Health losses attributable to anthropogenic climate change

Colin J. Carlson¹, Dann Mitchell², Rory Gibb³, Rupert F. Stuart-Smith⁴, Tamma Carleton⁵, Torre E. Lavelle¹, Catherine A. Lippi⁶, Megan Lukas-Sithole⁷, Michelle A. North⁶, Sadie J. Ryan⁶,⁸, Dorcas Stella Shumba⁹, Matthew Chersich¹⁰, Mark New⁹, and Christopher H. Trisos⁹,¹¹

1. Yale University School of Public Health, USA.
2. University of Bristol, UK.
3. University College London, UK.
5. University of California, Berkeley, USA.
6. University of Florida, USA.
7. Cape Peninsula University of Technology, South Africa.
8. University of KwaZulu-Natal, South Africa.
9. African Climate and Development Initiative, University of Cape Town, South Africa.
10. University of the Witwatersrand, South Africa.
11. African Synthesis Centre for Environment Climate Change and Development (ASCEND), University of Cape Town, South Africa

* Correspondence should be addressed to colin.carlson@yale.edu.

Acknowledgments
We thank Felipe J. Colon-Gonzalez for thoughtful conversations about health impact attribution. The authors declare no conflict of interest.

Author Contributions
CJC and DM designed the study. CJC, RJG, TEL, CAL, MLS, MAN, SJR, and DSS generated data. CJC, RJG, and TAC contributed to data analysis and data visualization. CJC, RFSS, and TAC drafted the manuscript, and all authors edited and approved the final manuscript.

Funding Statement
This project was supported by the Wellcome Trust.

Data Availability Statement
Data and code for Figure 2 are publicly available at github.com/carlsonlab/AttributableLosses.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Despite widespread consensus that climate change poses a serious threat to global public health, very few studies have isolated the specific contributions of human-caused climate change to changes in morbidity and mortality. Here, we systematically review over 3,600 abstracts, and identify a dozen end-to-end impact attribution studies on human health outcomes published between 2016 and 2023. Based on these studies, we find that estimates of attributable mortality range from 10 to over 271,000 deaths, depending on timescale, spatial extent, climate hazard, and cause of death. We calculate that this loss of life amounts to up to US$ trillions in monetary value when using standard valuation approaches. So far, end-to-end attribution studies capture only a small fraction of the presumed global burden of climate change, with few studies addressing infectious and non-communicable diseases, and no subnational or event-specific studies focused on a location outside of Europe and the United States. However, the field of health impact attribution is poised to explode in the next decade, putting unprecedented pressure on policymakers to take action for human health.

It is unequivocal that recent climate change is outside the realm of normal natural variability, that natural factors in the earth system cannot explain the observed changes, and that anthropogenic influences are responsible for – at the time of writing – roughly +1.3°C of global warming from pre-industrial levels¹. Climate scientists have developed this consensus through a set of quantitative methods that are grouped under the joint umbrella of climate change detection (showing that the climate has changed) and attribution (distinguishing the relative contributions of both anthropogenic and natural influences on the global climate system). In the last decade, researchers have also started using the same methods to isolate the effects of anthropogenic forcings on the social and ecological consequences of climate change. These “end-to-end” impact attribution studies² account for a small fraction of total research on climate change impacts, but represent some of the strongest evidence in terms of both methodological rigor and ability to articulate clear, quantitative estimates of historical and present-day impacts.

