Pilot Study of Large Language Models as an Age-Appropriate Explanatory Tool for Chronic Pediatric Conditions

Cameron C. Young MPhil1,2, Elizabeth Enichen BA1,2, Arya Rao BA1,2, Sidney Hilker MD1,3, Alex Butler MD, MS1,3, Jessica Laird-Gion MD1,3, Marc D. Succi MD1,2,4

Affiliations
1Harvard Medical School, Boston, MA,
2Medically Engineered Solutions in Healthcare Incubator, Innovation in Operations Research Center, Mass General Brigham, Boston, MA
3Boston Children’s Hospital, Boston, MA
4Department of Radiology, Massachusetts General Hospital, Boston, MA

Corresponding Author
Marc D. Succi, MD
Mass General Brigham
55 Fruit Street Boston, MA 02114
Phone: 617-935-9144
Email: msucci@mgh.harvard.edu

Key Words: large language models; artificial intelligence; pediatric chronic conditions; medical communication

Conflicts of Interest: The authors have no relevant financial or non-financial interests to disclose.
Funding/Role of the Funder: The project described was supported in part by award Number T32GM144273 from the National Institute of General Medical Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health.

Author Contributions: Cameron Young conceptualized and designed the study, drafted the initial manuscript, designed the data collection instruments, carried out analyses, and critically reviewed and revised the manuscript. Ellie Enichen and Arya Rao conceptualized and designed the study and critically reviewed and revised the manuscript. Drs Sidney Hilker, Alex Butler, and Jessica Laird-Gion collected data and critically reviewed and revised the manuscript. Dr Marc Succi conceptualized and designed the study, coordinated and supervised data collection, and critically reviewed and revised the manuscript for important intellectual content. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Ethics Approval: This study was compliant with all applicable Health Insurance Portability and Accountability Act regulations and did not require Institutional Review Board review.

Data Statement: All data will be made available for any research purpose by contacting the corresponding author.
Abstract

There exists a gap in existing patient education resources for children with chronic conditions. This pilot study assesses large language models’ (LLMs) capacity to deliver developmentally appropriate explanations of chronic conditions to pediatric patients. Two commonly used LLMs generated responses that accurately, appropriately, and effectively communicate complex medical information, making them a potentially valuable tool for enhancing patient understanding and engagement in clinical settings.
Introduction

The ability to translate complex medical terminology into commonly understood phrases is one of the numerous promising applications of artificial intelligence (AI), particularly large language models (LLMs), in the healthcare field. LLMs are advanced AI models designed to understand and generate human-like text by leveraging vast amounts of data and complex algorithms. Communicating medical information to children with chronic conditions presents a unique challenge for providers as developmental stages, perspectives, and understanding vary considerably across ages and disease processes. Previous studies have shown that how providers communicate can affect both health outcomes and patient and caregiver satisfaction; particularly, ineffective communication can result in negative outcomes for children and families. Therefore, ensuring children comprehend health information empowers active participation in their medical care, increasing knowledge and treatment adherence, while reducing adverse events.

There exists a gap in educational materials for pediatric patients with chronic conditions due to the lack of standardized approaches, particularly for rare diseases, indicating a scarcity of research in this area. Current materials often fail to cater to the specific needs of pediatric patients, neither being written in age-appropriate, plain language nor considering the complexities of multisystemic diseases, or focus on educating the parents, rather than the patient. Recent studies emphasize the significance of tailoring educational programs to meet the unique needs of pediatric patients with chronic conditions. For instance, a component-based educational program was successful in improving self-efficacy and treatment satisfaction among children with rare chronic diseases.

LLMs offer a novel solution to this challenge. Given this potential, we hypothesize that LLMs can serve as effective tools for providing age-appropriate explanations of chronic conditions, thereby enhancing the communication between healthcare providers, caregivers,
and pediatric patients. This study evaluates the ability of two commonly used LLMs to generate accurate, complete, and developmentally appropriate explanations of chronic diseases to children of different ages. By integrating these AI tools into pediatric healthcare communication, we aim to bridge the gap between clinical knowledge and patient comprehension, fostering better engagement and adherence to treatment among young patients.

