A Multidimensional Analysis of the Social Determinants of Psychotic-like Experiences

Benson Ku, M.D.¹,*, Qingyue Yuan, B.S.¹, Grace M. Christensen, MPH, Ph.D.², Lina Dimitrov, MPH², Benjamin Risk, Ph.D.³, Anke Huels, Ph.D.²,³,⁴

Affiliations:

1 Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.

2 Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.

3 Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA

4 Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA

Corresponding author:

Benson S. Ku, M.D.

Department of Psychiatry and Behavioral Sciences

Emory University School of Medicine

Bsku@emory.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Disclosures:

There are no conflicts to disclose.

Acknowledgments:

This work was supported by the National Institute of Mental Health (NIMH K23-MH129684; Dr. Ku), the National Institute on Aging (NIA R01AG079170; Huels/Wingo), the National Institute of Mental Health (NIMH R01 MH129855; Risk), the Emory Constructive Collision Grant (Ku/Risk/Huels), and Emory HERCULES Pilot Award (Ku/Risk/Huels). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, the National Institute of Mental Health, or Emory University.

Conflicts of Interest:

There are no conflicts of interest for any authors concerning the data or the study.

Data Sharing Statement:

The ABCD study anonymized data are released annually and are publicly available via the NIMH Data Archive (NHA). All data from the Adolescent Brain Cognitive Development (ABCD) Study (https://nda.nih.gov/abcd/request-access) are made available to researchers from universities and other institutions with research inquiries following institutional review board and National Institute of Mental Health Data Archive approval.
Key Points

Question

What are the underlying patterns of the multidimensional social determinants of health (SDOH), and what are their associations with individual persistent distressing psychotic-like experiences and involvement in physical activities among children in the US?

Findings

Two distinct exposure profiles characterized by rural areas with low walkability and urban areas with high socioeconomic deprivation, air pollutants, and crime were associated with persistent distressing psychotic-like experiences.

Meaning

Several area-level characteristics were jointly associated with psychotic-like experiences. Further research is needed to investigate the mechanisms through which various environmental factors impact the development of psychosis.
Abstract

Importance

Recent research has demonstrated that domains of social determinants of health (SDOH) (e.g., air pollution and social context) are associated with psychosis. However, various SDOHs have often been studied in isolation.

Objective

To identify distinct exposure profiles, estimate their associations with persistent distressing psychotic-like experiences (PLE), and evaluate whether involvement with team sports partially explains this association.

Design, Setting, and Participants

This population-based study used data from the Adolescent Brain and Cognitive Development (ABCD) Study. Participants were recruited from 22 US sites between September 2016 and January 2022. Data from baseline and three follow-ups were included.

Exposures

Area-level, geocoded variables spanning various domains of SDOH, including socioeconomic status, education, crime, built environment, social context, and crime, were clustered using a self-organizing map (SOM) method to identify area-level exposure profiles.

Main Outcomes and Measures:

Persistent distressing PLE was derived from the Prodromal Questionnaire-Brief Child Version across four years. Generalized linear mixed modeling tested the association between exposure profiles and persistent distressing PLE as well as physical activities (i.e., team and individual...
sports), adjusting for individual-level covariates including age, sex, race/ethnicity, highest level of parent education, family-relatedness, and study sites.

Results

Among 8,145 participants (baseline mean [SD] age, 9.92 [0.63] years; 3,868 (47.5%) females; 5,566 (68.3%) White, 956 (11.7%) Black, 159 (2.0%) Asian, and 1,480 (18.4%) Hispanic participants), 5 distinct exposure profiles were identified. Compared to the reference Profile 1 (suburban affluent areas, 2521 children, 30.9%), Profile 3 (rural areas with low walkability and high ozone; 1459 children, 17.9%; adjusted OR: 1.34, 95% CI: 1.09—1.64) and Profile 4 (urban areas with high ADI, high crime, and high pollution; 715 children, 8.8%; adjusted OR: 1.40, 95% CI: 1.08—1.81), were associated with persistent distressing PLE. Team sports mediated 6.14% of the association for Profile 3, but not for Profile 4.

Conclusion and Relevance

This study found that neighborhoods characterized by rural areas with low walkability and urban areas with high socioeconomic deprivation, air pollutants, and crime were associated with persistent distressing PLE. Further research is needed to explore the pathways through which different environmental factors may impact the development of psychosis.

Keywords: Neighborhood characteristics, physical activities, psychotic-like experiences, social determinants of health, team sports
Introduction

Psychotic-like experiences (PLEs), also referred to as subclinical psychotic symptoms or psychotic experiences, are odd or unreal perceptions, thoughts, or beliefs.\(^1\) It is one of the earliest manifestations of psychotic disorders and can be common among children.\(^2,3\) Although PLEs have been considered mild expressions of psychosis liability, PLEs that are persistent and distressing may be more indicative of psychopathology later on in life with greater functional impairment, greater cognitive impairment, and increased mental health service utilization.\(^4,5\) Given the high prevalence of PLE in early adolescence and its clinical significance to later risk for psychosis and general psychopathology, exploring the risk factors and mechanisms underlying persistent and distressful PLE is crucial to improve psychiatric risk assessments and more effective prevention strategies in children and adolescents.