Human health – especially loss of life, but also illness, disability, and poor well-being – is one of the most visible categories of climate change impacts. However, most work on the health impacts of climate change has stopped a step short of end-to-end attribution, focusing on long-term trends in health outcomes and their relationship to temperature and precipitation, or on the health outcomes of specific extreme weather events³–⁵. The first end-to-end study, which focused on mortality from the 2003 European heatwave, was conducted in 2016⁶. In the last five years, though, the number of comparable studies has started to grow exponentially, capturing a much broader set of health impacts. These studies are likely to be an important source of information as countries begin to seek financing for loss and damage resulting from climate change⁷, particularly given that human health impacts dominate estimates of aggregate economic damages from future climate change⁸. Health impact attribution studies can also play an important role in climate litigation: for example, in lawsuits in which claimants seek compensation for costs that they allege were caused by the greenhouse gas emissions of defendants, evidence linking anthropogenic greenhouse gas emissions (or the emissions of the defendant company) to the claimants’ losses may be essential⁹,¹⁰ (Box 1).
Here, we screened 3,677 abstracts of peer-reviewed studies, as well as several preprint servers, and identified a dozen end-to-end health impact attribution studies published by late 2023. The scientific evidence presented in this small handful of studies paints a clear picture of climate change as a present-day public health crisis, with substantial impacts felt through death, disability, and illness, equivalent to financial losses on the order of US$ trillions.

The attributable health impacts

Findings

Our systematic literature review identified 12 studies published or preprinted between 2016 and 2023 that have attributed health impacts to human-caused climate change. Of them, nine studies passed the strictest methodological scrutiny we could apply, and included both (1) a robust statistical analysis of data on an observed health outcome and its relationship to climatic drivers, and (2) a statistical analysis of the contribution of human-caused climate change, isolated through the use of a robust counterfactual scenario that captures natural climate variability without anthropogenic forcings (see Methods).

Research effort across these studies was distributed unevenly across content areas, with a bias towards the human health impacts of long-term temperature trends (Figure 1). Almost all studies focused on mortality or morbidity due to extreme heat (n = 9 studies) or non-heat extreme weather (n = 2); the twelfth study examined trends in malaria prevalence driven by trends in both temperature and extreme precipitation. More studies analyzed health impacts of long-term climate trends (n = 7) than those resulting from extreme weather events (n = 5), of which four focused on the impacts of a single event, all in either Europe (n = 3) or the United States (n = 1).

Perhaps unsurprisingly, every study found a negative impact on human health that was attributable to climate change. In specific communities, estimates of attributable mortality ranged from 10 deaths (on a single day of the 2006 heat wave in London) to 1,683 deaths (associated with heat in Zürich between 1969 and 2018); regional and global mortality estimates ranged from 1,276 deaths (associated with preterm births in China between 2010 and 2020) to 271,656 deaths (associated with heat across 43 countries between 1991 and 2018) (Table 1). Although most studies quantified mortality at the scale of the general population, one study disaggregated heat-related mortality during the summer of 2022 in Switzerland, finding that women and the elderly accounted for 60% and 90% of attributable deaths, respectively; older women experienced mortality at 1.8 times the rate of the general population. Several studies also pointed to significant specific health impacts experienced by young children, including heat-related mortality, preterm births (and life-long associations with asthma, type 1 and 2 diabetes, and cognitive disabilities), low birth weight, and childhood malaria.

An expanding evidence base
In the first year since our systematic review was conducted, several more health impact attribution studies have been preprinted22,23 or published24–27. These studies address a broader range of health impacts: by their estimates, human-caused climate change is responsible for over 5,000 deaths per year worldwide due to PM\textsubscript{2.5} pollution from wildfires22; an 18\% increase in the incidence of dengue fever in Asia and the Americas23; a 2- to 6-fold increase in European population at risk from West Nile virus24; and several hundred fewer cold-related deaths per year in London25. As the field continues to grow exponentially, it will become harder to track and summarize these studies through systematic literature reviews. As an alternative, we have developed and launched an open online resource called the Health Attribution Library (HAL; healthattribution.org), which serves as a living database of human health-relevant end-to-end impact attribution studies and their findings.

The economic losses of attributable health impacts

Health impact attribution studies have a unique relevance to climate policy, including global negotiations around loss and damage7, and legal actions against emitters and governments9,28 (Box 1). In these contexts, estimated economic losses can be just as important as quantitative data on health outcomes. Future studies should consider including analyses that translate estimates of human health impacts into policy-relevant estimates of their economic value.

