Effectiveness of interactive dashboards to optimise prescribing in primary care: A systematic review

Caroline McCarthy* (0000-0002-2986-5994)¹, Patrick Moynagh (0009-0004-1233-3176)¹, Áine Mannion², Ashely Wei³, Barbara Clyne (0000-0002-1186-9495)², Frank Moriarty (0000-0001-9838-3625)³

¹Department of General Practice, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
²Department of Public Health & Epidemiology, School of Population Health, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
³School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland

*Corresponding author: carolinemccarthy@rcsi.com

Author roles:

Caroline McCarthy: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing

Patrick Moynagh: Investigation, Methodology, Project Administration, Resources, Supervision, Writing – Review & Editing

Aine Mannion: Investigation, Writing – Review & Editing

Ashley Wei: Investigation, Writing – Review & Editing

Barbara Clyne: Conceptualization, Funding Acquisition, Methodology, Writing – Review & Editing

Frank Moriarty: Conceptualization, Funding Acquisition, Investigation, Methodology, Supervision, Validation, Writing – Review & Editing

Data Availability:

No new primary data were collected for this study, as the review synthesises publicly available data from published studies. All data generated or analysed during this study are included in this published

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
article and its supplementary information files. This includes the search strategies used for each
database, details of the included studies, and any additional data extracted during the review process.
The study protocol is available as an open-access publication and can be accessed directly at
https://hrbopenresearch.org/articles/7-44.

Competing interests:
The authors have declared that no competing interests exist.

Funding:
CMC is funded by a HRB post-doctoral Clinician Scientist Fellowship award (CSF- 2023-012)
https://www.hrb.ie/funding/. PM is funded by an ICGP Post CSCST Fellowship award. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Abbreviations:
PIP, potentially inappropriate prescribing; EHR, electronic healthcare records; RCT, randomised
controlled trial; ITSA, interrupted time series analysis; CBA, controlled before and after study; EPOC,
Effective Practice and Organisation of Care; TIDieR, Template for Intervention Description and
Replication; Abx, antibiotic; SABA, short acting beta agonist inhaler; LABA, long acting beta agonist
inhaler; NSAID, non-steroidal anti-inflammatory drug; eGFR, estimated glomerular filtration rate; CKD,
chronic kidney disease; CVD, cardiovascular disease; CCG, clinical commissioning group; NICE, National
Institute for Clinical Excellence; RTI, respiratory tract infection; CDSS, clinical decision support-system;
ARR, absolute risk reduction; OR, odds ratio; DDD, defined daily dosage; CI, confidence interval; RP,
risky prescribing; AF, atrial fibrillation

Word Count (excluding abstract/tables/references): 4020

<table>
<thead>
<tr>
<th>Section</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>392</td>
</tr>
<tr>
<td>Introduction</td>
<td>651</td>
</tr>
<tr>
<td>Methods</td>
<td>641</td>
</tr>
<tr>
<td>Results</td>
<td>1709</td>
</tr>
<tr>
<td>Discussion</td>
<td>1019</td>
</tr>
<tr>
<td></td>
<td>4020</td>
</tr>
</tbody>
</table>

Tables: 3, Figures: 3

References: 34
Abstract

Background

Rising levels of both high-risk and low-value prescribing have the potential for adverse effects on patients, healthcare systems and society. It is thus necessary to develop effective and cost-effective interventions to support safe, effective and cost-effective prescribing. Advancements in technology, including machine learning coupled with the vast amounts of routine prescribing data available in primary care have supported the development of novel approaches to provide prescribers with ongoing and comparative prescribing data feedback. This systematic review aimed to explore the characteristics of interactive dashboard interventions in primary care that provide visual and longitudinal feedback on prescription data and to explore the effect of these interventions on prescribing-related outcome measures.

Methods and Findings

This systematic review was registered prospectively and reported in line with PRISMA guidelines. Multiple databases and grey literature were searched in November 2023 to identify interventional studies, including quasi-experimental designs that explored the effect of interactive dashboards on prescribing-related outcomes in primary care. Identified records were assessed for inclusion and data extraction and risk of bias assessment were completed by two independent researchers. Interventions characteristics and effects were described narratively. A meta-analysis using a random-effects model was performed where at least two studies were comparable in terms of participants, study design and outcomes. Twelve studies, reported across eleven different papers were included, eight randomised controlled trials, one controlled before and after study and three interrupted time series analyses. Nine papers were assessed to be of low risk of bias. Six studies reported a significant effect on prescribing-related outcomes, with an effect seen more often for studies focusing on potentially inappropriate or high-risk prescribing (four out of six studies). Two of the six studies that focused on antibiotic prescribing demonstrated a significant effect. A meta-analysis of three RCTs involving 406
general practices and 337,963 patients demonstrated the overall odds of having at least one potentially inappropriate prescription was 0.87 (95% CI 0.81 to 0.93 I² =0.0%) in the intervention compared to control group.

Conclusion

Interactive dashboards have the potential to support safe and effective prescribing in primary care. To support their implementation, it is essential to establish the necessary data infrastructure within primary cares systems. This encompasses electronic health records (EHR) systems, data integration tools, analytics platforms, and compliance with data privacy regulations, all working together to facilitate the efficient use of data for improving prescribing and ultimately patient care.