It has been long known that urban upbringing is a major risk factor for developing psychotic disorders, including schizophrenia.\(^6-8\) It has been postulated that certain physical and psychosocial characteristics in urban areas (e.g., air pollutants, social fragmentation, and socioeconomic deprivation) may impact downstream psychosocial and biological processes and, in turn, lead to psychosis.\(^9\) Early exposure to air pollution has been shown to be associated with increased odds of psychotic-like experiences in adolescence, potentially through inflammation and excessive oxidative stress.\(^10-12\) Moreover, prior literature has shown that youth living in neighborhoods that were more walkable, had less crime, and greater social cohesion participated in more physical activities,\(^13-15\) which have been suggested to be protective against psychopathology including psychosis.\(^16\)

The Social Disorganization Theory posits that wider community-level characteristics play an important role in shaping social interactions, whether through sports or extracurricular activities,
which may be crucial for mental health, especially for children.17,18 In fact, it has been shown that greater involvement with team sports, as opposed to individual sports, may be associated with reduced risk for future psychopathology including persistent distressing PLE.19-21 Prior literature has largely focused on analyzing each neighborhood characteristic as it relates to psychosis individually.22-24 Existing measurement tools, such as the Area Deprivation Index (ADI) and Child Opportunity Index (COI), are limited in their ability to capture the multifaceted impacts of various neighborhood characteristics simultaneously while also understanding individual contributions of each neighborhood characteristic. These indices are constructed from an arbitrarily chosen set of social determinants of health (SDOH) variables and little is currently known about the combinations of these environmental factors and the mechanisms through which they lead to psychosis. Without such information, it may be difficult to devise effective, targeted policies and interventions.

The purpose of this study was to fill this critical knowledge gap by using innovative methodologies that capture and analyze SDOH’s multidimensional nature and uncover its associations with individual-level distressing PLE and physical activities. We clustered area-level exposures based on various indices of air pollutants and psychosocial factors into exposure profiles. Then we investigated whether youth who reported having persistent distressing PLE or not would differ based on these exposure profiles. We also tested team sports as a potential mediator of these associations. We hypothesized that certain urban exposure profiles would be associated with persistent distressing PLE and that team sports would partially explain this association.

\textbf{Methods}
The data were collected from a population-based sample of 9-to-10-year-olds in the Adolescent Brain and Cognitive Development Study (ABCD) 5.0 release, which included visits collected between September 1, 2016, and January 15, 2022. Data from baseline and three follow-up time points were included.

The ABCD Study is a nationwide longitudinal study of brain, behavioral, and cognitive development in adolescents and involves 22 research sites throughout the United States, with more than 11,868 children recruited at baseline. Within these sites, public, private, and public charter schools within a 50-mile radius of the data-collecting site were randomly selected for recruitment. General inclusion and exclusion criteria for the ABCD study have been described elsewhere. Informed written consent was obtained from children and their parents, and ethical approval was obtained from each site’s institutional review boards. We followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guidelines.

Participants

This study included 8,145 participants based on the availability of environmental exposures, outcome variables, and sociodemographic covariates. eFigure 1 shows a flowchart of those included and excluded. eTable 1 compares those included and excluded based on missing data.

Sociodemographic and clinical characteristics

Sociodemographic characteristics, including age, sex, race, ethnicity, parental education, household income, and family history of psychosis, were collected through parent reports and interviews during baseline assessment. Race and ethnicity were aggregated into 5 categories: non-Hispanic White, non-Hispanic Black, non-Hispanic Asian, non-Hispanic other races, and...
Hispanic. High parental education was defined as having at least one parent or caregiver who obtained a bachelor’s degree or higher. The income-to-needs ratio was calculated by the median value of the income band used by ABCD divided by the federal poverty line for the respective household size. A value greater or less than one would denote above or below the poverty threshold, respectively. Family history of psychosis in first-degree and second-degree relatives was assessed using the parent-rated Family History Assessment Module Screener.

Area-level exposures

Area-level data were derived from participants’ primary home addresses at baseline, which were geocoded to retrieve information at the census tract level. These geospatial location data were then linked to external environmental constructs, which were part of the ABCD 5.0 release. Exposure variables were used to construct five domains, including the Area Deprivation Index (ADI), Child Opportunity Index 2.0 (COI), Crime, Environmental Quality, and Social Vulnerability Index (SVI), based on their respective sources and prior literature. A comprehensive list of variables included in our study, exposure definition, and years measured are described in Table 1 and eTable 2. Distance to major roadways, population density, and percentage of households without a car, were used to classify the exposure profiles as urban, suburban, and rural as done in prior literature.

Persistent distressing psychotic-like experiences (PLE)

The Prodromal Questionnaire-Brief Child Version (PQBC) was completed by participants to assess psychotic-like experiences (PLE) over the past month. Initially, participants were categorized as either having experienced distressing PLE (rating of at least one PLE≥ 3 on a five-point distress scale) or not having experienced distress, following criteria based on prior
literature on distressing PLE. Participants with distressing PLEs were grouped into persistent and non-persistent categories, with “persistent” indicating distress at two or more follow-ups out of 4 waves (baseline, 1-year, 2-year, and 3-year). This binary categorization was based on prior literature demonstrating such persistency was specifically associated with greater cognitive deficits, worse social functioning, and more health service utilization as well as a greater risk for future diagnosis of schizophrenia. Because psychotic symptoms may develop throughout adolescence, we conducted a sensitivity analysis and redefined persistent distressing PLE to incorporate individuals who reported distressing PLE only at the last follow-up.

