Gluteus Medius Muscle Activation Patterns during Gait with Cerebral Palsy (CP): A hierarchical clustering analysis

Mehrdad Davoudi, Firooz Salami, Robert Reisig, Katharina Susanne Gather, Sebastian I. Wolf*

Clinic for Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.

* Correspondence:

Sebastian I. Wolf
Sebastian.Wolf@med.uni-heidelberg.de
Clinic for Orthopedics, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
Abstract

Duchenne gait, characterized by an ipsilateral trunk lean towards the affected stance limb, compensates for weak hip abductor muscles, notably the gluteus medius (GM). This study aims to investigate how electromyographic (EMG) cluster analysis of GM contributes to a better understanding of Duchenne gait in patients with cerebral palsy (CP). We analyzed retrospective gait data from 845 patients with CP and 65 typically developed individuals. EMG activity of GM in envelope format were collected and examined with gait kinematics and kinetics parameters in frontal plane and hip abductor strength, and hip abduction passive range of motion.

Six key EMG envelope features during ten gait phases were extracted and normalized. A hybrid K-means-PSO clustering algorithm was employed, followed by hierarchical clustering. The identified clusters were characterized by having a low (cluster_1), medium (cluster_2), and high (cluster_3) activity of GM during loading response. The patients in cluster_1 also exhibited pathological gait characteristics, including increased trunk lateral lean and weak hip abductor, which are associated with Duchenne gait. The patients in this cluster were subclustered according to their response to the intervention: SUB_1 with a significant improvement in trunk obliquity, pelvic obliquity, and hip abduction after intervention, and SUB_2 without such improvement. Comparing pre-treatment EMG and clinical exam of the sub_clusters, SUB_1 had significantly higher activity of GM during 50-87% of the gait cycle with a greater passive range of hip abduction compared to SUB_2. This study established a relationship between EMG of GM and frontal plane gait abnormalities in patients with CP, highlighting potential improvement in Duchenne gait with prolonged GM activity during swing after the intervention.

Keywords: Gluteus Medius, EMG, Cerebral Palsy, Clustering

1- Introduction

Hip abductor muscle dysfunction is frequently observed in pediatric cerebral palsy (CP), contributing to an altered trunk, pelvic and hip movement, including an excessive medio-lateral
trunk lean [1]. Krautwurst et al. reported a correlation between abductor strength and trunk obliquity in 375 patients with CP [2]. The authors suggested that an ipsilateral trunk lean towards the affected stance limb—referred to as Duchenne gait—serves as a hip joint unloading mechanism in the presence of weak abductor muscles [2].

In Duchenne gait, subjects move their trunk’s center of mass towards the hip joint, reducing the demand on the hip abductors [3]. Gluteus medius (GM) as the main hip abductor plays a significant role in stabilizing the pelvis and lower body within the frontal plane during gait [4]. Subsequently, it has a direct influence on altered frontal plane gait, namely Duchenne gait [5]. However, the association between the function of this muscle and the pathological gait seen in CP has not yet been fully established.

Electromyographic (EMG) analysis is an important component in the clinical gait assessment of people with CP, providing a means to evaluate the functionality of their muscles during walking [6]. Davoudi et al. [7] recently presented algorithm clustering EMG data of Rectus femoris as an objective tool to develop treatment decision approaches for patients with CP in crouch gait. Reinbolt et al. [8] also used EMG along with gait kinematics and clinical data to predict the improvement in sagittal plane knee motion in patients with CP following a rectus transfer surgery. On the other hand, Patikas et al. [9] reported minor changes in muscle activity following a single-event multilevel surgery (SEMLS). However, they concluded that the untypical pre-operative EMG patterns might be associated with a compensatory response in some patients. While these studies [9-11] addressed sagittal plane muscles and movement, there is a need for a further analysis on frontal plane muscles such as GM.

Clustering is an unsupervised analysis approach to determine the main trends in a dataset [12], which can also be applied for the analysis of EMG signals [7]. Although this analysis basically measures the similarity between the elements and does not require labelled (pre-specified) data, their biomechanical interpretation remains a challenge. Sangeux et al. [11] applied K-means
algorithm on the knee and ankle kinematics of patients with CP. They introduced an index for successfully categorizing these patients into different clusters and observed a correlation between these clusters and spasticity in the gastrocnemius-soleus muscles. Using the same technique on the kinematics of lower limb joints in all three planes of motion, Kuntze et al. [12] identified four clinically meaningful clusters. Further, in our recent work [7] we showed a correlation between the results of a hybrid particle swarm optimization (PSO) and K-means clustering on EMG of Rectus femoris and knee flexion-extension angle and moment as well as knee strength and spasticity.