Methods

Two generalist LLMs (GPT-4 [OpenAI] and Gemini 1.0 Ultra [Google]; accessed January 16, 2024) were asked to respond to the following prompt: “act as a pediatrician and explain a diagnosis of [CONDITION] to a [AGE]-year-old in language they can understand.” Responses were generated for five common chronic conditions (asthma, anaphylactic allergy [peanut allergy], epilepsy, sickle cell disease, and type I diabetes) for children of odd ages between 5 and 17 (5-year-old, 7-year-old, 9-year-old, 11-year-old, 13-year-old, 15-year-old, and 17-year-old). Representative responses from GPT-4 and Gemini can be found in Supplementary Table 1.

A total of 70 LLM responses (35 from each model) were assessed for accuracy, completeness, age-appropriateness, possibility of demographic bias, and overall quality, based on an existing framework for the human evaluations of the clinical application of LLMs and prior literature. Demographic bias was defined as whether implementing the response in clinical practice would favor or disadvantage particular groups based on demographic characteristics such as race, age, gender, socioeconomic status, or geographic location. Three pediatric physicians (S.H., A.B., and J.L.) rated the responses based on how well they aligned with these five criteria using a Likert scale from 1 (highly disagree) to 5 (highly agree). Numeric ratings were treated as continuous variables and summarized as
Means and 95% confidence intervals. A Welch two sample t-test was used to assess differences in means. P<0.05 was considered statistically significant. Intra-rater reliability was assessed by calculating Pearson correlation coefficients between individual raters. Additionally, Pearson correlation coefficients were computed to assess the degree of correlation between evaluation criteria. Analyses were performed in R version 4.2.2.

Results

Across both LLMs, responses were rated as highly accurate (GPT-4: 4.37 [4.27-4.47]; Gemini: 4.55 [4.45-4.65]), highly complete (GPT-4: 4.25, [4.16-4.34]; Gemini: 4.39, [4.28-4.50]), moderately age-appropriate (GPT-4: 3.95, [3.81-4.09]; Gemini: 3.26, [3.09-3.43]), of moderate quality (GPT-4: 3.88, [3.75-4.01]; Gemini: 3.43, [3.26-3.60]), and with low possibility of demographic bias (GPT-4: 1.61, [1.49-1.73]; Gemini: 1.16, [1.11-1.21]).

Gemini responses had a significantly lower possibility of demographic bias (p<0.001), while responses from GPT-4 were of significantly higher quality (p=0.004) and age-appropriateness (p<0.001) (Table 1). Across both models, age-appropriateness and overall quality tended to increase with age, while other criteria remained similar (Table 2). There were no differences in ratings across chronic conditions (Supplementary Table 2). Intra-rater reliability was high, with an average Pearson correlation coefficient of 0.72 (Supplementary Table 3).

The use of metaphors to explain biological concepts was common throughout responses (red blood cells are “delivery trucks” around the body, insulin is the “key” to unlocking the door for glucose to enter cells, a “glitch” in the brain causes an epileptic seizure). References to superheroes (15.7% of responses), food (12.9% of responses), and weather (12.9% of responses) were most frequent among all responses. Additionally, the mention of videogames, sports, and cartoons were common. Some of these responses were confusing in the context that they were provided (“villains blocking pipes” in a videogame...
may not be easily understandable by all children), could be interpreted as problematic by the
patient (a “glitch in the brain” may seem that something is wrong that can never be fixed), or
risk demographic bias (referring to a child as “kiddo” or “buddy”).