Key Words: Interactive dashboards, potentially inappropriate prescribing, audit and feedback, preventable drug related morbidity, polypharmacy, comparative benchmarking, electronic health records, routine prescription data.
Introduction

Prescribing is the most common healthcare intervention and advances in therapeutics have improved the lives and life expectancy of many people living with chronic illness (1). However, alongside these improvements there has been an increase in potentially inappropriate prescribing (PIP) which has potential negative consequences for individuals, society and healthcare systems (2). Prescribing for older patients with multiple chronic illnesses is particularly challenging as prescribers must contend with both potential drug-drug and drug-disease interactions (3). The reasons for potentially inappropriate prescribing are complex and multifaceted and include systems failures, particularly at the interface between primary and secondary care, individual patient factors such as increasing age and multimorbidity, clinician factors such as knowledge and attitudes and broader societal attitudes about the roles and benefits of medicines (4). To both measure and address this, a variety of explicit criteria have been developed for use in both research and clinical practice (5). These measures tend to focus on highly prevalent PIP or those with the potential for significant harm. More recently there has been a shift towards identifying and addressing low-value prescribing, which on a population level can result in harm both directly (e.g. experiencing adverse effects from medicines that are not providing benefit) and indirectly (e.g. contributing to non-adherence and through the opportunity cost of other cost-effective interventions not resourced due to spending on low-value medicines) (6). Explicit measures of medication appropriateness have been demonstrated to be effective at improving prescribing and have the advantage of being relatively reproducible, reliable and easy to apply to large numbers of people (7).

With recent advancements in electronic healthcare records (EHR) and prescribing, it is now possible to apply explicit criteria to routine prescribing or dispensing datasets. OpenPrescribing.net is a prominent example, where the vast amount of anonymous prescription data published by NHS England each month is analysed and presented on a web platform to allow for comparative benchmarking between practices (8). However, when using publicly available anonymous data, only a
subset of explicit criteria can be applied as patient-level data such as age and co-morbidities are not included. In addition, it is challenging for clinicians to identify and act on individual instances of sub-optimal prescribing. One approach to combine both audit and feedback and clinical decision support (both of which have been identified as effective methods to improve prescribing (9, 10)), while maintaining anonymity, has been to embed code within practice systems and export aggregate-level data (11). This aggregated data can then be fed back to individual practices in the form of interactive dashboards and allow for comparative benchmarking. This approach ensures that individual patient identities are protected while allowing practices to compare their performance, identify areas for improvement and act on individual instances of high-risk prescribing.

Identifying appropriate outcome measures is a challenge when assessing the effectiveness of interventions such as interactive dashboards designed to improve prescribing quality in primary care settings. Important clinical endpoints such as unplanned hospital admissions or mortality require a sufficient sample size and an adequate follow-up period to identify any potential effect, which may not be feasible. Thus, composite measures of explicit prescribing criteria are often used as primary endpoints for these studies (12). There is strong observational evidence that such prescribing is associated with adverse outcomes for patients such as increased mortality, falls and unplanned hospital admissions (13). More general prescribing measures include rates of utilisation and these serve as a valuable outcome for evaluating the impact of health policy implementation programmes aimed at modifying prescribing behaviours, such as reducing high opioid prescription levels (14) or imposing restrictions on drugs with unfavourable cost-effectiveness profiles (15).

Given the recent advancements in the data infrastructure of primary care and the need to address both high-risk and low value prescribing, this systematic review aimed to explore characteristics and effectiveness of interactive dashboard interventions on prescribing outcomes in primary care with the additional goal of informing future intervention development and e-prescribing infrastructure.
Methods

The methods have been described previously in our published protocol (16). This systematic review was prospectively registered on PROSPERO (CRD42023481475), conducted in line with guidance set out in the Cochrane Handbook for Systematic Reviews of Interventions (17), and reported in adherence to PRISMA statement, S1 Appendix (18).

Data sources and search strategy

A systematic literature search was conducted 22nd November 2023 in the following databases; PubMed, EMBASE, MEDLINE (OVID), PsycINFO (EBSCOhost), CINAHL (EBSCOhost), Scopus and the Cochrane Library (OVID). This was supplemented by grey literature searches in OpenGrey, CADTH Grey Matters and the International Clinical Trials Registry Platform (ICTRP) as well as backward and forward citation chasing using an automated citation chaser (19). There were no restrictions placed on language or year of publication. Search terms included keywords to capture the intervention (e.g. “interactive dashboard”, “clinical audit”, “medical audit”, “benchmarking”, “data visualisation”) the population (e.g. “general practitioner”, “primary care*”) and the outcomes (e.g. “PIP”, “prescribing”). See S2 Appendix for electronic search reports.

Eligibility criteria

All interventional designs were eligible for inclusion including randomised controlled trials (RCTs) (e.g. cluster RCTs, step wedged RCTs and individually randomised RCTs) and non-randomised interventional studies (e.g. interrupted time series design and controlled before and after studies) as recommended by the Cochrane Effective Practice and Organisation of Care (EPOC) group. The population of interest was primary care prescribers including non-medical prescribers working in primary care (e.g. pharmacists). An interactive dashboard was defined as a platform designed to provide ongoing feedback of real-time (defined as no older than one year) prescribing data in a visual format and that allowed for comparative benchmarking against peers or a set standard. A true interactive dashboard allows direct manipulation of data with visual analytic tools, however studies that did not have an
interactive element but provided feedback of multiple parameters and/or configurations from the
dataset were also included. Simple clinical decision support interventions or audit and feedback
interventions that did not give longitudinal and ongoing feedback of real-time data were both
excluded. Multi-faceted interventions that included interactive dashboards alongside other
components such as education, clinical decision support or targeted behavioural change strategies
were included. The outcome of interest was any prescribing related outcome measure such as explicit
prescribing criteria or prescribing rates (e.g. where a higher rate may reflect lower quality such as
antibiotic, benzodiazepine or opioid use).