Findings

Only a small number of existing studies have converted estimated health impacts into equivalent damages, and they have done so using diverse methods. Zhang et al.16 estimated that due to human-caused climate change, heat wave-related preterm births in China cost US $323m annually, and that loss of human capital predominantly associated with preterm birth-related cognitive disabilities could cost over US $1B annually. These values account for medical costs and lost lifetime earnings, but apply estimates derived from the U.S. and U.K. to the Chinese context. Frame et al.11 indirectly use a life-years-lost calculation to suggest that the estimated US $90B lost due to Hurricane Harvey might be a 25\% underestimate after accounting for mortality and morbidity, implying that a roughly US $17B loss could be attributable to human-caused climate change. Finally, Newman and Noy21 use standard estimates of the value of statistical life (VSL)29 to estimate that across 185 extreme weather events between 2000 and 2019, loss of life was equivalent to US $90B of annual economic damages (US $1.79T total), with some of the greatest losses driven by the mortality cost of major events like the 2003 European and 2010 Russian heat waves, Tropical Cyclone Nargis (2008), and a drought in Somalia (2010).

Secondary analysis

Following Newman and Noy21, we conducted a secondary analysis of the economic losses resulting from mortality as estimated by the studies in Table 1. Like Newman and Noy, we use the VSL to assess the economic value of deaths attributable to human-caused climate change. Such an approach monetizes lives lost by leveraging estimates of how individuals make their
own tradeoffs between income (e.g., a higher-paying job) and mortality risk (e.g., a riskier job). Resulting calculations reflect the willingness of individuals to pay to avoid the elevated risk of death, and are widely used for policy evaluation in the U.S. and internationally30. However, such a valuation approach does not account for any broader societal economic losses, such as costs to a public healthcare system induced by elevated morbidity or mortality.

To implement this, we follow Newman and Noy in using the U.S. Environmental Protection Agency’s value for the VSL, and we treat VSL as equivalent across countries on equity-related grounds. However, we adjust the EPA figure for inflation (US $7.4m in 2006 = US $11.5m in 2024). Second, we present two options for how to adjust VSL estimates derived by the EPA for the U.S. population to global populations. In option 1, we adjust for the difference between U.S. and global GDP per capita (World Bank estimates: US $81,695 versus US $13,138) using an income elasticity of the VSL of 1, reflecting recent economic consensus30. This approach reduces our VSL estimate to US $1.85m. In option 2 (which we present in parentheticals), we use the full U.S.-based value everywhere, as Newman and Noy did.

Based on this analysis, subnational estimates of the economic damages caused by mortality due to human-caused climate change range from US $18.5m (unadjusted VSL: US $115m) associated with heat-related deaths on the hottest day of the 2006 London heat wave14, to US $3.1B (unadjusted: US $19.4B) associated with heat-related deaths in Zürich between 1969 and 201819. Regional and global impacts range from an estimated US $2.4B (unadjusted: US $14.7B) associated with preterm births in China between 2010 and 202016, to US $502.6B (unadjusted: US $3.1T) associated with heat-related deaths across 43 countries between 1991 and 201812.

The contributions of specific emitters

Attribution science has advanced to the point that climate scientists can start to quantify the contributions of specific major greenhouse gas emitters to extreme events and long-term warming trends (termed “source attribution”). Building on this approach, researchers can also begin to estimate the health impacts attributable to specific emitters. This framework was applied to health impacts for the first time by Stuart-Smith \textit{et al.}19, who found that out of 1,700 heat deaths in Switzerland attributable to human-caused climate change between 1969 and 2018, dozens of deaths could be attributed to specific fossil fuel companies, led by Chevron (59 deaths; confidence intervals are not provided in the preprint at the time of writing), ExxonMobil (54 deaths), and Saudi Aramco (53 deaths). Using the same approach to calculating economic damages detailed above, these estimates amount to US $109.2m (unadjusted: $678.5m), US $99.9m (unadjusted: US $621m), and US $98.1m (unadjusted: US $609.5m) of damages attributable to each emitter, respectively.

