Pulmonary ^{129}Xe Magnetic Resonance Gas-exchange Abnormalities in Moderate-Severe Asthma

Sam Tcherner1,2, Ali Mozaffaripour1,3, Alexander M Matheson1,2, Alexander Biancaniello2, Cory Yamashita4 and Grace Parraga1,4

1Robarts Research Institute; 2Department of Medical Biophysics; 3School of Biomedical Engineering; 4Division of Respirology, Department of Medicine; Western University, London, Canada.

Corresponding Author
Grace Parraga PhD, FCAHS Robarts Research Institute, room 5135 1151 Richmond St N, Western University, London Canada, N6A 5B7, gparraga@uwo.ca, +1-519-931-5265

Word count: 1189; Table & Figure count: 3; Reference count: 22

Summary of Conflict of Interest Statements:
Sam Tcherner BSc: No conflicts of interest.
Ali Mozaffaripour BSc: No conflicts of interest.
Alexander M Matheson PhD: No conflicts of interest.
Alexander Biancaniello MSc: No conflicts of interest.
Cory Yamashita MD FRCPC: No conflicts of interest.
Grace Parraga PhD FCAHS: Dr Parraga reports speaking honoraria (GSK; Polarean)
ABSTRACT

BACKGROUND: Asthma is recognized as an inflammatory disease of the airways, but inflammation may also affect the parenchyma and pulmonary vasculature. Hyperpolarized 129Xe MRI and MR spectroscopy (MRS) provide a way to quantify the transfer of gas from the airways through the alveolar membrane and its binding to hemoglobin in the red blood cells (RBC) of the pulmonary microvasculature. The vast majority of 129Xe MRS studies have investigated interstitial lung disease and the ratio of 129Xe binding to the RBC and 129Xe present in the alveolar membrane, (RBC:membrane) which is a surrogate of oxygen gas-transfer to the blood. We wondered if 129Xe RBC:membrane would differ in asthma patients as compared to healthy volunteers because of recent work showing abnormally diminished pulmonary vascular small-vessel structure in severe asthma.

RESEARCH QUESTION: Do 129Xe MRI gas-transfer measurements differ significantly in patients with moderate-severe asthma?

STUDY DESIGN AND METHODS: In this retrospective study, healthy (NCT02484885) and asthma (NCT04651777; NCT02351141) participants were evaluated who provided written informed consent.

RESULTS: Thirty-one participants with asthma (mean age=55 years ±18; 22 females) and 32 healthy volunteers (mean age=31 years ±14; 12 females) with 129Xe MRS were evaluated. FEV$_1$, VDP and DL$_{CO}$/K$_{CO}$ were significantly different in asthma compared to healthy participants. Age-corrected 1RBC:membrane was significantly different in moderate-severe asthma (0.32±0.09) as compared to healthy participants (0.47±0.12, P=.01). RBC:membrane was significantly related to pulse-oximetry hemoglobin estimates (ρ=.29; P=.04) and DL$_{CO}$ (ρ=.71;
Significant relationships between 129Xe RBC:membrane and age were observed in healthy ($\rho=-.55; P=.002$) and asthma participants ($\rho=-0.49; P=.006$), adjusted for sex. A significant ANCOVA model also revealed the influence of age ($P=.002$), sex ($P<.001$), hemoglobin ($P=.003$) and asthma status ($P=.02$) on RBC:membrane.

INTERPRETATION: 129Xe RBC:membrane values were significantly different in moderate-severe asthma compared to healthy volunteers and were explained by age, sex, hemoglobin, and asthma status.
INTRODUCTION

Although asthma is recognized as an inflammatory airway disease, other lung compartments such as the parenchyma and pulmonary vasculature may be modified directly or indirectly, by inflammation.1-3 For example, evidence from cross-sectional and longitudinal studies in severe asthma suggested pulmonary vascular differences in the small vessel volume fraction.4,5 Reversal of these abnormalities was reported in asthma patients following biologic therapy, as evidenced by a redistribution of blood volume from larger to smaller vessels.5 It is possible that some of these abnormalities stem from inflammation and pulmonary vascular remodeling.2,3

Hyperpolarized 129Xe MRI and MR spectroscopy (MRS) provide a way to quantify the transfer of gas from the airways through the alveolar membrane and its binding to hemoglobin in the red blood cells (RBC) of the pulmonary microvasculature. In these studies, the ratio of 129Xe binding to the RBC to 129Xe which has participated in transmembrane diffusion into the alveolar membrane, (RBC:membrane) is utilized as a surrogate of oxygen gas-transfer to the blood.6 Recent work revealed the reproducibility and age-dependence of RBC:membrane values.7-10 The vast majority of such 129Xe “multi-compartment” studies have investigated interstitial lung disease,11-15 mainly because RBC:membrane is a sensitive marker of alveolar membrane thickening and fibrosis.16 In a small number of patients with asthma, a pilot study revealed both abnormally increased and abnormally decreased RBC:membrane values, without RBC:membrane post-bronchodilator response.17

Because of these previous contradictory findings, our objective was to acquire and evaluate 129Xe MRS gas-exchange measurements in patients with moderate-severe asthma and compare these directly with healthy volunteers. We also aimed to measure the quantitative relationships of
RBC:membrane measurements with age, sex, asthma severity, diffusing-capacity of the lung for carbon-monoxide and hemoglobin values.