While these studies confirm the applicability of cluster analysis for a better understanding of gait deficits in patients with cerebral palsy, the computational challenges still remain. PSO is an optimization algorithm used to tackle the initialization problem in K-means [13], however, it does not work well when the database is large or complex, for example when increasing the number of muscles [14]. Hierarchical clustering is a method used to group similar objects by constructing a cluster tree, known as a dendrogram. It can be effectively utilized in conjunction with other approaches, such as K-means, to address their respective technical limitations, particularly in the context of large databases. This method starts with considering each data point as separated clusters to eventually link them as a hierarchy. Researchers suggested applying a combined hierarchical clustering with K-means could increase the performance of the clustering for large and complex datasets [15].

The first objective of this study was to explore the relationship between the EMG activity of the GM, as the main abductor of hip, and frontal plane gait abnormalities in patients with CP using a two-stage hierarchical clustering method. Further, we aimed to evaluate the association between the EMG of GM and the treatment outcomes in these patients by focusing on Duchenne gait.

2- Methods

2-1- Participants
Similar to a recent study on Rectus femoris EMG clustering [7], the data analyzed in this retrospective study were part of a larger database established at the local University Clinics in the years 2000-2022 when retrieval was stopped. Only personnel that had regular legal access to the medical records retrieved patient data, collected and anonymized it. After this step, individual participants could not be identified anymore. The study was approved by the Ethics Committee of the Medical Faculty of Heidelberg University (Heidelberg, Germany; no: S-243/2022). It waived the requirement for informed patient consent. With application of inclusion criteria, i.e., availability of EMG and gait data, ability to walk barefoot without any assistive device, and being classified as Gross Motor Functions Classification System (GMFCS) level I and II, 845 patients and 65 typically developed (TD) individuals were recruited for the clustering analysis. The characteristics of the participants are shown in Table 1.

Table 1. Demographic and descriptive data of the participants in clustering analysis and also TD individuals.

<table>
<thead>
<tr>
<th></th>
<th>CP (n=845)</th>
<th>TD (n=65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>18.5 (9.3)</td>
<td>20.0 (13.7)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>157.1 (36.3)</td>
<td>157.1 (19.9)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>50.4 (18.6)</td>
<td>67 (15.3)</td>
</tr>
<tr>
<td>Sex (Men/Women)</td>
<td>496/349</td>
<td>36/29</td>
</tr>
<tr>
<td>CP type (bilateral/unilateral)</td>
<td>684/161</td>
<td></td>
</tr>
</tbody>
</table>

2-2- Data collection and processing

Raw EMG signals of eight major lower extremity muscles including the Gluteus medius, were bilaterally collected with Bipolar surface adhesive electrodes (Blue Sensor, Ambu Inc., Glen Burnie, MD, USA), using myon 320 (Myon AG, Schwarzenberg, Switzerland). The placement of the electrodes was based on the guidelines provided by SENIAM [16]. The raw signals were band-pass filtered (Butterworth, cutoff frequency of 20-350 Hz); rectified and smoothened (Butterworth low pass, cutoff frequency of 9 Hz); averaged across valid strides; and then time-normalized (within one gait cycle) and amplitude-normalized (to the mean of signal) in Matlab (The MathWorks, Inc. USA) [11]. Twelve cameras (VICON, Oxford Metrics Limited, UK) and
three force-plates (Kistler Instruments Co.) were used to capture the trajectories of the markers and ground reaction force data, respectively. The markers were placed according to the protocol of Kadaba et al. [17]. Applying the plug-in-gait model, the kinematics and kinetics of the lower body joints of the participants were calculated [18]. Hip abduction passive range of motion (RoM) and hip abduction muscles strength in both 0 and 90 degrees (hip flexion position) of the subjects were assessed according to the Medical Research Council (MRC) [19]. In this method the muscle strength is scaled from 5 (full strength) to 0 (no strength). More details about the capturing and analyzing the gait data used in this study is available in our previous works [7, 18, 19].