Study selection and data extraction

Identified records were uploaded to Covidence and independently assessed for inclusion based on
title and abstract and then full text papers by two researchers (CMC, PM, AM, AW, FM), blinded to
each other’s decisions, with disagreement resolved by consensus. Data was extracted independently
by two researchers using a purposely developed data extraction tool in Covidence (CMC, PM), see S3
Appendix for a list of all data points extracted. Methodological quality assessment was assessed
independently by two reviewers using the Cochrane EPOC risk of bias tool (CMC, PM) (20).

Analysis

The Template for Intervention Description and Replication (TIDieR) checklist (21) was used as a
framework to narratively summarise interventions. For multi-faceted interventions this framework
was utilised to describe the interactive dashboard component alone. We categorised effectiveness
based on intervention type (for example if there was a truly interactive component to the dashboard
or whether the dashboard was part of a multi-faceted intervention), outcome of interest (e.g. high-risk prescribing or antibiotic prescribing rates) and study design. A meta-analysis using a random-effects model was performed where at least two studies were comparable in terms of participants,
study design and outcomes. Heterogeneity across studies was assessed using the I² statistic, with an
I² value greater than 50% considered indicative of substantial heterogeneity. Although 12 studies were
identified, a funnel plot was not performed due to the heterogeneity in study design and outcomes. Instead, a narrative assessment was conducted, acknowledging the potential limitations in detecting publication bias.

Results

Search Results

A total of 12,918 records were identified from database searching and a further 197 from other sources. Following deduplication, 10,733 records were screened, with 119 full texts assessed for eligibility, and 12 studies, reported in 11 different papers, were included in the review, Figure 1. See S4 Appendix for a table of the excluded studies from full text review and their reason for exclusion.

<Insert Figure 1>

Figure 1 Study flow diagram

Characteristics of included studies

Of the 12 included studies, three were interrupted time series analyses (ITSA) (22-24), one was a controlled before and after study (25) and eight were RCTs (26-32). Four of the RCTs were a cluster design (27, 29, 31, 32). Two RCTs that targeted individual physician antibiotic prescribing were individually randomised at the physician level (26, 30) and the final RCT was a stepped wedge design where six clusters were sequentially allocated to the intervention every month (28). One paper described randomly assigning practices to one of two parallel cRCTs (32). In each cRCT, the control group in one trial served as the intervention group in the other, leading to a total of four distinct studies reported in the same paper. These studies were conducted simultaneously with the same intervention but focused on different outcomes. However, only two of these four studies were relevant for this systematic review, as the outcomes of the other two were not relevant. Therefore, both of the relevant studies from this paper were included in this review (32). In seven of the included
papers, one ITSA and six RCTs, participants (either individual prescribers or practices) were unaware they had been recruited (23, 26, 27, 29-32). In two additional studies it is unclear whether practices/physicians were recruited and consented (22, 28) and in the final two studies practices from a defined region were invited to participate (24, 25). The number of participants included in the individual studies ranged from 12 to 1,401 practices and 43 to 3,426 physicians. None of the included studies recruited individual patients. Five studies (reported in four papers) counted the number of patients on whom the outcomes were assessed (i.e. included a denominator and numerator at the participant level) (23, 25, 29, 32). Six studies focused on antibiotic prescribing and used aggregated data, for example the rate of antibiotic prescriptions per 100 consultations or the proportion of all antibiotics that were broad-spectrum (22, 24, 26-28, 30). The remaining six studies (reported in five papers) focused on high-risk or potentially inappropriate prescribing (23, 25, 29, 31, 32). All of these studies reported the number of patients potentially at risk and affected by potentially inappropriate prescribing according to the criteria, except for one study that reported the mean number of patients per practice with an inappropriate bronchodilator prescription, but did not provide the numerator and denominator (31).