Team and individual sports

Team and individual sports were subcategories of physical activities (eTable 3), which were derived from the Sports and Activities Involvement Questionnaire (SAIQ). The study focused on the level of involvement in 23 physical activities, with caregivers reporting (1) the time spent per session in minutes, (2) the number of days per week of participation, and (3) the number of months per year of engagement. The mean participation hours per week for each sport endorsed in the past 12 months were calculated using the formula: average hours per week per sport in the past year = (time spent × days per week × months per year) / 12 / 60.

Statistical analysis

The self-organizing map (SOM) is an unsupervised machine learning technique for multi-dimensional data reduction and visualization, and identifying profiles of correlated characteristics (e.g., air pollutants and socioeconomic deprivation). SOM aims to map complex, multi-dimensional data into a simpler, easy-to-visualize format where multiple exposures are grouped into an exposure profile. SOM was used to cluster 29 area-level exposure profiles in this
study. See Table 1 and eTable 2 for a complete list of exposure variables. The optimal number of profiles was determined using within-cluster sum of squares, between-cluster sum of square statistics, and visual inspection of the exposure profile star plot. These methods seek to maximize homogeneity within profiles and heterogeneity between profiles. The reference profile had the highest socioeconomic status and lowest hazardous environmental exposure (e.g., air pollution). Once participants were assigned to a SOM exposure profile, unadjusted and adjusted logistic mixed models were used to estimate the association between exposure profiles, modeled as a categorical exposure, and persistent distressing PLE as well as physical activities (i.e., team and individual sports). The model adjusted for age, sex, family history of psychosis, race and ethnicity, parental education, income-to-needs ratio, as individual-level fixed effects, and family groups and recruiting sites as random effects.

We then assessed whether team and individual sports would mediate the association between exposure profile and persistent distressing PLE. Mediation analysis was only conducted for exposure profiles that were statistically significantly associated with persistent distressing PLE by modeling each significant exposure profile as a dichotomous exposure variable in the mediation analysis. Detailed definitions and methodology for the mediation analyses were provided in the eMethods.

Subsequently, we used another method, weighted quantile sum (WQS) regression to understand the effect of the exposure mixture and how much of the total mixture effect on the outcome is explained by each of the area-level characteristics within the mixture. WQS is a method that estimates the effect on the outcome of increasing all exposures simultaneously by one quantile, as well as the weighted contribution of each exposure variable to the association between the overall exposure mixture and the outcome while accounting for the complex
correlation structure among exposures.44-46 All SOM analyses were performed using code within the ECM package (https://github.com/johnlpearce/ECM). The other analyses used the following R packages, lme4,47 lmerTest,48 mediation,49 gWQS.50 All analyses were conducted using R version 4.2.1. Statistical significance was determined using an alpha-level of 0.05.

Results

Descriptive statistics

The study included 8,145 participants aged 9 to 10 years at baseline followed until 13 to 14 years with 3,868 (47.5\%) females, 5,566 (68.3\%) non-Hispanic White, 956 (11.7\%) non-Hispanic Black, 159 (2.0\%) non-Hispanic Asian, and 1,480 (18.4\%) Hispanic participants. Among the participants, 5,401 (66.3\%) had parents with at least a bachelor's degree and 668 (8.2\%) had a family history of psychosis. Across the four years, 1,605 (19.7\%) participants had persistent distressing PLE (Table 1). All individual neighborhood-level characteristics correlate with each other in the expected direction (eFigure 2).

Five distinct exposure profiles

Five exposure profiles were identified upon visual inspection. Each participant was assigned to one of the five profiles, and their demographics stratified by the exposure profiles are shown in Table 1. Figure 1A presents a detailed description of each profile.

Associations between exposure profiles and persistent distressing PLE outcome

Profile 3, characterized by rural areas with low walkability and high ozone, and Profile 4, characterized by urban areas with high ADI, crime, and pollution, were significantly associated with persistent distressing PLE compared to the reference Profile 1 (Profile 3: adjusted Odds
Ratio (OR): 1.34, 95% CI: 1.09—1.64, p=.006; Profile 4: adjusted OR: 1.40, 95% CI: 1.08—1.81, p=.01) (Table 2, Figure 1B). Sensitivity analyses of (1) an alternative categorization of persistent distressing PLE and (2) only including participants who lived in their addresses for more than one year showed consistent results (eTable 4). Variance inflation factors (VIF) for exposure profiles and individual-level covariates ruled out multicollinearity in our models (eTable 5).

Mediation of the relationship between Profile 3 and persistent distressing PLE by team sports

Team sports explained 6.14% of the relationship between Profile 3 and persistent distressing PLE (indirect effects adjusted β: 0.002, 95% CI: <.001—.005, p =.015) (Figure 2). However, team sports did not significantly mediate the association between Profile 4 and persistent distressing PLE (Figure 2). Total physical activities or individual sports did not significantly mediate the association between Profile 3 or Profile 4 and persistent distressing PLE (eTables 6 and 7).