METHODS

Study participants and Design

We retrospectively evaluated 31 participants with asthma and 32 healthy volunteers who provided written informed consent (NCT02484885; NCT04651777; NCT02351141) to pulmonary function tests and MRI. Inclusion criteria for participants with asthma consisted of male and female non-smokers, 18-75 years of age and documented diagnosis of asthma and treated with low-to-high dose ICS/LABA. Healthy volunteers were males and females 18-85 years of age, with ≤1 pack year smoking history and no previous diagnosis or history of chronic respiratory disease.

Pulmonary Function Tests

Spirometry and DLCO measurements were undertaken according to American Thoracic Society guidelines using a MedGraphic Elite Series system (MedGraphics; St. Paul, MN). Participants with asthma withheld short-acting β-agonists for 6 hours, and long-acting β-agonists for 12 hours prior to study visits, and completed the Asthma Control Questionnaire (ACQ-6), Asthma Quality-of-Life Questionnaire (AQLQ), and St. George’s Respiratory Questionnaire (SGRQ).

MRI Acquisition and Analysis

129Xe gas was polarized to 30% to 55% (XeniSpin 9820; Polarean, Durham, NC, USA). Anatomic (1H) MRI, functional (129Xe) MRI and MRS were acquired at 3.0 Tesla (Discovery MR750; GE Healthcare, Milwaukee, WI, USA), as previously described. Spectroscopic measurements were reported as normalized ratios (RBC:membrane, Membrane:gas, RBC:gas)
using the area-under-the-curve values from the corresponding RBC, membrane and gas resonance peaks.

Statistical Analysis

SPSS Statistics version 29.0 (IBM) was used for analysis. Normality was assessed with Shapiro-Wilk tests, and non-parametric tests were used for non-normal data. Differences between participant groups were assessed with independent samples t-tests or Mann-Whitney U-tests. Analysis of covariance (ANCOVA) was used to generate significant models explaining RBC:membrane values. Results were considered statistically significant if the probability of a Type I error was less than 5% (\(P<.05\)).

RESULTS

Table 1 shows demographic, pulmonary function, and imaging measurements for 31 participants with asthma (mean age, 56 years ±17; 21 females) and 32 healthy participants (mean age, 31 years ±14; 12 females). The two groups were significantly different for age (\(P<.001\)), BMI (\(P=.009\)), FEV\(_1\) (\(P=.001\)), FEV\(_1)/FVC (\(P=.004\)), DL\(_{CO}\) (\(P=.01\)), \(K_{CO}\) (\(P=.003\)) and VDP (\(P<.001\)). Mean \(^{129}\)Xe RBC:membrane was significantly different when age-adjusted in moderate-severe asthma (0.32±0.09) as compared to the healthy volunteers (0.47±0.12; \(P=.01\)).

Figure 1 (top panel) shows box and whisker plots with males (blue) and females (red) identified the mean RBC:membrane significant difference (\(P=.01\)) in patients with moderate-severe asthma. The middle panel shows significant sex-dependent linear relationships for RBC:membrane with age in healthy (\(\rho=-.55, P=.002, Y=-0.0035x+0.5776\)) and asthma (\(\rho=-.49, P=.006, Y=-0.0022x+0.4484\)) participants. A significant ANCOVA model revealed the significant influence of age (\(P=.005\)), sex (\(P<.001\)), hemoglobin (\(P=.008\), and asthma status.
(P=.02) on RBC:membrane values. As shown in Figure 2, significant relationships for RBC:membrane with hemoglobin (\(\rho=.29, P=.04\)) and DLCO (\(\rho=.71, P<.001\)) were also observed.

DISCUSSION

\(^{129}\)Xe MRI offers novel insights into airway, terminal airway and gas-transfer function in patients with asthma because of its modest Ostwald solubility in biologic membranes, including the alveolar and RBC membranes. Once inhaled, \(^{129}\)Xe gas rapidly flows through airways and to terminal airways throughout the lung to provide reproducible measurements of airways dysfunction. \(^{129}\)Xe also participates in alveolar transmembrane diffusion and binds to microvascular RBC, displacing molecular oxygen on hemoglobin-bound heme. Because the \(^{129}\)Xe gas, alveolar membrane and RBC signals resonate at different frequencies, their individual resonance peaks may be quantified directly using the area-under-the-curve (AUC) and normalized to one another. The ratio of the RBC signal peak AUC to the alveolar membrane signal peak AUC results in RBC:membrane, which has been proposed as a voxel-specific surrogate of gas-transfer.