Closing the attribution gap

The total health cost of climate change is currently unknown, to the detriment of both policy action and public understanding of the climate crisis. The only comprehensive estimate of
Present-day global mortality and morbidity due to climate change was published by the World Health Organization twenty years ago\(^{31,32}\), and only examined mortality due to heat, floods, malaria, malnutrition, and diarrheal disease. As of the year 2000, there were an estimated \(\sim 166,000\) deaths per year due to climate change (following the same VSL approach as above, adjusted: US $307B annually; unadjusted: US $1.9T annually), or cumulatively\(^{32}\), over 4 million total deaths by 2024 (adjusted: US $7.7T; unadjusted: US $47.7T). In 2014, these estimates were updated to include dengue fever, and projected from 2030 through 2050. By 2030, climate change is projected to cause \(\sim 241,000\) deaths per year (excluding floods due to uncertainty; adjusted: US $446B per year; unadjusted: US $2.8T per year). No updates have been published since\(^{32}\); in the absence of a better estimate, projections for 2030 are sometimes used as an approximation of present-day impacts.

These estimates – which are themselves 10 to 20 years out of date, and only examine a handful of health impacts – highlight how far attribution science has to go. Out of the 4 million deaths forecasted between 2000 and 2024, fewer than half a million total deaths have been counted in attribution studies over the same period. Projections of mortality from extreme heat and floods are comparable to estimates from recent attribution studies (Table 2), but no attributable mortality estimates exist for the other four categories. Attribution studies have demonstrated a sizable fingerprint of climate change on the incidence of dengue fever\(^{23}\) and a smaller increase in the prevalence of childhood malaria\(^{18}\), but neither study has produced an estimate of attributable mortality. Similarly, every 1°C of anthropogenic warming has been linked to a 1-2% increase in food insecurity\(^{33}\), but no estimate exists of attributable mortality from malnutrition.

A primary goal of the health impact attribution field should be to better capture the full impacts of climate change\(^{5,34}\), including global mortality, morbidity, life expectancy, and well-being. Future work should therefore examine a wider range of health impacts, particularly given the current overemphasis on heat-related mortality and illness. Ideally, this would include more work on the health impacts of climate change-related air pollution, which recent studies suggest could be comparable in scale to heat mortality\(^{22,35}\), several types of climate-sensitive infectious disease, including vector-borne and zoonotic diseases, diarrheal diseases (especially cholera\(^{36,37}\)), high-burden respiratory infections (e.g., influenza, Covid-19, and tuberculosis), and HIV\(^{38,39}\), major climate-sensitive sources of non-communicable disease, including cancer, diabetes, heart disease, and kidney disease\(^{40}\); health impacts of food insecurity, including malnutrition, stunting, and direct mortality\(^{33}\); and the mental health costs of climate change, including suicides\(^{41}\).

Future work must also aim to provide a more geographically representative view of the health impacts of climate change. Of the 12 studies we analyzed, all studies at subnational levels were focused on extreme weather in the United States or Europe, and the global comparative analysis of extreme weather by Newman and Noy was similarly limited by uneven research effort in the extreme event attribution literature\(^{21}\). Similarly, of the 43 countries in Vicedo-Cabrera et al.’s analysis of global heat-related mortality, only one country in Africa had available data on all-cause mortality, and Asia and the Middle East were also particularly under-represented\(^{12}\).
To some degree, geographic gaps in health impact attribution represent the research community behind these efforts (Figure 2), which are almost entirely led out of Global North institutions (often with a geographically broader set of coauthors). The authorship dynamics in this subfield are not atypical in global health, which suffers from a deeply inequitable and colonial system for exchanging data, knowledge, scientific credit, and international aid. Some researchers have suggested that surfacing more health data from governments in the Global South will help close this gap, but this is at best a partial solution, and at worst will reinforce the existing dynamic by making it easier for Global North researchers to bypass collaboration altogether. The best way to increase knowledge about climate change impacts on populations in the Global South is to support more research led by climate scientists and public health researchers in the Global South: “knowledge from the global South is in the global South”.