Individual exposure contribution assessed by WQS regression weights

The positively constrained model demonstrated that the overall effect of increasing all exposures simultaneously by one decile corresponded to 12% greater odds for endorsement of persistent distressing PLE (adjusted OR: 1.12, 95% CI: 1.02—1.23, p=.03). The tree plot presented in Figure 3 demonstrates the contribution of each exposure to a higher odds of persistent distressing PLE with greater total crime having the highest mean weight at 0.130, followed by lower walkability at 0.106, greater ethnoracial minority concentration at 0.090, higher ozone at 0.085, and greater industrial pollutants at 0.077 (eTable 8). The negatively constrained model was not significant (adjusted estimate: < .01, 95% CI: -0.10—0.09, p=.95) (eTable 9).

Discussion
In this study, we identified five unique exposure profiles and investigated their associations with persistent distressing PLE and physical activities. Children living in neighborhoods with greater socioeconomic deprivation that had more crime, lower walkability, and more pollutants were more likely to experience persistent distressing PLE and be engaged in fewer physical activities, while those living in more affluent areas were less likely to experience persistent distressing PLE and more likely to be involved in physical activities.

We found two exposure profiles to be associated with greater odds of developing persistent distressing PLE. Rural areas that were less walkable with high ozone (Profile 3) and urban areas with high socioeconomic disadvantage, crime, and pollution (Profile 4) were both uniquely associated with greater odds for persistent distressing PLE even after adjusting for individual-level covariates. It is likely that a combination of factors, including financial stress, food insecurity, limited opportunities for physical activities, and the presence of air pollutants, might heighten the likelihood of PLE. Chronic stress has been shown to disrupt the hypothalamic-pituitary-adrenal axis and elevate cortisol levels, which has been shown to be associated with neuroanatomical changes linked to psychotic illnesses.

Subsequently, our mediation analyses suggested that there may be distinct biopsychosocial pathways through which the environment may play a role in the development of psychosis. For example, the degree of involvement in team sports (but not individual sports) partially mediated the association between Profile 3 and PLE. However, none of the subcomponents of physical activities mediate such relationships for Profile 4. Although the association between Profile 3 and PLE was mainly driven by other factors rather than team sports, it is possible that involvement in team sports (e.g., pick-up basketball) and perhaps other informal social interactions may be less
likely to occur in more rural and less walkable places.56 This lack of social engagement with peers may play a role in the future risk of psychotic experiences.57,58

However, the association between Profile 4 and PLE was not explained by physical activity, suggesting that there may be an alternative mechanism through which urban areas characterized by high crime and pollution may be associated with PLE. It is possible that threat from exposure to crime,59 air pollution,60 and/or financial stress61 may play a more important role. In fact, recent literature has suggested that deprivation and threat may be two environmental factors that underlie partially distinct biological pathways to psychopathology including psychosis.62,63 Our findings may partially reflect this dimensional model of adversity in psychosis, and it is possible that different environmental factors may impact psychosis through distinct mechanisms.

In addition to the findings using SOM, the WQS regression model also points to similar factors that may be driving the development of PLEs. High crime rates and low walkability carried the greatest weight in driving the effects of persistent distressing PLE, which align with high crime rates in Profile 4 and low walkability in Profile 3. Prior research has shown that living in high-crime neighborhoods was associated with subclinical psychotic symptoms, including suspiciousness and paranoia among help-seeking adolescents,64,65 as well as a higher incidence of first-onset schizophrenia.59 Walkability has not been found to be associated with total PLE before,9 but places with less walkability tend to have less access to community services and recreational centers.13,66,67 Access to these resources may have downstream effects on exercise and involvement with team sports, which has been shown to be inversely associated with psychopathology and PLE.19,20,68,69

One of the key strengths of this study is our approach to identifying multidimensional exposure profiles as measured by area-level characteristics, as opposed to traditional single-indexing
methods. In addition, we used another exposure mixture method (i.e., WQS) that demonstrated consistent factors that may be driving the association with PLE. Future prospective studies should further investigate the biopsychosocial mechanisms through which neighborhood characteristics, including crime and walkability (etc. types of crime, park access, street connectivity, mixed land use) maybe driving the development of psychotic disorders.

Limitation

This study has several limitations. First, we excluded several participants due to missing data. Participants who were excluded were from lower SES households and this exclusion may impact the generalizability of the findings. Second, PLEs were self-reported and team sports were parent-reported, which may be biased. Third, this study did not test whether there was a sensitive period in which environmental factors may have a more pronounced effect on long-term psychosis risk. Prospective studies should collect this data and analyze whether environmental factors at various developmental periods may differentially impact psychosis risk.

Conclusion

This study identified five exposure profiles, of which two were associated with persistent distressing psychotic-like experiences among children and adolescents across four years. These two exposure profiles were characterized by (1) rural areas with low walkability with high ozone (Profile 3), and (2) urban areas with high socioeconomic deprivation and high pollutants (Profile 4). Moreover, we found that less involvement with team sports partially mediated the positive association between Profile 3 (but not Profile 4) and greater odds of developing persistent distressing psychotic-like experiences. These findings suggest that there may be distinct mechanisms through which environmental factors may impact psychosis. Future studies should
further explore the mechanisms through which living in certain neighborhoods may confer risk for the development of psychosis.
References:

21. Ku BY, Q; Arias-Magnasco, A; Lin, BD; Walker, EF; Druss, BG; Ren, J; van Os, J; Guloksuz, S. Associations Between Genetic Risk, Physical Activities, and Distressing Psychotic-like Experiences. *Schizophrenia Bulletin*. Accepted August 2024;