2-3- Cluster analysis

2-3-1- Feature extraction and standardization

To prepare the input data for clustering, six main features of the EMG envelopes (mean, range, maximum, minimum and their timing) during 10 gait phases [20] including whole gait cycle, stance, swing, loading response (LR), mid stance (MSt), terminal stance (TSt), pre-swing (PSw), initial swing (ISw), mid swing (MSw), and terminal swing (TSw) were extracted. The features were then standardized to quantify the deviation of each patient’s EMG from TD subjects using formula (1) [11]. Norm distance (ND_i) was defined as the absolute difference between the i^{th} feature of the EMG of the patient p (F_{pi}) and the mean value of the same feature in the TD group (F_{ni}), divided by the corresponding standard deviation within the TD (SD_{ni}).

$$ND_i = \frac{|F_{pi} - F_{ni}|}{SD_{ni}}$$ \tag{1}

2-3-2- K-means-PSO clustering

The resulting normalized input matrix has a dimension of 845 (number of patients) × 60 (number of features for 10 gait phases). We applied a hybrid K-means-PSO clustering algorithm to each feature (column) of this matrix. The algorithm's details have been explained in our work on...
activity of Rectus femoris [7]. In this approach, the output of PSO, as a global optimization search algorithm, served as the initial centroids for the K-means, allowing each datapoint to be assigned to a cluster based on its distance from these centers. Fig. 1 visualizes the procedure we used in this stage in a flow chart (Fig. 1, stage 1). To evaluate the optimal number of clusters, we utilized the Davies-Bouldin (DB) clustering evaluation criterion in Matlab [21]. The resulted matrix serves for the hierarchical clustering (Fig. 1, stage 2).

Please insert figure 1 here.

2-3-3- Hierarchical clustering

Using Principal Component Analysis (PCA) we reduced the dimension of the matrix resulting from the hybrid clustering to ensure that the first principal components (PCs) explained more than 96% of the primary variance [7]. Fig. 1 illustrates clustering stage 2, i.e., the flow of the procedure utilized for the hierarchical clustering. We used the Matlab ‘Cluster’ function to identify the final clusters according to the similarity between the patients. The number of clusters was determined using the ‘dendrogram’ in Matlab.

2-4- Comparison between the clusters

The average activity of the GM in each phase of the gait, along with trunk, pelvic, and hip kinematics and kinetics in the frontal plane, was calculated for the patients identified in each cluster. Descriptive statistics (mean and standard deviation) were used to compare the clinical examination data between the conditions.

2-5- Identification of the sub_clusters of patients

In this investigation, our primary study cohorts consisted of individuals with CP and TD. Initially, we applied cluster analysis to the patient group, leading to the identification of distinct
clusters. Subsequently, focusing on a cluster characterized by pronounced frontal plane features
such as excessive lateral trunk lean, we examined changes in EMG and gait between their initial
examination (E1) and subsequent examination (E2) in the laboratory setting. As outlined in [22],
we assessed the following parameters important for evaluating frontal plane gait in patients with
CP: 1) kinematics (range of motion of trunk and pelvic obliquity, maximum hip abduction in
mid-stance); 2) kinetics (maximum hip abduction moment in mid-stance), and 3) EMG measures
(mean, maximum, and minimum of GM activity) for both E1 and E2 within the selected cluster
of patients.

Applying PCA [23] on the ‘changes matrix’, defined as $\Delta E = \text{parameters}_{E2} - \text{parameters}_{E1}$, we identified two sub_clusters of patients.
Patients with a positive score (PC_scores > 0) were considered as sub_cluster one (SUB_1), and
those with a negative score (PC_scores < 0) as sub_cluster two (SUB_2).

These sub-clusters exhibited different responses to the intervention. Therefore, we statistically
analyzed the improvement in their frontal plane gait from E1 to E2 using the non-parametric
Kruskal-Wallis test to biomechanically characterize the sub-clusters. Additionally, to determine
the potential causes of the differing responses, we examined the pre-treatment (E1) features of
these patients. The minimum, maximum, and mean EMG activity of GM during 50-87% of the
gait cycle, as well as hip abduction strength and range of motion at 0 and 90 degrees hip flexion,
were compared between SUB_1 and SUB_2 using a non-parametric test (p-Value = 0.05). The
50-87% of the gait cycle (pre-, initial, and mid-swing phases) was visually chosen by comparing
the EMG patterns.

Furthermore, the specifics of the type and number of surgeries performed between E1 and E2 for
the different sub_clusters (SUB_1 and 2) were examined to investigate any potential bias arising
from the treatment approach on the responses and sub_clustering outcomes.