Conclusions

Most of the deaths and damages resulting from climate change impacts on human health are uncounted – an untenable status quo. Despite its oversized importance in climate litigation and public understanding of climate change, the field of attribution science has moved forward for decades without developing a robust, global community of practice around health impacts. The handful of studies we identified are an important start, and provide methods that can be applied to shed light on the human cost of climate change. Compared to the last decade, the field of health impact attribution must progress much faster, with more attention to the broad spectrum of health losses being experienced at the frontlines of the crisis. Scientific funders should consider supporting more research led by Global South-based researchers, and more collaborations between climate scientists and public health researchers with expertise on health impacts outside of the handful that are best captured in the climate-health literature. In doing so, the field might better meet its full potential, and better support efforts to reduce the entirely-preventable health losses that result from greenhouse gas emissions.
Online Methods

In this study, we focus on studies that conduct end-to-end health impact attribution, which we define as a statistical analysis that quantifies present-day or historical health impacts or risks resulting from anthropogenic (human-caused) forcings on the climate through the comparison of factual and counterfactual scenarios (where the counterfactual scenario usually excludes all anthropogenic forcings). These studies constitute some of the strongest evidence for the health impacts of climate change. However, this is a narrow definition: for example, most health outcomes that are attributable to climate change, based on the broader definition used by the Intergovernmental Panel on Climate Change44, have not been identified through the use of an end-to-end impact attribution study.

We used the following keyword set to search for relevant literature on the detection and attribution of human health outcomes to human-caused climate change: (“climate chang*” OR “climatic change” OR “changing climate” OR “global warming” OR “drought” OR “flood*” OR “storm*” OR “cyclone” OR “extreme weather” OR “monsoon” OR “sea level rise” OR “sea-level rise” OR “heat stress” OR “global heating”) AND (health OR mortality OR morbidity OR “infectious disease” OR “non-communicable disease” OR suicide OR stunting OR miscarriage OR diarrhea OR diarrohea OR injuries OR cancer OR diabetes OR cardiovascular disease OR stroke OR malnurishment OR malnourish OR anxiety OR depression) AND (attribut* OR counterfactual OR “excess mortality” OR “excess cases” OR DAMIP).

We screened PubMed for studies containing these keywords anywhere in the title, abstract, or full text (search conducted July 21, 2023), and to ensure completeness, ran a second search of Web of Science for additional studies containing these keywords in the title or abstract (search conducted September 11, 2023). In total, we screened 3,677 study abstracts for relevance to the health impacts of climate change, in a broad sense, and evaluated the full text of the 552 studies that passed the first round of screening. In total, the systematic literature review led to the identification of five eligible studies (ED Figure 1). Given the lack of standardized language across studies, which limited the completeness of the systematic search, we also searched Google Scholar using \textit{ad hoc} combinations of keywords related to climate change, health, and attribution, and identified three additional studies. Finally, we searched five preprint servers (arXiv, medRxiv, bioRxiv, ResearchSquare, and SSRN) using the same \textit{ad hoc} approach, leading to the identification of four additional preprints, one of which was published during the course of the study. We included preprints that were posted by September 1, 2023.

We identified a total of twelve peer-reviewed publications and preprints that have conducted end-to-end attribution of human health outcomes to human-caused climate change6,7,11–20.