27. Karcher NR, Barch DM. The ABCD study: understanding the development of risk for mental and physical health outcomes. *Neuropsychopharmacology*. Jan 2021;46(1):131-142. doi:10.1038/s41386-020-0736-6

34. Investigation USDoJOoJPFBo. Data from: Uniform Crime Reporting Program Data: County-Level Detailed Arrest and Offense Data, United States, 2010. 2014. doi:10.3886/ICPSR33523.v2

2023:S0006322323017596. doi:10.1016/j.biopsych.2023.11.027

63. Thomas M, Rakesh D, Whittle S, Sheridan M, Uptegrove R, Cropley V. The neural, stress hormone and inflammatory correlates of childhood deprivation and threat in psychosis: A systematic

doi:https://doi.org/10.1016/j.psyneuen.2023.106371

Table 1. Description of Study Sample by Exposure Profiles.

<table>
<thead>
<tr>
<th>Exposure Profiles</th>
<th>Total</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>P<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Sample Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N (%)</td>
<td>8,145 (100%)</td>
<td>2,521 (30.9%)</td>
<td>2,670 (32.8%)</td>
<td>1,459 (17.9%)</td>
<td>715 (8.8%)</td>
<td>780 (9.6%)</td>
<td></td>
</tr>
<tr>
<td>Age (mean (SD))</td>
<td>9.92 (0.63)</td>
<td>9.95 (0.63)</td>
<td>9.93 (0.63)</td>
<td>9.90 (0.63)</td>
<td>9.89 (0.63)</td>
<td>9.87 (0.61)</td>
<td>0.006</td>
</tr>
<tr>
<td>Female Sex (%)</td>
<td>3,868 (47.5)</td>
<td>1,152 (45.7)</td>
<td>1,281 (48.0)</td>
<td>717 (49.1)</td>
<td>349 (48.8)</td>
<td>369 (47.3)</td>
<td>0.230</td>
</tr>
<tr>
<td>Race/Ethnicity (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>4711 (57.8)</td>
<td>1866 (74.0)</td>
<td>1675 (62.7)</td>
<td>873 (59.8)</td>
<td>123 (17.2)</td>
<td>174 (22.3)</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>912 (11.2)</td>
<td>64 (2.5)</td>
<td>250 (9.4)</td>
<td>133 (9.1)</td>
<td>65 (9.1)</td>
<td>400 (51.3)</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic Asian</td>
<td>169 (2.1)</td>
<td>81 (3.2)</td>
<td>61 (2.3)</td>
<td>12 (0.8)</td>
<td>13 (1.8)</td>
<td>2 (0.3)</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic Others<sup>c</sup></td>
<td>873 (10.7)</td>
<td>278 (11.0)</td>
<td>324 (12.1)</td>
<td>121 (8.3)</td>
<td>50 (7.0)</td>
<td>100 (12.8)</td>
<td></td>
</tr>
<tr>
<td>Hispanic Ethnicity</td>
<td>1480 (18.2)</td>
<td>232 (9.2)</td>
<td>360 (13.5)</td>
<td>320 (19.9)</td>
<td>464 (64.9)</td>
<td>104 (13.3)</td>
<td></td>
</tr>
<tr>
<td>Parent Bachelor's Degree (%)</td>
<td>5401 (66.3)</td>
<td>2146 (85.1)</td>
<td>1948 (73.0)</td>
<td>875 (60.0)</td>
<td>226 (31.6)</td>
<td>206 (26.4)</td>
<td><.001</td>
</tr>
<tr>
<td>Income-to-needs Ratio (mean (SD))</td>
<td>4.34 (3.31)</td>
<td>6.05 (3.42)</td>
<td>4.48 (3.12)</td>
<td>3.61 (2.72)</td>
<td>2.22 (2.33)</td>
<td>1.59 (1.58)</td>
<td><.001</td>
</tr>
<tr>
<td>Family History of Psychosis (%)</td>
<td>668 (8.2)</td>
<td>179 (7.1)</td>
<td>219 (8.2)</td>
<td>99 (6.8)</td>
<td>76 (10.6)</td>
<td>95 (12.2)</td>
<td><.001</td>
</tr>
<tr>
<td>B. Area-level Deprivation Index - Median (IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Home Ownership</td>
<td>71.91 [54.68, 85.80 [78.11, 83.94]</td>
<td>91.48</td>
<td>65.58 [53.22, 75.74]</td>
<td>75.89 [64.63, 82.95]</td>
<td>37.56 [22.54, 45.75 [35.09, 52.82]</td>
<td>56.48</td>
<td><.001</td>
</tr>
<tr>
<td>% Less Than 9 Years Education</td>
<td>2.19 [0.92, 5.06]</td>
<td>0.97 [0.44, 1.85]</td>
<td>2.03 [0.93, 3.38]</td>
<td>3.38 [1.83, 6.06]</td>
<td>16.46 [12.30, 24.24]</td>
<td>5.55 [3.11, 8.28]</td>
<td><.001</td>
</tr>
<tr>
<td>% High School Education</td>
<td>92.89 [86.29, 96.76]</td>
<td>93.14 [89.95, 95.96]</td>
<td>89.32 [84.22, 93.37]</td>
<td>69.07 [57.47, 81.90]</td>
<td><.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% White Collar Occupation</td>
<td>94.50 [91.68, 95.06]</td>
<td>95.30 [93.15, 97.08]</td>
<td>91.86 [88.95, 94.75]</td>
<td>91.23 [88.05, 94.06]</td>
<td><.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Family Income</td>
<td>75,065.00 [54,375.00, 98,690.00]</td>
<td>105,386.00 [92,389.00, 125,991.00]</td>
<td>74,476.00 [63,500.00, 87,238.00]</td>
<td>65,302.00 [52,626.00, 75,038.00]</td>
<td><.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income Disparity</td>
<td>1.96 [1.23, 2.79]</td>
<td>0.87 [0.31, 1.42]</td>
<td>2.07 [1.64, 2.60]</td>
<td>3.15 [2.54, 3.91]</td>
<td><.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Property Value</td>
