement
MJH is the Founder of NuPeak Therapeutics, Inc. KW, YZ, AGR, and MJH are inventors on a patent for MAPK inhibitors and methods of use thereof. MJH, KW, and YZ are inventors on a provisional patent for Methods of use for GPNMB-CD44 blockade in chronic respiratory disease.
Funding Statement
This study was supported by grants from the National Institutes of Health (National Heart, Lung, and Blood Institute UH2-HL123429, R35-HL145242, and STTR R41-HL149523, National Institute of Allergy and Infectious Diseases R01-AI130591, Department of Defense TTDA W81XWH2010603 and W81XWH2210281, and Harrington Discovery Institute.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Human studies were conducted with protocols approved by the Washington University (St. Louis, MO) Institutional Review Board and U.S. Army Medical Research and Development Command (USAMRDC) Office of Research Protections.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present work are contained in the manuscript.
Abbreviations used in this article
- basal-ESC
- basal-epithelial stem cell
- COPD
- chronic obstructive pulmonary disease
- Covid-19
- coronavirus disease of 2019
- GPNMB
- glycoprotein nometastatic melanoma B
- (moDC)
- monocytederived dendritic cell
- PVLD
- post-viral lung disease.