Most of the twelve studies modeled factual and counterfactual scenarios based on climate models that have been run with different combinations of natural and anthropogenic forcings; however, two studies constructed counterfactuals by carefully detrending temperature data17,19. We excluded studies that quantified health effects of observed climate change by comparing different points in time (e.g., 35,45), rather than comparing present-day impacts to a present-day
counterfactual that omitted anthropogenic influence on the climate. We also excluded a small number of studies that used present-day counterfactual climate scenarios that did not sufficiently distinguish natural and anthropogenic sources of variability46,47.

Most studies used observational data on health outcomes to estimate a statistical relationship between health outcomes and climate variables. However, we included two studies that skipped this step by using the fraction of attributable risk to estimate the contribution of climate change to the impacts of a given extreme weather event11,21. (This approach is also used by a third study to highlight the issues with the approach14, but we only present the result of their full analysis here.) Two studies also used relationships estimated by other studies to convert observed all-cause mortality to estimated heat-related mortality6,13. Finally, a single study fully extrapolated mortality based on an external estimate of the heat-mortality relationship14.
Display Items

Figure 1. The attributable health impacts of climate change. Each circle represents one of the twelve published studies; icons and colors correspond to health impact of interest. Boxes show studies with a subnational (North Carolina), national (Switzerland and China), or regional scale of analysis.
Figure 2. Geography of study scope and author affiliations. Gray values indicate no studies were applicable. (Middle and bottom panel indicate the number of studies with at least one author, or lead author, with an affiliation listed in that country.)
Table 1. Estimated deaths attributed to anthropogenic climate change. Only studies included in the systematic review are shown. Estimates are arranged from smallest to largest total mortality cost. Estimates that are flagged (✝) and italicized are preliminary findings from preprints, and so may be subject to change.

<table>
<thead>
<tr>
<th>Cause, location, and period</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat-related deaths from the hottest day of the summer 2006 heat wave in London, UK (July 26, 2006)(^a)</td>
<td>10 deaths</td>
</tr>
<tr>
<td>Deaths due to Hurricane Harvey in Texas, USA (2017) (extrapolated)(^l)</td>
<td>51 – 66 deaths</td>
</tr>
<tr>
<td>Heat-related deaths due to the summer 2003 heat wave in Greater London, UK (June 1 to August 31, 2003)(^s)</td>
<td>64 deaths (95% CI: 61 – 67)</td>
</tr>
<tr>
<td>Warm season heat-related deaths during the summer 2018 heat wave in the Canton of Zürich, Switzerland (July 29 to August 10, 2018)(^l)</td>
<td>86 deaths(^t) (95% CI: 55 – 114)w</td>
</tr>
<tr>
<td>Heat-related deaths during the summer 2022 heat wave in Switzerland (June 1 to August 31, 2022)(^l)</td>
<td>370 deaths (95% CI: 133 – 644)</td>
</tr>
<tr>
<td>Heat-related deaths due to the summer 2003 heat wave in Central Paris, France (June 1 to August 31, 2003)(^s)</td>
<td>506 deaths (95% CI: 455 – 557)</td>
</tr>
<tr>
<td>Warm season heat-related neonatal death due to pre-term births in China (2010 to 2020)(^l)</td>
<td>1,276 deaths (95% CI: 924 – 1,881)</td>
</tr>
<tr>
<td>Warm season heat-related deaths in the Canton of Zürich, Switzerland (1969 to 2018)(^l)</td>
<td>1,683 deaths(^t) (95% CI: 270 – 3,279)</td>
</tr>
<tr>
<td>Year-round heat-related childhood deaths in Africa (1995 to 2004)(^l)</td>
<td>~3,000 – ~5,000 deaths</td>
</tr>
<tr>
<td>Year-round heat-related childhood deaths in Africa (2011 to 2020)(^l)</td>
<td>~7,000 – ~11,000 deaths</td>
</tr>
<tr>
<td>Global deaths due to 154 extreme weather events (heat and cold waves, floods and droughts, storms, and wildfires) that became more likely due to climate change (2000 to 2019)(^l)</td>
<td>75,139 deaths</td>
</tr>
<tr>
<td>Global warm season heat-related deaths across 732 populations from 43 countries (seasonal average summed over 1991 to 2018)(^l)</td>
<td>271,656 deaths (95% CI: 112,140 – 535,780)</td>
</tr>
</tbody>
</table>
Table 2. Major sources of mortality from climate change: attributed and projected. Global attribution studies are compared against two major projection studies.