Table 1 Characteristics of included studies

<table>
<thead>
<tr>
<th>Lead author, year, country</th>
<th>Design</th>
<th>Physicians/practices targeted for intervention</th>
<th>Patients outcome assessed</th>
<th>Prescribing outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aghlmandi (2023, Switzerland) (26)</td>
<td>1RCT</td>
<td>3426 top abx prescribing physicians</td>
<td>N/A</td>
<td>Antibiotic prescribing rate</td>
</tr>
<tr>
<td>Curtis (2021, UK) (27)</td>
<td>3-arm cRCT</td>
<td>1401 top abx prescribing practices</td>
<td>N/A</td>
<td>Broad spectrum antibiotic use</td>
</tr>
<tr>
<td>Davidson (2023, USA) (22)</td>
<td>ITSA</td>
<td>162 practices</td>
<td>N/A</td>
<td>Antibiotic prescribing rate</td>
</tr>
<tr>
<td>deLusigan (2021, UK) (25)</td>
<td>CBA</td>
<td>12 practices</td>
<td>807 8</td>
<td>Inappropriate aspirin Inappropriate metformin</td>
</tr>
<tr>
<td>Dutcher (2021, USA) (28)</td>
<td>SW-RCT</td>
<td>31 practices</td>
<td>N/A</td>
<td>Antibiotic prescribing rate</td>
</tr>
<tr>
<td>Guthrie (2016, UK) (29)</td>
<td>3-arm cRCT</td>
<td>262 practices</td>
<td>170,659</td>
<td>Composite measure of high-risk prescribing</td>
</tr>
<tr>
<td>Lead author, year, country</td>
<td>Design</td>
<td>Physicians/practices targeted for intervention</td>
<td>Patients outcome assessed</td>
<td>Prescribing outcome</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>---</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Hemkins (2017, Switzerland) (30)</td>
<td>iRCT</td>
<td>2900 top abx prescribing physicians</td>
<td>N/A</td>
<td>Antibiotic prescribing rate</td>
</tr>
<tr>
<td>MacBride-Stewart (2022, UK) (31)</td>
<td>cRCT</td>
<td>235 practices</td>
<td>N/A</td>
<td>Inappropriate SABA and LABA prescriptions</td>
</tr>
<tr>
<td>Peek (2020, UK) (23)</td>
<td>ITSA</td>
<td>43 practices</td>
<td>54,044</td>
<td>Composite measure of high-risk prescribing</td>
</tr>
<tr>
<td>Soucy (2024, Israel/Canada) (24)</td>
<td>ITSA</td>
<td>43 physicians</td>
<td>N/A</td>
<td>Antibiotic prescribing rate</td>
</tr>
<tr>
<td>Willis (2020, UK) (32)*</td>
<td>cRCT</td>
<td>80 practices</td>
<td>67,475</td>
<td>Inappropriate aspirin or NSAID prescribing</td>
</tr>
<tr>
<td>Willis (2020, UK) (32)*</td>
<td>cRCT</td>
<td>64 practices</td>
<td>99,829</td>
<td>Inappropriate anticoagulant in A. Fib</td>
</tr>
</tbody>
</table>

* This study recruited for two trials concurrently; 80 practices were randomised to a trial exploring the effect of feedback of high risk NSAID and antiplatelet prescribing and 64 to explore the effect of feedback on appropriate anticoagulant prescribing for atrial fibrillation.

Abbreviations: iRCT; individually randomised controlled trial, Abx; antibiotic, cRCT; cluster randomised controlled trial, ITSA; interrupted time series analysis, CBA; controlled before and after study, SW-RCT; stepped wedge randomised controlled trial, SABA; short acting beta agonist inhaler, LABA; long acting beta agonist inhaler, NSAID; non-steroidal anti-inflammatory drug.

Characteristics of interventions

Although 12 studies, are included in this review, two studies were reported in the same paper and used the same study processes and intervention type but focused on different outcomes. For the purpose of describing the intervention, these two studies are considered as one. The characteristics of the interactive dashboards of the included studies are described based on the TIDieR checklist in Table 2 (21). The tailoring and modifications components of this framework were generally not applicable as these are often more relevant to implementation programmes, where interventions may need to be adapted to fit specific contexts or populations (21). The interventions identified in this systematic review were all designed for use within the context in which they were implemented. Only one study reported a modification where antibiotic prescribing feedback was initially based on the dispensing claim’s date, but in the second year of the study this was modified to reflect the actual prescription date (30). Four of the 11 interventions included had a true interactive component where the user could directly manipulate their data and had unlimited access to the dashboard within a...
defined period of time (22, 23, 25, 27). The remaining seven interventions all provided prescribers
with longitudinal access to relatively real-time data. Six of the eleven studies included multi-faceted
interventions, where the interactive dashboard was part of a broader programme (22, 23, 27-29, 32).
Two of these were three arm cRCTs where one of the arms received an additional behavioural change
component (27, 29). Two dashboards also alerted prescribers to individual patients with high-risk
prescribing/ inadequate blood-test monitoring (23) or inappropriate bronchodilator prescriptions
(31).
Table 2 Characteristics of interventions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interventions with a true interactive component</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtis 2021 (27)</td>
<td>Yes, arm 3 feedback included one page theory informed behavioural change component.</td>
<td>To increase engagement with prescribing data and change prescribing.</td>
<td>Link to specific metrics on publicly available prescribing dashboard with either plain or specific feedback.</td>
<td>Dashboard publicly available at openprescribing.net. Link and feedback provided by research team.</td>
<td>Link and feedback sent by post, email and fax.</td>
<td>May - July 2018, monthly for 3 months</td>
<td>Dashboard engagement measured using Google analytics.</td>
<td></td>
</tr>
<tr>
<td>Davidson 2023, CHOSEN (22)</td>
<td>Yes, web platform which included webinars on antimicrobial stewardship, how to use the dashboard and resources for patients.</td>
<td>To reduce inappropriate antibiotic prescribing</td>
<td>Web-based platform that provided interactive visualisations of abx prescribing rate that was updated on a monthly basis. Data could be explored by visit type, primary location and provider. Monthly and yearly trends were displayed with an overall rate and a target rate.</td>
<td>Research team</td>
<td>Web-based dashboard which could be accessed during study period.</td>
<td>Accessible at any time from February 2018</td>
<td>No mention of usage analytics</td>
<td></td>
</tr>
<tr>
<td>deLusignan 2021 (25)</td>
<td>No</td>
<td>To reduce inappropriate metformin and aspirin prescribing</td>
<td>Dashboard to allow GPs monitor their prescribing of metformin for patients with eGFr < 30 and >30>40 and aspirin for</td>
<td>Research team</td>
<td>Dashboard built directly into EHR</td>
<td>Metformin dashboard available from April-July 2019. Aspirin</td>
<td>Not measured</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------</td>
<td>------</td>
<td>-------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Peek 2020, SMASH (23)</td>
<td>Yes, clinical pharmacists trained to deliver the intervention in partnership with general practice staff. Feedback included educational material about each of the included indicators.</td>
<td>To reduce hazardous prescribing and inadequate blood-test monitoring</td>
<td>Interactive dashboard that provided feedback on prevalence of each hazardous prescribing and inadequate blood-test monitoring indicator with comparisons to the CCG average. Data was displayed in both tabular and graph format. Individual patients at risk were also listed by NHS number.</td>
<td>NHS- phased roll out based on NICE guidance</td>
<td>Web-based interactive dashboard</td>
<td>Data updated on a daily basis and available to practices from April 2016.</td>
<td>Not measured</td>
<td></td>
</tr>
</tbody>
</table>