Discussion

LLMs can generate accurate, complete, age-appropriate chronic disease explanations
with low possibility of demographic bias for children of different ages and chronic
conditions, providing a potential additional source of patient educational materials. These
models are flexible, easy-to-use, and can be implemented at the point of care by clinicians or
at home by parents or caregivers and personalized to a patient’s specific condition and
demographics. Further, technology-based interventions can positively impact pediatric
health-related outcomes, further highlighting the potential utility of these tools.
Additionally, the use of AI chatbots is popular among children and adolescents through their
integration into social media platforms, such as Snapchat’s My AI and as educational
tools. Further, a survey of parents showed an openness towards AI-driven technologies in
pediatric healthcare, with quality, convenience, and cost positively influencing their
openness, but concerns about privacy, the need for human interaction in care, and shared
decision-making were noted.

Despite these positive findings and likelihood of translatability, there are several
limitations related to the findings. The use of words like “kiddo” or “buddy” as well as
references to sports and videogames may risk biasing patients and decreasing effectiveness of
explanations. Further, differences in age-appropriateness, possibility of demographic bias,
and overall quality were noted between GPT-4 and Gemini. This discrepancy in LLM
responses could be due to variations in training data and model architecture. Therefore,
clinicians should be cognizant of these potential differences, and evaluate multiple LLM
output before sharing responses with patients and caregivers. Finally, these responses were reviewed by pediatric clinicians, rather than children, who may interpret these responses differently. Evaluation of children’s interactions with LLMs for pediatric healthcare represents a promising area of future research.

This pilot study shows that LLMs offer a promising tool to explain complex chronic diseases to children of different ages, with room for improvement. Developing custom-built, specialty LLMs curated by clinicians and child development experts that incorporate patient-specific details may improve these LLMs ability to act as an explanatory tool. However, LLMs have the potential to aid in closing the existing gap in education materials for pediatric patients with chronic conditions.
References

<table>
<thead>
<tr>
<th>Large Language Model</th>
<th>Accuracy, mean (95% CI)</th>
<th>Completeness, mean (95% CI)</th>
<th>Age-Appropriateness, mean (95% CI)</th>
<th>Possibility of Demographic Bias, mean (95% CI)</th>
<th>Overall Quality, mean (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT-4</td>
<td>4.37 (4.27, 4.47)</td>
<td>4.25 (4.16, 4.34)</td>
<td>3.95 (3.81, 4.09)</td>
<td>1.61 (1.49, 1.73)</td>
<td>3.88 (3.75, 4.01)</td>
</tr>
<tr>
<td>Gemini</td>
<td>4.55 (4.45, 4.65)</td>
<td>4.39 (4.28, 4.50)</td>
<td>3.26 (3.09, 3.43)</td>
<td>1.16 (1.11, 1.21)</td>
<td>3.43 (3.26, 3.60)</td>
</tr>
<tr>
<td>P-value</td>
<td>0.08</td>
<td>0.15</td>
<td><0.001</td>
<td><0.001</td>
<td>0.004</td>
</tr>
</tbody>
</table>

CI = confidence interval
Table 2 – Age-stratified average reviewer ratings of GPT-4 and Gemini responses across five evaluation criteria