3- Results
Using the dendrogram (Fig. 2), we identified three main clusters: cluster_1 (84 patients), cluster_2 (654 patients), and cluster_3 (107 patients) (Table 2). Comparing the EMG of the GM and frontal plane kinematics and kinetics between the clusters (Fig. 3 and Table 2), we observed that on average, the patients in cluster_1 showed a relatively low activity level of GM during loading response compared to the two other clusters. They (cluster_1) also exhibited an increased lateral trunk lean with a stable pelvic position (Duchenne gait). Patients in this cluster also exhibited a lack of a peak in stance in their hip abduction and hip abductor moment (Fig. 3). The largest number of patients (654 out of 845) was classified as cluster_2 in this study with a medium level of GM activity in loading response, while the patients in cluster_3 had the highest activity in this gait phase. Moreover, patients in cluster_3 and cluster_1 had the highest and lowest averaged pre-treatment passive range of hip abduction and of hip abductor strength, respectively (Table 2).

Please insert figure 2 here.
Figure 2. Detection of three clusters of the patients based on the height (cluster distances) in dendrogram.

Please insert figure 3 here.
Figure 3. A) Average Gluteus medius EMG, B) Trunk, pelvic and hip kinematics and kinetics in frontal plane for 3 different clusters. Red: cluster_1, Green: cluster_2, Blue: cluster_3, Purple: TD.
Table 2 - The number of patients in clusters, mean (SD) of averaged EMG patterns of each cluster in different gait phases, and clinical exam data.

<table>
<thead>
<tr>
<th>Clusters</th>
<th>Number of patients</th>
<th>Mean (SD) of EMG envelopes in each cluster in different gait subphases</th>
<th>Mean (SD) of hip clinical exam data of patients in each cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LR</td>
<td>MS t</td>
</tr>
<tr>
<td>1</td>
<td>84</td>
<td>170.1 (40.2)</td>
<td>126.9 (24.7)</td>
</tr>
<tr>
<td>2</td>
<td>654</td>
<td>230.2 (59.4)</td>
<td>145.1 (32.9)</td>
</tr>
<tr>
<td>3</td>
<td>107</td>
<td>273.6 (61.5)</td>
<td>135.6 (31.8)</td>
</tr>
<tr>
<td>TD</td>
<td>117</td>
<td>264.9 (91.3)</td>
<td>113.3 (36.1)</td>
</tr>
</tbody>
</table>

* HF: Hip flexion.
Some 31 patients (out of 84 (Table 2)) identified as cluster_1 and with pre and post treatment gait and EMG data available were chosen for sub_cluster analysis. The average (SD) PC_scores for SUB_1 (12 patients) and SUB_2 (19 patients) were 127.4 (120.5) and -80.4 (48.7) respectively. Fig. 4 shows the sub_clusters identification steps through a flowchart.

Please insert figure 4 here.

Figure 4. Identification procedure of the sub_clusters (SUB_1 and SUB_2) in patients in cluster_1 with pathological gait.

Please insert figure 5 here.

Figure 5. A) Average Gluteus medius EMG, B) Trunk, pelvic and hip kinematics and kinetics in frontal plane for patients of SUB_1 and SUB_2 in their E1 and E2. Yellow: SUB_1-E1, Red: SUB_2-E1, Blue: SUB_1-E2, Green: SUB_2-E2, Purple: TD.

Table 3- Statistical comparison of the pre- and post-treatment frontal plane gait parameters of the patients sub_clustered as SUB_1 and SUB_2.

<table>
<thead>
<tr>
<th></th>
<th>RoM Trunk Obliquity [deg]</th>
<th>RoM Pelvic Obliquity [deg]</th>
<th>Max Hip Abd/Add Angle in MSt [deg]</th>
<th>Max Hip Abd/Add Moment in MSt [Nm/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SUB_1</td>
<td>SUB_2</td>
<td>SUB_1</td>
<td>SUB_2</td>
</tr>
<tr>
<td>E1</td>
<td>15.4 (7.4)</td>
<td>11.5 (4.4)</td>
<td>10.1 (3.5)</td>
<td>9.5 (4.6)</td>
</tr>
<tr>
<td>E2</td>
<td>10.5 (5.4)</td>
<td>10.8 (5.8)</td>
<td>11.9 (4.7)</td>
<td>8.9 (4.7)</td>
</tr>
<tr>
<td>p-value between E1 and E2 within each group</td>
<td>0.01*</td>
<td>0.29</td>
<td>0.24</td>
<td>0.39</td>
</tr>
<tr>
<td>TD</td>
<td>2.9 (1.4)</td>
<td>9.8 (3)</td>
<td>7.2 (2.6)</td>
<td>0.79 (0.16)</td>
</tr>
</tbody>
</table>

* p≤ 0.05.