<table>
<thead>
<tr>
<th>Type</th>
<th>Study (time period)</th>
<th>Cause</th>
<th>Deaths (annual)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Heat waves</td>
<td>488</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All extreme weather</td>
<td>3,048</td>
</tr>
<tr>
<td></td>
<td>Vicedo-Cabrera et al.(^{12}) (1991-2018)</td>
<td>Warm-season heat-related mortality</td>
<td>9,702 (95% CI: 4,005 – 19,135)</td>
</tr>
<tr>
<td></td>
<td>McMichael et al.(^{31}) (2000)</td>
<td>Floods</td>
<td>2,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat (cardiovascular disease)</td>
<td>12,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malaria</td>
<td>27,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diarrheal disease</td>
<td>47,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malnutrition</td>
<td>77,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>166,000</td>
</tr>
<tr>
<td>Projection</td>
<td>Hales et al.(^{48}) (2030)</td>
<td>Dengue fever</td>
<td>258 (range: 136 to 331)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat (> 65 years old)</td>
<td>37,588 (range: 26,912 – 48,390)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diarrheal disease (< 15 years old)</td>
<td>48,114 (range: 21,097 – 67,702)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malaria</td>
<td>60,091 (range: 37,608 – 117,001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Undernutrition (< 5 years old)</td>
<td>95,176 (range: -119,807 – 310,156)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>241,227 (range: -34,054 – 543,580)</td>
</tr>
</tbody>
</table>
Box 1. Health impact attribution and litigation.

Courts are increasingly hearing cases that aim to hold major emitters liable for their contribution to the impacts of climate change. Health impacts are often at the heart of this litigation – and health impact attribution studies are becoming an important source of potential evidence.

Many of these suits seek financial compensation for high-emitting companies’ contributions to costs incurred by climate change impacts (see e.g., Luciano Lliuya v. RWE, County of Multnomah v. Exxon Mobil Corp.). In these lawsuits, claimants may need to demonstrate a causal link between firms’ greenhouse gas emissions and the impacts on plaintiffs, a legal need that may be met through reference to the findings of attribution studies⁹. For example, in May 2024, three NGOs brought a criminal complaint grounded in attribution science that argued that Total Energies’ directors and main shareholders should be held criminally liable for endangering lives on the basis of the company’s contribution to climate change. Cases like these could deliver justice for victims of climate change, and discourage continued harmful conduct if firms are held liable for the costs of their emissions or directors are held personally responsible⁴⁹.

Other cases seek accelerated mitigation action. In the 2024 ruling of the European Court of Human Rights in Verein Klimaseni reininnen Schweiz and others v. Switzerland, the Court referred to attribution findings in finding evidence of a causal relationship between greenhouse gas emissions and the risk of heat wave-related deaths; this assessment was necessary for the claimants to have standing to bring the case. The Court then ruled that the Swiss government’s climate policy was insufficient to protect the claimant’s rights under the European Convention. Switzerland is now forced to reassess the ambition of their climate policy in light of this ruling — or else, be found to continue to be in breach of the European Convention on Human Rights.
Extended Data Figure 1. Results of the systematic literature review. The PRISMA template was generated by the PRISMA2020 R Shiny app50.

Records identified from: PubMed (n = 2,259) Web of Science (n = 1,418) All databases (n = 4,839)
References