Interventions without a true interactive component

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aghlmandi 2023 (26)</td>
<td>No</td>
<td>To improve abx prescribing rates amongst higher rate prescribers.</td>
<td>Graphic abx prescribing report comparing prescribing rates to the previous 3 months and to peers.</td>
<td>Research team using insurance claims data</td>
<td>Email to the physician</td>
<td>Quarterly email from December 2017- September 2019</td>
<td>Not measured</td>
</tr>
<tr>
<td>Dutcher 2021 (28)</td>
<td>Yes, once-off educational session on appropriate prescribing for RTIs</td>
<td>To reduce antibiotic prescribing for RTIs</td>
<td>Graphic report displaying overall antibiotic prescribing rate and inappropriate RTI abx prescribing rates with</td>
<td>Research team</td>
<td>Automatically generated reports with data extracted from EHR -</td>
<td>Monthly feedback from October 2017 - October 2018</td>
<td>Not measured</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td>------</td>
<td>-------</td>
<td>------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Guthrie 2016, EFFIPPS (29)</td>
<td>Yes, all three arms were emailed educational material. Arm 3 feedback included a 1-page theory informed behavioural change component.</td>
<td>To improve the safety of primary care prescribing</td>
<td>Graphic report comparing the practice's high risk prescribing against the rate achieved by the 25th percentile of Scottish practices with the most optimal rates in the year before feedback started.</td>
<td>NHS Scotland Information Services Division</td>
<td>Emailed to practice</td>
<td>Five emails sent quarterly from June 2012 - June 2013</td>
<td>Not measured</td>
</tr>
<tr>
<td>Hemkens 2017 (30)</td>
<td>No</td>
<td>To reduce antibiotic prescribing</td>
<td>Graphs showing monthly trend in the physician’s abx prescribing rate per 100 consultations and compared to the adjusted peer average.</td>
<td>Research team</td>
<td>Posted report with access code to the study website for more detailed feedback</td>
<td>8 postal feedbacks between October 2013 and July 2015</td>
<td>Not measured</td>
</tr>
<tr>
<td>MacBride-Stewart 2022 (31)</td>
<td>No</td>
<td>To reduce inappropriate prescriptions of bronchodilator inhalers.</td>
<td>Tables comparing inappropriate SABA or LABA prescriptions with the rest of the health board. List of individual patients identified as receiving inappropriate prescriptions.</td>
<td>Report developed by research team but also had signatures from three key lead clinicians in the health board.</td>
<td>Emailed to secure practice address and copied to the practice’s prescribing support team pharmacist.</td>
<td>Three times: July 2015, February 2016 and August 2016. 69.2% practices discussed feedback with team. 80.4% reviewed ≥1 patient record. 77.6% flagged ≥1 patient record.</td>
<td>Not measured</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------</td>
<td>------</td>
<td>-------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Soucy 2024, OPEN Stewardship (24)</td>
<td>No</td>
<td>To reduce antibiotic prescribing rate</td>
<td>Personalised prescribing reports displaying overall abx prescribing rate, rates for specific conditions and comparisons against the average and 25th percentile for other intervention participants</td>
<td>Research team</td>
<td>Report emailed directed to physicians</td>
<td>Quarterly for 9 months</td>
<td>62.6% consulted with ≥1 patient.</td>
</tr>
<tr>
<td>Willis 2020, ASPIRE (32)</td>
<td>Yes, practices were offered two training sessions by pharmacist, CDSS prompts for risky prescribing and tools to search for high-risk patients</td>
<td>To target barriers to change prescribing for four quality indicators.</td>
<td>Practice specific report displaying temporal trends for each of the trial indicators in number and graph form. Practices were also ranked and compared to others in the CCG.</td>
<td>Research team</td>
<td>Reports sent by post and email to the practice</td>
<td>Quarterly from May 2015-March 2016</td>
<td>Implementation will be assessed via process evaluation</td>
</tr>
</tbody>
</table>

Risk of bias in included studies

Overall nine of the 11 included papers had a low risk of bias (22, 23, 26-32), Figure 2 (the two studies reported within the one paper were assessed as one as they had the same methodological design and study processes). See S5 Appendix for risk of bias graphs summarising the risk for each EPOC criterion. One ITSA had a moderate risk of bias (24), where there were significant losses to follow up amongst Canadian physicians that was inadequately addressed, in addition the COVID-19 pandemic was likely to have influenced antibiotic prescribing during the intervention period. There was also insufficient information on prevention of knowledge of allocated interventions and crude post-intervention prescribing rates were not presented which limited transparency (24). The included controlled before and after study had a high risk of bias, by virtue of its design (25). In addition there was a significant improvement in inappropriate aspirin prescribing prior to intervention implementation, this was clearly reported by the authors' but unexplained (25), given this finding the intervention effect was not considered significant for the purpose of this review.