Comparing the EMG and frontal plane kinematics patterns between examinations for both sub_clusters (Fig. 5 and Table 3), a significant decrease (p=0.01) in the RoM of trunk obliquity was observed in SUB_1. Additionally, an increase in pelvic obliquity and hip abduction angle and moment during midstance was exhibited following the intervention. Therefore, the Duchenne gait abnormality improved in patients who were sub_clustered as SUB_1 after the intervention. Furthermore, these patients showed a higher pre-treatment activity of GM during 50-87% of their gait (p=0.05) (Table 3) and a greater RoM of hip abduction at 90 degrees hip flexion (p=0.05) compared to SUB_2 (Table 4).
Table 4- Statistical comparison of the pretreatment EMG levels and physical examination data between the patients sub-clustered as SUB_1 and SUB_2.

<table>
<thead>
<tr>
<th>Group</th>
<th>EMG</th>
<th>Physical Examination</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean 50-87%</td>
<td>Min 50-87%</td>
<td>Max 50-87%</td>
</tr>
<tr>
<td>SUB_1- E1</td>
<td>79.5 (19.2)</td>
<td>50.7 (15.1)</td>
<td>111.7 (31.9)</td>
</tr>
<tr>
<td>SUB_2- E1</td>
<td>68.6 (8.7)</td>
<td>45.5 (10.8)</td>
<td>99.1 (21.9)</td>
</tr>
<tr>
<td>P-value</td>
<td>0.05*</td>
<td>0.39</td>
<td>0.25</td>
</tr>
</tbody>
</table>

* p ≤ 0.05.

** HF: Hip flexion.

Table 5 also shows the details of the main distal and proximal surgeries for the sub_clusters in this study.

In total 24 patients (out of 31) underwent a surgery between their first (E1) and second (E2) gait examination. The most frequent distal surgeries (Baumann and Strayer procedures, Tibialis posterior lengthening, and bony foot procedures) and proximal surgeries (femoral derotation, rectus transfer, and hamstring lengthening) were considered for examination between the sub_clusters. In general, the number of the proximal surgeries was relatively higher than distal surgeries for the patients with a significant improved trunk obliquity (SUB_1), while the surgeries around the foot (bony foot procedures) and shank (tibialis posterior lengthening) were more frequent for subjects in SUB_2. Tendo-Achilles lengthening, along with the Baumann and Strayer procedures, was another lengthening technique performed. However, only one patient, identified as part of SUB_2, underwent this specific surgery.
Table 5 – Comparison between the type and number of surgeries between sub_clusters

<table>
<thead>
<tr>
<th>Responders</th>
<th>Total number of patients</th>
<th>No surgery</th>
<th>Distal surgeries</th>
<th>Proximal surgeries</th>
<th>total number of distal surgeries</th>
<th>total number of proximal surgeries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Baumann procedure</td>
<td>Strayer procedure</td>
<td>bony foot procedures</td>
<td>Tibialis posterior lengthening</td>
</tr>
<tr>
<td>SUB_1</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>SUB_2</td>
<td>19</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>7</td>
<td>10</td>
<td>5</td>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>
4- Discussion

In this study, we introduced a two-stage clustering approach that effectively identified three primary EMG activity patterns of the GM muscle in patients with cerebral palsy. Combined with gait and clinical data, the labels were characterized by a group of patients with a relatively low activity of GM in initial and mid stance and a pathological (Duchenne) gait pattern (cluster_1); an increased activity in mid-stance with the highest number of identified patients (cluster_2); and the highest EMG activity during loading response with the strongest hip abductors (cluster_3). The results were consistent with our latest work on the Rectus femoris EMG clustering, in which we categorized patients into pathological (crouch) gait, typical CP, and correlated-to-TD patterns [7]. To achieve this, we applied a pre-clustering standardization to transform the features into their deviation from a healthy population. This approach allowed us to obtain meaningful and reliable clustering results [7, 9].