<table>
<thead>
<tr>
<th>Large Language Model</th>
<th>Accuracy, mean (95% CI)</th>
<th>Completeness, mean (95% CI)</th>
<th>Age-Appropriateness, mean (95% CI)</th>
<th>Possibility of Demographic Bias, mean (95% CI)</th>
<th>Overall Quality, mean (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Year-Old</td>
<td>4.20 (3.76, 4.64)</td>
<td>4.07 (3.67, 4.47)</td>
<td>3.47 (2.76, 4.18)</td>
<td>1.53 (1.07, 1.99)</td>
<td>3.47 (2.87, 4.07)</td>
</tr>
<tr>
<td>7-Year-Old</td>
<td>4.40 (4.08, 4.72)</td>
<td>4.20 (3.99, 4.41)</td>
<td>4.07 (3.62, 4.52)</td>
<td>1.53 (1.15, 1.91)</td>
<td>3.93 (3.63, 4.23)</td>
</tr>
<tr>
<td>9-Year-Old</td>
<td>4.47 (4.21, 4.73)</td>
<td>4.27 (3.97, 4.57)</td>
<td>4.07 (3.71, 4.43)</td>
<td>1.60 (1.28, 1.92)</td>
<td>3.93 (3.57, 4.29)</td>
</tr>
<tr>
<td>11-Year-Old</td>
<td>4.40 (3.94, 4.86)</td>
<td>4.27 (3.97, 4.57)</td>
<td>4.00 (3.57, 4.43)</td>
<td>1.33 (1.08, 1.58)</td>
<td>3.80 (3.32, 4.28)</td>
</tr>
<tr>
<td>13-Year-Old</td>
<td>4.27 (3.91, 4.63)</td>
<td>4.13 (3.75, 4.51)</td>
<td>3.87 (3.33, 4.41)</td>
<td>1.73 (1.24, 2.22)</td>
<td>3.93 (3.41, 4.45)</td>
</tr>
<tr>
<td>15-Year-Old</td>
<td>4.40 (3.98, 4.82)</td>
<td>4.40 (4.08, 4.72)</td>
<td>3.67 (2.91, 4.43)</td>
<td>1.93 (1.34, 2.52)</td>
<td>3.93 (3.31, 4.55)</td>
</tr>
<tr>
<td>17-Year-Old</td>
<td>4.47 (4.09, 4.85)</td>
<td>4.40 (4.08, 4.72)</td>
<td>4.53 (4.27, 4.79)</td>
<td>1.60 (1.07, 2.13)</td>
<td>4.13 (3.81, 4.45)</td>
</tr>
<tr>
<td>Gemini</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Year-Old</td>
<td>4.47 (4.01, 4.93)</td>
<td>4.27 (3.82, 4.72)</td>
<td>2.53 (1.79, 3.27)</td>
<td>1.33 (1.02, 1.64)</td>
<td>2.87 (2.18, 3.56)</td>
</tr>
<tr>
<td>7-Year-Old</td>
<td>4.53 (4.11, 4.95)</td>
<td>4.40 (3.98, 4.82)</td>
<td>2.53 (1.90, 3.16)</td>
<td>1.07 (0.94, 1.20)</td>
<td>3.07 (2.32, 3.82)</td>
</tr>
<tr>
<td>9-Year-Old</td>
<td>4.60 (4.14, 5.06)</td>
<td>4.47 (4.09, 4.85)</td>
<td>3.00 (2.37, 3.63)</td>
<td>1.20 (0.99, 1.41)</td>
<td>3.20 (2.51, 3.89)</td>
</tr>
<tr>
<td>11-Year-Old</td>
<td>4.60 (4.28, 4.92)</td>
<td>4.40 (4.03, 4.77)</td>
<td>3.00 (2.49, 3.51)</td>
<td>1.07 (0.94, 1.20)</td>
<td>3.07 (2.48, 3.66)</td>
</tr>
<tr>
<td>13-Year-Old</td>
<td>4.67 (4.42, 4.92)</td>
<td>4.27 (3.91, 4.63)</td>
<td>3.80 (3.32, 4.28)</td>
<td>1.13 (0.95, 1.31)</td>
<td>4.00 (3.57, 4.43)</td>
</tr>
<tr>
<td>15-Year-Old</td>
<td>4.60 (4.23, 4.97)</td>
<td>4.47 (4.01, 4.93)</td>
<td>3.80 (3.52, 4.08)</td>
<td>1.20 (0.99, 1.41)</td>
<td>3.87 (3.41, 4.33)</td>
</tr>
<tr>
<td>17-Year-Old</td>
<td>4.47 (4.01, 4.93)</td>
<td>4.27 (3.82, 4.72)</td>
<td>2.53 (1.79, 3.27)</td>
<td>1.33 (1.02, 1.64)</td>
<td>2.87 (2.18, 3.56)</td>
</tr>
</tbody>
</table>

CI = confidence interval