<td>227,200.00 [154,200.00, 321,800.00]</td>
<td>303,600.00 [248,700.00, 427,700.00]</td>
<td>220,600.00 [171,800.00, 310,400.00]</td>
<td>162,700.00 [124,400.00, 215,900.00]</td>
<td><.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Gross Rent</td>
<td>1,056.00 [857.00, 1,332.00]</td>
<td>1,376.00 [1,112.00, 1,685.00]</td>
<td>998.00 [868.00, 1,213.75]</td>
<td>921.00 [763.00, 1,134.00]</td>
<td><.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Monthly Mortgage</td>
<td>1,403.00 [1,083.00, 1,723.00]</td>
<td>1,703.00 [1,482.00, 2,102.00]</td>
<td>998.00 [1,151.25, 1,636.00]</td>
<td>921.00 [1,083.50, 1,164.50]</td>
<td><.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Below 138% Poverty Line</td>
<td>4.60 [2.10, 9.64]</td>
<td>1.80 [0.84, 3.45]</td>
<td>6.10 [3.70, 9.94]</td>
<td>6.10 [3.70, 9.94]</td>
<td><.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Households with No Car</td>
<td>0.00 [0.00, 0.00]</td>
<td>0.00 [0.00, 0.00]</td>
<td>0.00 [0.00, 0.00]</td>
<td>0.00 [0.00, 0.00]</td>
<td><.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Poor Plumbing</td>
<td>0.27 [0.27, 0.27]</td>
<td>0.27 [0.27, 0.27]</td>
<td>0.27 [0.27, 0.27]</td>
<td>0.27 [0.27, 0.27]</td>
<td><.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Child Opportunity Index - Median (IQR)</td>
<td>0.40 [-0.45, 0.71]</td>
<td>0.30 [-0.37, 0.64]</td>
<td>0.56 [0.21, 0.85]</td>
<td>0.56 [0.21, 0.85]</td>
<td><.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazardous Waste Dump Sites</td>
<td>0.27 [0.27, 0.27]</td>
<td>0.27 [0.27, 0.27]</td>
<td>0.27 [0.27, 0.27]</td>
<td>0.27 [0.27, 0.27]</td>
<td><.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to Food</td>
<td>0.38 [-0.16, 0.67]</td>
<td>0.57 [0.37, 0.73]</td>
<td>0.30 [-0.19, 0.62]</td>
<td>0.23 [-0.16, 0.50]</td>
<td>0.58 [-0.10, 0.85]</td>
<td>-1.97 [-3.28, -0.54]</td>
<td><.001</td>
</tr>
<tr>
<td>Access to Green Space</td>
<td>-0.30 [-0.90, 0.55]</td>
<td>0.35 [-0.26, 0.85]</td>
<td>-0.70 [-1.07, -0.31]</td>
<td>0.79 [0.17, 1.09]</td>
<td>-1.51 [-1.98, -1.03]</td>
<td>-0.76 [-1.32, -0.35]</td>
<td><.001</td>
</tr>
<tr>
<td>D. Crime - Median (IQR)</td>
<td>22,761.33 [7,832.00, 53,399.67]</td>
<td>19,950.33 [8,163.00, 36,419.00]</td>
<td>32,088.33 [19,950.33, 57,095.67]</td>
<td>1,304.00 [0.00, 4,445.00]</td>
<td>107,316.00 [36,419.00, 348,049.34]</td>
<td>44,088.00 [22,761.33, 45,073.00]</td>
<td><.001</td>
</tr>
<tr>
<td>NO2 (ppb)</td>
<td>40.43 [38.17, 45.13]</td>
<td>40.24 [37.76, 44.18]</td>
<td>40.37 [38.18, 44.70]</td>
<td>42.42 [38.47, 47.37]</td>
<td>42.92 [39.41, 45.91]</td>
<td>39.55 [38.12, 40.78]</td>
<td><.001</td>
</tr>
<tr>
<td>O3 (ppb)</td>
<td>40.43 [38.17, 45.13]</td>
<td>40.24 [37.76, 44.18]</td>
<td>40.37 [38.18, 44.70]</td>
<td>42.42 [38.47, 47.37]</td>
<td>42.92 [39.41, 45.91]</td>
<td>39.55 [38.12, 40.78]</td>
<td><.001</td>
</tr>
<tr>
<td>Proximity to Roadways</td>
<td>855.45 [390.82, 2,093.60]</td>
<td>1,161.24 [585.52, 2,841.83]</td>
<td>1,163.09 [532.07, 2,216.98]</td>
<td>1,224.08 [492.06, 2,458.95]</td>
<td>682.77 [249.62, 742.44]</td>
<td>542.44 [221.90, 742.44]</td>
<td><.001</td>
</tr>
<tr>
<td>F. Social Vulnerability Index - Median (IQR)</td>
<td>46.48 [28.45, 33.19]</td>
<td>45.29 [32.32, 60.89]</td>
<td>43.77 [21.91, 71.31]</td>
<td>89.46 [80.24, 94.36]</td>
<td>89.46 [80.24, 94.36]</td>
<td>80.11 [66.42, 90.96]</td>
<td><.001</td>
</tr>
<tr>
<td>% Ethnoracial Minority</td>
<td>48.57 [27.67, 56.53]</td>
<td>52.86 [33.95, 69.20]</td>
<td>43.26 [20.09, 70.29]</td>
<td>93.25 [89.33, 96.61]</td>
<td>93.25 [89.33, 96.61]</td>
<td>96.61 [74.42, 96.61]</td>
<td><.001</td>
</tr>
<tr>
<td>% Non-English Speakers</td>
<td>1,627.60 [786.47, 2,670.60]</td>
<td>2,081.60 [1,414.74, 2,841.83]</td>
<td>676.25 [148.87, 1,476.91]</td>
<td>4,616.00 [2,991.26, 6,677.55]</td>
<td>4,616.00 [2,991.26, 6,677.55]</td>
<td>2,140.59 [1,434.35, 3,164.03]</td>
<td><.001</td>
</tr>
<tr>
<td>G. Urbanicity Features - Median (IQR)</td>
<td>0.38 [-0.16, 0.67]</td>
<td>0.57 [0.37, 0.73]</td>
<td>0.30 [-0.19, 0.62]</td>
<td>0.23 [-0.16, 0.50]</td>
<td>0.58 [-0.10, 0.85]</td>
<td>-1.97 [-3.28, -0.54]</td>
<td><.001</td>
</tr>
<tr>
<td>Population Density</td>
<td>2.37 [0.87, 4.50]</td>
<td>3.17 [1.58, 5.33]</td>
<td>2.33 [1.00, 4.17]</td>
<td>2.25 [0.67, 4.21]</td>
<td>1.25 [0.00, 3.50]</td>
<td>1.17 [0.00, 3.35]</td>
<td><.001</td>
</tr>
</tbody>
</table>
I. Outcome Variable