The patients in cluster_1 who showed weakest hip abductors and decreased hip abduction RoM, demonstrated a more pronounced trunk lean with a decreased pelvic RoM (Fig. 4, Table 2). This finding aligns with the results of Krautwurst et al. [2] who observed a correlation between decreased abductor muscle strength and trunk and pelvic kinematics. Furthermore, they observed an increased trunk lateral obliquity, serving as a compensatory mechanism to stabilize the pelvis in the frontal plane and keep the gait stable in patients with CP. The hip unloading observed in patients identified as cluster_1, in the presence of hip abductor weakness, is a characteristic finding of Duchenne gait [24], which shifts the body's center of mass laterally and significantly reduces the hip abduction moments. However, a substantial increase in the requirement for effort and work by the trunk muscles is the price for this compensation [22]. EMG studies show the greatest burst of GM occurring during loading response and initial stance [4]. In our study also, the main distinction between the cluster patterns was visually observed in this phase of the gait. However, notably, the higher averaged EMG activity in swing phase of patients in cluster_1 might be attributed to the increased tightness of GM in these individuals. The anterior part of the
GM assists in hip flexion and the activity of this muscle during the swing phase could potentially contribute to lengthening the step and promoting forward movement.

Investigating the relationship between EMG activity and altered trunk obliquity in sub_clustered patients (SUB_1 and SUB_2) (Fig. 5, Table 3), we observed that an increased activity of GM during 50-87% of gait cycle, as well as a greater RoM of hip abduction, were the significant indicators of treatment outcomes for the Duchenne condition. Considering the discussion presented by Heyrman et al. [25], an altered trunk movement observed in CP, such as Duchenne gait, is not exclusively a compensatory response to lower limb impairments. For certain patients, it could reflect a deficit in trunk motor control. We suggest that the patients identified as SUB_1 and SUB_2 can potentially represent the compensatory and motor control related Duchenne gait, respectively. Therefore, after treatment and fixing the biomechanical problem, subsequently the frontal plane movement of pelvic and trunk in SUB_1 improve. In addition, the compensatory prolonged activation of GM during swing (50-87% of gait) was diminished in these patients (SUB_1) after the intervention. Employing PCA, Rethwilm et al. [23] also concluded that Duchenne gait in CP could arise from motor disfunction rather than being only a compensatory strategy which supports our suggestion. However, while assessment of the motor control of the patients was not an aim of this study, we recommend it for future studies to outline the influence of the trunk motor deficit on Duchenne gait.

Moreover, the facts that Duchenne gait primarily involves the trunk and that patients in SUB_1 underwent more proximal surgeries than distal surgeries (Table 5) may introduce a potential bias in the sub-clustering approach we employed in this study. This study primarily focused on the applicability of the EMG of the gluteus medius as a clinical measure to enhance decision-making for patients with CP. However, future studies could investigate the impact of different treatment approaches, including the number and type of surgeries, on the EMG and Duchenne gait of patients with CP.
To the best of our knowledge, our study is the first to investigate the relationship between the activity of the GM muscle as measured by surface EMG and the kinematics of the trunk and legs in the frontal plane of patients with CP, using a clustering approach. Our findings indicate that the EMG of GM might be related to improvements in Duchenne gait following treatment. We recommend that clinicians assess the activity of GM during swing phase and measure passive hip abduction range of motion at 90 degrees hip flexion before surgery for patients with Duchenne gait. An activity level above 70% of mean EMG, combined with a limited range of motion of less than 30 degrees, may suggest that surgery alone will not automatically improve trunk movement, and the patient may require additional treatment such as trunk motor control training, prior to surgery. Further research is required to assess the effectiveness of EMG clustering when applied to combinations of muscle groups that operate in different planes of motion.

Funding

This research was funded by the German Research Foundation (DFG) (no: WO 1624/8-1). For the publication fee we acknowledge financial support by Heidelberg University.

Data availability

The data supporting the conclusions of this article is made available along with the publication.

Author Contributions

Conceptualization, design and coordination of the study, S.I.W.; Methodology, M.D., F.S., R.R. and K.G.; Data Analysis, M.D.; Writing-Original Draft Preparation, M.D.; Writing-Review & Editing, S.I.W, F.S. All authors have read and agreed to the published version of the manuscript.

Declaration of Competing Interest

"Each of the authors has read and concurs with the content in the final manuscript. The material within has not been and will not be submitted for publication elsewhere except as an abstract."

There is no conflict of interest.
References