Effectiveness of interventions

Overall, six of the 12 included studies, two ITSAs (22, 23) and four RCTs (28, 29, 31, 32) demonstrated a significant effect on prescribing-related outcomes, Table 3. When exploring the intervention effect by outcome measure, two of the six studies that targeted antibiotic prescribing had a significant effect (22, 28). One was a prospective interrupted time series design where practices after the pre-intervention and wash-out periods received access to a web platform that provided educational material and interactive dashboards (22). Data was updated on a monthly basis and displayed as graphs illustrating monthly and yearly trends in the antibiotic prescribing rate that could be explored by visit type, primary location and provider (22). The effect of the intervention was explored by provider type (paediatric, internal medicine, family physicians and urgent care) with the family
The largest effect size was seen for this group, although significant results were seen in all groups (22). The other study that showed a significant effect on antibiotic prescribing was an RCT that focused on inappropriate antibiotic prescribing for respiratory tract infections (28), with the outcome measured at the visit level (i.e. the proportion of respiratory tract infection visits that resulted in the prescription of an antibiotic). Participating practices received an educational package and monthly reports by email which displayed the overall antibiotic prescribing rate and the rates of inappropriate antibiotic prescribing for defined respiratory tract infections, both of which were compared to the average and best performing practices (28). The remaining four studies that targeted antibiotic prescribing failed to show an effect on antibiotic prescribing rates (24, 26, 30) or broad-spectrum antibiotic prescribing (27). Six studies (reported in five papers) explored the effect on inappropriate prescribing for other drugs groups (see S6 Appendix for a list of the indicators included in these studies) and four of these demonstrated a significant effect (23, 29, 31, 32). The remaining study exploring the effect on PIP was a controlled before and after study that had a high risk of bias (25). Although the authors reported a significant effect on inappropriate aspirin prescribing there was an unexplained significant improvement in this indicator during phase one of the study prior to the implementation of the aspirin dashboard (25). In addition no rates or inferential statistics for the effect of the dashboard on inappropriate metformin prescribing were reported as there were only 8 patients prescribed this medicine at follow up (25). The four studies that demonstrated a significant effect on PIP included one ITSA and three RCTs. The ITSA explored the effect of the routine roll-out of the SMASH intervention that provided feedback on the prevalence of each hazardous prescribing and inadequate blood-test monitoring indicator with comparisons to the local area (clinical commissioning group) average (23). There was a significant effect on high-risk prescribing (ARR -0.96%, 95% CI -1.12% to -0.79%) but not on inadequate blood-test monitoring (23), however there was a significant effect seen on the latter outcome at 24 weeks follow-up. In addition the largest reductions in high-risk prescribing were seen
in practices with higher baseline rates and by 12 months follow-up there was significantly reduced inter-practice variation in the rates of potentially hazardous prescribing and inadequate blood test monitoring (23). The remaining three studies demonstrating a significant effect on PIP were RCTs where feedback with comparative rates of each of the included indicators were emailed to the practice every quarter (29, 31, 32).

With respect to the intervention components five of the six studies that had multi-faceted interventions showed a significant effect (22, 23, 28, 29, 32), compared to one (31) of the five studies that just had the interactive dashboard component. Two cRCTs that identified individual patients within the dashboard (hazardous prescribing/inadequate blood test monitoring or inappropriate bronchodilator prescribing) both had a significant effect (31, 32).

Table 3 Results of included studies

<table>
<thead>
<tr>
<th>Lead author, year, country</th>
<th>Outcome description</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomised controlled trials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aghlmandi (2023, Switzerland) (26)</td>
<td>Abx prescribing rate per 100 consultations during the second year of the intervention</td>
<td>ARR –0.1% (95% CI, –1.2% to 51.0%)</td>
</tr>
<tr>
<td>Curtis (2021, UK) (27)</td>
<td>Percentage of abx that are broad spectrum</td>
<td>Coefficient –0.31%, (95% CI –0.7% to 0.1%) Coefficient 0.41%, (95% CI 0.007% to 0.800%)</td>
</tr>
<tr>
<td>Dutcher (2021, USA) (28)</td>
<td>Proportion of RTI visits with abx</td>
<td>OR 0.47 (95% CI 0.45 to 0.48)</td>
</tr>
<tr>
<td>Guthrie (2016, UK) (29)</td>
<td>Proportion of patients included in one or more of the 6 criteria who received a high-risk prescription</td>
<td>OR 0.88 (95% CI 0.80 to 0.96) OR 0.86 (95% CI 0.78 to 0.95)</td>
</tr>
<tr>
<td>Hemkins (2017, Switzerland) (30)</td>
<td>Antibiotic prescription rate measured as DDD per 100 consultations</td>
<td>ARR 0.81% (95% CI -2.56% to 4.30%)</td>
</tr>
<tr>
<td>MacBride-Stewart (2022, UK) (31)</td>
<td>Mean number of patients with an inappropriate SABA or LABA prescription</td>
<td>Mean difference -3.7 (95% CI -5.3 to -2.0)</td>
</tr>
<tr>
<td>Willis (2020, UK) (32)*</td>
<td>Proportion of patients with at least 1 high risk NSAID or anti-platelet indicator</td>
<td>OR 0.815 (97.5% CI 0.67 to 0.99)</td>
</tr>
<tr>
<td>Willis (2020, UK) (32)*</td>
<td>Proportion of patients with AF prescribed inappropriate anticoagulation therapy</td>
<td>OR 0.902 (97.5% CI 0.75 to 1.09)</td>
</tr>
</tbody>
</table>