<table>
<thead>
<tr>
<th></th>
<th>Persistently Distressing PLE (%)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,605 (19.7)</td>
<td>358 (14.2)</td>
<td>469 (17.6)</td>
<td>320 (21.9)</td>
<td>215 (30.1)</td>
<td>243 (31.2)</td>
</tr>
</tbody>
</table>

Abbreviations: SOM, Self-organizing map; INR, income-to-needs ratio; PLE, psychotic-like experiences.

\(^a\) Detailed descriptions of the exposure components and years measured were summarized in eTable 2 in the online supplements.

\(^b\) P values correspond to the Kruskal-Wallis Rank Sum Test comparing medians, Fisher’s Exact test for proportions, and ANOVA comparing between means.

\(^c\) Others included participants who reported a race that was not included in the list, did not know their race, or did not disclose.
Table 2. Associations between exposure profiles and persistent distressing PLE.

<table>
<thead>
<tr>
<th>Exposure Profile</th>
<th>Unadjusted</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suburban affluent areas (reference)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suburban areas with high pollutants</td>
<td>1.33</td>
<td>1.08</td>
</tr>
<tr>
<td>Rural areas with low walkability and high ozone</td>
<td>1.69</td>
<td>1.34</td>
</tr>
<tr>
<td>Profile 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suburban areas with high pollutants</td>
<td>1.14—1.55</td>
<td>0.92—0.28</td>
</tr>
<tr>
<td>Rural areas with low walkability and high ozone</td>
<td>1.41—2.15</td>
<td>1.09—1.64</td>
</tr>
<tr>
<td>Profile 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suburban areas with high pollutants</td>
<td>2.42</td>
<td>1.40</td>
</tr>
<tr>
<td>Rural areas with low walkability and high ozone</td>
<td>2.06—2.95</td>
<td>1.08—1.81</td>
</tr>
<tr>
<td>Profile 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban areas with high ADI and low access to food</td>
<td>2.67</td>
<td>1.22</td>
</tr>
<tr>
<td>Rural areas with low walkability and high ozone</td>
<td>2.23—3.15</td>
<td>0.95—1.57</td>
</tr>
</tbody>
</table>

Abbreviations: ADI, area-level deprivation; PLE, psychotic-like experiences.

All models included recruiting sites and family groups as two random intercepts. The adjusted model adjusted for individual-level covariates: age, sex, race and ethnicity, family history of psychosis, parents with a bachelor’s degree, and income-to-needs ratio.
Figure 1. Associations between exposure profiles and persistent distressing PLE.a