Controlled before and after study
<table>
<thead>
<tr>
<th>Lead author, year, country</th>
<th>Outcome description</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>deLusigan (2021, UK) (25)</td>
<td>Proportion of patients incorrectly prescribed (a) metformin and (b) aspirin</td>
<td>(a) § OR 0.44 (95% CI 0.27 to 0.72)¹</td>
</tr>
<tr>
<td>Davidson (2023, USA) (22)</td>
<td>Percentage of total visits with abx prescription ¶</td>
<td>Pre—post relative difference in rates -20.4 % Level change β Coefficient -7.95 (95% CI −11.05 to −4.85)</td>
</tr>
<tr>
<td>Peek (2020, UK) (23)</td>
<td>Prevalence of exposure to (a) any potentially hazardous prescribing (10 indicators) and (b) any inadequate blood-test monitoring (2 indicators) among patients with risk factors for such prescribing and monitoring 12 months after intervention start</td>
<td>(a) ARR -0.96% (95% CI -1.12% to -0.79%) (b) ARR -2.85% (95% CI -5.68% to 0.71%)</td>
</tr>
<tr>
<td>Soucy (2024, Israel/Canada) (24)</td>
<td>Proportion of total visits with abx prescription</td>
<td>OR 1.01; 95% CI 0.94 to 1.07</td>
</tr>
</tbody>
</table>

§ No inferential statistics for the first outcome measure, proportion with inappropriate metformin prescriptions, as number were very low (<10).
¶ Rates reported separately for family physicians, internal physicians and paediatricians. Effect for family physicians reported here.
Arm 3 V arm 2 (arm 3 included behavioural change component, arm 2 was feedback alone)
Arm 3 V arm 1 (arm 3 included behavioural change component, arm 2 was feedback alone)
~ Results presented as 97.5% CI, converted to 95% for meta-analysis below.

Abbreviations: ARR; absolute risk reduction, OR; odds ratio, Abx; antibiotic, RTI; respiratory tract infection, DDD; defined daily dosage, SABA; short-acting beta agonist inhaler, LABA; long-acting beta agonist inhaler, AF; atrial fibrillation, NSAID; non-steroidal anti-inflammatory drug

Four of the eight included RCTs measured the effect of the intervention on potentially inappropriate prescribing and presented results as proportions and odds ratios with 95% confidence intervals (two of these trials were reported within the one paper) (28, 29, 32). However, one of these studies measured the proportion of inappropriate prescriptions at the visit level (28), the others were at the patient level (29, 32). Thus the three RCTs looking at the effect on appropriate prescribing measured at the patient level were included in the meta-analysis, where the overall effect size was OR 0.87 (95% CI 0.81 to 0.93), with a low heterogeneity (I² =0.0%), see Figure 2. This lack of heterogeneity can be attributed to the similar intervention types across the included trials, as all three studies involved quarterly feedback reports giving temporal trends in prescribing across a series of high-risk metrics and ranked practices within the local area for comparison.
Discussion

Summary of results

This systematic review aimed to explore the characteristics of interactive dashboard interventions designed to support safe prescribing and explore their effect on prescribing-related outcome measures. Given the nature of the intervention, where data is often fed back on a widespread basis and implemented as a policy, quasi-experimental designs, were included. Six of the 12 included studies demonstrated a significant effect and all of these had an overall low risk of bias (22, 23, 28, 29, 31, 32). Notably, only two of the six studies that explored the effect of these interventions on antibiotic prescribing showed a significant effect (28). It may be that recent campaigns to improve antimicrobial stewardship have already resulted in improvements, leaving less room for further advancements. Four of the five studies looking at potentially inappropriate prescribing showed a significant effect (23, 29, 31, 32). Potentially inappropriate or high-risk prescribing is more common in complex patients with multimorbidity and polypharmacy (2) and lack of prescriber awareness has been identified as a barrier to addressing this (33). Thus, the difference in effect seen by outcome measure may be because PIP is often related to clinician oversight, whereas antibiotic prescribing reflects a more direct clinician decision and thus may be less amenable to change. This hypothesis is supported by the fact that both interventions that alerted prescribers to specific instances of PIP had a significant effect (23, 31).

Similar to results presented in other systematic reviews exploring the effectiveness of interventions in addressing inappropriate polypharmacy (34), multi-faceted interventions were more often effective with five of the six multi-faceted interventions demonstrating a significant effect (22, 23, 28, 29, 32). In summary, interventions targeting potentially inappropriate prescribing, that included multifaceted elements seemed to have a beneficial effect on outcomes.
Audit and feedback is known to lead to small improvements in professional behaviour, as evidenced by a systematic review of 140 studies, including a meta-analysis of 108 comparisons from 70 studies, which found a median absolute increase of 4.3% in healthcare professionals' compliance with desired practices (9). Increased frequency of feedback, coupled with explicit, measurable targets and specific action plans, were associated with greater effectiveness (9). The interventions included in this review all included ongoing feedback of relatively contemporaneous data, with comparisons to specific set targets or comparative benchmarking. The three studies included in our smaller meta-analysis estimated a 13% reduction in the odds of high-risk prescribing when the intervention was applied, consistent with the findings above. Similar to previous findings, interventions that identified particular instances of high-risk prescribing and multi-faceted interventions had positive findings more often compared to studies that did not incorporate these features (9). With recent advancements in data infrastructure and machine learning techniques, the potential to scale these interventions has increased. Even a modest effect, when implemented at scale, could have significant implications for health systems and individual patients.

Strengths and limitations

This systematic review included a broad and detailed search strategy including citation chasing and grey literature searches of clinical trial registries to reduce the risk of publication bias. Including quasi-experimental designs meant we captured two large ITSA studies that explored the implementation of novel interactive dashboards. Given the heterogeneous nature of the outcome measures included (different prescribing criteria, measured at different levels (e.g. practice and visit level as well as patient level) it was only possible to perform a meta-analysis for three studies and it was not possible to conduct a funnel plot to formally assess publication bias.
Implications for research, policy and practice

Developing true interactive dashboards directly embedded into practices systems that allow clinicians to identify specific instances of high risk prescribing and compare their prescribing quality with peers, has the potential for significantly supporting safe and effective prescribing. However, this approach will involve necessary collaboration with the software vendors, who are often private enterprises and thus driven by cost containment. In addition, the cost of such developments will be mostly incurred by practices who purchase these software systems. Encouraging competition between software providers, incentivising software providers to develop these inbuilt systems to enhance quality and safety and, as such systems becomes the norm, updating regulatory standards for practice software systems may increase implementation. A second complication of identifying high-risk prescribing is the need for patient-level factors such as co-prescriptions, age and co-morbidities, meaning this analysis needs to occur within the practices’ own databases with only aggregate data exported for benchmarking purposes. In addition, there may be legal and data regulation implications about sharing this aggregate data, although in the UK aggregate practice-level analysis of publicly available prescribing data is available for the public to view at openprescribing.net. This approach is low cost, but feedback using this anonymous publicly available data is less granular, and as was demonstrated in this review, feedback of practice level prescribing rates may be less effective at changing prescriber behaviour.

This review identified several gaps in the existing literature. Only 12 studies met the inclusion criteria, with just four employing true interactive dashboards. The limited number of studies suggests a need for further research exploring the effectiveness of interactive dashboards designed to optimise prescribing. A key challenge in conducting the meta-analysis was the heterogeneity of outcome measures, which were reported at various levels, including the prescription, patient, prescriber, and practice levels. The development of a core outcome set for prescribing-related measures that can be consistently applied across studies utilising routine prescribing or dispensing datasets may be one way
of addressing this and would facilitate more meaningful comparisons and benefit future meta-
analyses. Finally, routine evaluations of policies that utilise this data to optimise prescribing are
essential. Systematic and standardised evaluations would provide valuable insights into the
effectiveness of policy interventions aimed at optimising prescribing, thereby enhancing clinical
outcomes and health system efficiency.

Conclusion

Interactive dashboards have the potential to support safe and effective prescribing in primary care.
Multi-faceted interventions that target high-risk prescribing are more likely to be effective. To support
their implementation, it is essential to establish the necessary data infrastructure within primary care
systems. With advancements in data infrastructure and analysis, these interventions could have a
significant impact if implemented at scale.

Supporting Information

S1 Appendix: PRISMA Checklist
S2 Appendix: Electronic search reports
S3 Appendix: List of all data points extracted from included studies
S4 Appendix: List of all studies with reasons for exclusion from full text review
S5 Appendix: Risk of bias graphs
S6 Appendix: List of all endpoints for included studies

Acknowledgments:

Killian Walsh; Information Specialist, RCSI library assisted with search strategy. Mobeena Naz; Medical
Student, RCSI assisted with title and abstract screening.

<table>
<thead>
<tr>
<th>Study</th>
<th>Random sequence generation</th>
<th>Allocation concealment</th>
<th>Baseline outcome measurements similar</th>
<th>Baseline characteristics similar</th>
<th>Knowledge of the allocated interventions adequately protected during the study</th>
<th>Selective outcome reporting</th>
<th>Other risks of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aghlmandi 2023</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Curtis 2021</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>deLusignan 2021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>?</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Dutcher 2021</td>
<td>?</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Guthrie 2016</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hemkens 2017</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>MacBrle-Stewart 2022</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Willis 2020</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

RCTs and CBA, N=8

ITSAs, N=3
The Effectiveness of Interactive Dashboards to Optimise Prescribing in Primary Care: A Systematic Review

Identification

Studies from databases/registers (n = 12,918)
Citation searching (n = 197)

References from other sources (n = 0)
Grey literature (n = 0)

References removed (n = 2380)
Duplicates identified manually (n = 23)
Duplicates identified by Covidence (n = 2357)
Marked as ineligible by automation tools (n = 0)
Other reasons (n = 0)

Studies screened (n = 10735)

Studies excluded (n = 10614)

Studies sought for retrieval (n = 121)

Studies not retrieved (n = 0)

Studies assessed for eligibility (n = 121)

Studies excluded (n = 110)
Protocol (n = 12)
No full text (n = 1)
Wrong setting (n = 2)
Wrong outcomes (n = 2)
Wrong intervention (n = 64)
Wrong study design (n = 24)
Abstract for oral presentation (n = 5)

Studies included in review (n = 11)
NOTE: Weights are from random effects model.