A. Star plot of neighborhood exposure profiles by exposure profiles.b

- Profile 1: Suburban affluent areas (n = 2521, 30.9%)
- Profile 2: Suburban areas with high pollutants (n = 2670, 32.8%)
- Profile 3: Rural areas with low walkability and high ozone (n = 1459, 17.9%)
- Profile 4: Urban areas with high ADI, high crime, and high pollution (n = 715, 8.8%)
- Profile 5: Urban areas with high ADI and low access to food (n = 780, 9.6%)

b Pink gradient slices correspond to Area-level Deprivation Index (ADI) variables, orange gradient slices correspond to Child Opportunity Index (COI) variables, green slices correspond to total crime, blue gradient slices correspond to environmental exposures, and purple gradient slices correspond to

a Slices from the exposure profiles represent median values of a mixture component. Each circle represents an exposure profile. Profile 1: Suburban affluent areas (n = 2521, 30.9%), Profile 2: Suburban areas with high pollutants (n = 2670, 32.8%), Profile 3: Rural areas with low walkability and high ozone (n = 1459, 17.9%), Profile 4: Urban areas with high ADI, crime, and pollution (n = 715, 8.8%), Profile 5: Urban areas with high ADI and low access to food (n = 780, 9.6%).
ethnoracial minority and non-English speaker concentration. All variables were coded such that higher scores indicate worse outcomes.

`Adjusted logistic regression model results of associations between exposure profiles and persistent distressing PLE, adjusted for age, sex, race and ethnicity, family history of psychosis, parental education, income-to-needs ratio, and included family and sites as random effects.`
Figure 2. Mediation of the relationship between Profile 3 and persistent distressing PLE by team sports.a

\begin{itemize}
\item Profile 3 compared to Profile 1:
 \begin{itemize}
 \item Total effects: Est = 0.219, 95\% CI: 0.012–0.426, \(p = 0.038 \).
 \item Direct effects: Est = 0.210, 95\% CI: 0.002–0.417, \(p = 0.048 \).
 \item Indirect effects: Est = 0.002, 95\% CI: \(<0.001–0.005, \ p = 0.015 \).
 \item Proportion Mediated: 6.14\%.
 \end{itemize}
\end{itemize}

\begin{itemize}
\item Profile 4 compared to Profile 1:
 \begin{itemize}
 \item Total effects: Est = 0.268, 95\% CI: -0.014–0.551, \(p = 0.063 \).
 \item Direct effects: Est = 0.260, 95\% CI: 0.023–0.544, \(p = 0.071 \).
 \item Indirect effects: Est = 0.001, 95\% CI: -0.001–0.005, \(p = 0.212 \).
 \item Proportion Mediated: 2.79\%.
 \end{itemize}
\end{itemize}

a Mediation analysis was conducted for a subgroup of Profile 3 vs. Profile 1 (\(n = 3980 \)), and Profile 4 vs. Profile 1 (\(n = 3236 \)). The mediation analyses included age, sex, race, family history of psychosis, parents with a bachelor’s degree, and income-to-needs ratio as fixed effects and sites as random effects. The coefficients, confidence intervals, and p values of the indirect effects were ascertained by 5000 bootstraps using the mediate() function in the R mediation package.49
Figure 3. Positive Constrained Weighted Quantile Sum (WQS) Regression Weights.

Note: The positively constrained model demonstrated that the overall effect of increasing all exposures simultaneously by one decile corresponded to 12% greater odds for endorsement of persistent distressing PLE (adjusted OR: 1.12, 95% CI: 1.02—1.23, p=.03). This tree plot demonstrates the contribution of each exposure to a higher odds of persistent distressing PLE. Mean weights represent the relative contribution of each mixture component to the overall mixture effect for persistent distressing PLE. A list of full names for mixture components and mean weights are shown in eTable 8. Covariates included age, sex, family history of psychosis, race and ethnicity, parents with at least a bachelor’s degree, and income-to-needs ratio.
Profile 3 compared to Profile 1

Total effects: Est = 0.219, 95% CI: 0.012—0.426, p = .038.
Direct effects: Est = 0.210, 95% CI: 0.002—0.417, p = .048.
Indirect effects: Est = 0.002, 95% CI: <0.001—0.005, p = .015.
Proportion Mediated: 6.14%.

Profile 4 compared to Profile 1

Total effects: Est = 0.268, 95% CI: -0.014—0.551, p = .063.
Direct effects: Est = 0.260, 95% CI: -0.023—0.544, p = .071.
Indirect effects: Est = 0.001, 95% CI: -0.001—0.005, p = .212.
Proportion Mediated: 2.79%.
Suburban affluent areas (Reference)

Suburban areas with high pollutants

Rural areas with low walkability and high ozone

Urban areas with high ADI, high crime, and high pollution

Urban areas with high ADI and low access to food

Profile 1

Profile 2

Profile 3

Profile 4

Profile 5

n = 2521 (30.9%)
n = 2670 (32.8%)
n = 1459 (17.9%)
n = 715 (8.8%)
n = 780 (9.6%)

Home Ownership (reversed)

% Single-Parent Households

Median Gross Rent (reversed)

Median Monthly Mortgage (reversed)

Median Property Value (reversed)

Crowding

Unemployment

% Below Poverty

% Below 138 Poverty

% No Car

Poor Plumbing

% Less Than 9 Years Education

% High School Education (reversed)

% White Collar Occupation (reversed)

Median Family Income (reversed)

Income Disparity

Food Access (reversed)

Green Space (reversed)

Walkability (reversed)

Industrial Pollutants

Superfund Sites

Total Crime

PM2.5

NO2

O3

Proximity to Roadways

Lead Risk

Ethnoracial Minority

Non-English Speakers

All rights reserved. No reuse allowed without permission.

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint this version posted August 21, 2024; https://doi.org/10.1101/2024.08.21.24312315

doi: medRxiv preprint