We recently discovered that bulk blood volume in the large- (BV\(_{10}\)) and small-vessels (BV\(_{5}\)) differed in severe asthma, compared to healthy volunteers, which was consistent with the notion of pulmonary vascular pruning in severe asthma, hypoxic vasoconstriction and/or vascular wall structural remodeling. It is impossible to undertake serial histology to determine the temporal dynamics of these processes, but \(^{129}\)Xe MRI makes this possible non-invasively, *in vivo*, with high spatial-temporal resolution, without radiation, and with obvious advantages over histology.

To better understand the potential influence of pulmonary vascular abnormalities on gas-exchange in patients with moderate-severe asthma, here we evaluated a small group of patients and healthy volunteers using \(^{129}\)Xe MR RBC:membrane and pulmonary function tests. We
observed: 1) mean 129Xe RBC:membrane was significantly different in asthma compared to the healthy volunteers ($P=.01$), 2) RBC:membrane values were both sex- and age-dependent in healthy ($P=.002$) and asthma participants ($P=.006$) participants, and, 3) in a significant model, age ($P=.005$), sex ($P<.001$), hemoglobin ($P=.008$), and asthma status ($P=.02$) influenced RBC:membrane values.

The difference between asthma and healthy volunteer RBC:membrane values, even after age-correction, was unexpected. The fact that Membrane:gas did not differ but there was a trend towards diminished RBC:gas values in asthma participants, suggests RBC pulmonary vascular differences may be responsible for the abnormal RBC:membrane values in asthma. This hypothesis is supported by the finding of abnormally diminished small vessel blood distribution (coined pruning) observed in the Severe Asthma Research Program.4,5 Lending support to the finding of lower RBC:membrane in asthma participants, a significant ANCOVA model also revealed the contributions of sex, age, hemoglobin and asthma to RBC:membrane.

Similar to previous work, we observed an age-related decrease in the RBC:Membrane ratio.$^{8-10}$ In addition, the finding of moderate relationships for all participants between RBC:membrane and both DLCO and hemoglobin is consistent with our understanding of gas-exchange and the role of hemoglobin and heme binding by 129Xe atoms.

In conclusion, we report significantly different 129Xe RBC:membrane values in moderate-severe asthma participants as compared to healthy volunteers, which may be related to pulmonary vascular remodeling in these patients.
REFERENCES

Table 1. Demographic and Clinical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Healthy (n=32)</th>
<th>Asthma (n=31)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age years</td>
<td>31 (14)</td>
<td>56 (17)</td>
<td><.001</td>
</tr>
<tr>
<td>BMI kg/m²</td>
<td>25 (4)</td>
<td>29 (7)</td>
<td>.009</td>
</tr>
<tr>
<td>Female n (%)</td>
<td>12 (38)</td>
<td>21 (68)</td>
<td></td>
</tr>
<tr>
<td>GINA-4 n (%)</td>
<td>–</td>
<td>25 (81)</td>
<td></td>
</tr>
<tr>
<td>GINA-5 n (%)</td>
<td>–</td>
<td>6 (19)</td>
<td></td>
</tr>
<tr>
<td>Pack-years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0 (0)</td>
<td>7 (14)</td>
<td><.001</td>
</tr>
<tr>
<td>Median [IQR]</td>
<td>0 [0–0]</td>
<td>0 [0–7]</td>
<td></td>
</tr>
<tr>
<td>Duration of asthma years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0 (0)</td>
<td>28 (20)</td>
<td><.001</td>
</tr>
<tr>
<td>Median [IQR]</td>
<td>0 [0–0]</td>
<td>26 [10–39]</td>
<td></td>
</tr>
<tr>
<td>SpHb g/dL</td>
<td>15.3 (1.4)</td>
<td>14.8 (1.6)</td>
<td>.2</td>
</tr>
<tr>
<td>SpO₂ %</td>
<td>98 (1)</td>
<td>97 (2)</td>
<td>.01</td>
</tr>
<tr>
<td>FEV₁ %pred</td>
<td>92 (13)</td>
<td>79 (17)</td>
<td>.001</td>
</tr>
<tr>
<td>FVC %pred</td>
<td>97 (14)</td>
<td>91 (12)</td>
<td>.09</td>
</tr>
<tr>
<td>FEV₁/FVC %pred</td>
<td>95 (8)</td>
<td>85 (13)</td>
<td>.004</td>
</tr>
<tr>
<td>DLCO mL/min/mmHg</td>
<td>34 (9)</td>
<td>23 (9)</td>
<td>.003</td>
</tr>
<tr>
<td>DLCO %pred</td>
<td>121 (19)</td>
<td>96 (28)</td>
<td>.01</td>
</tr>
<tr>
<td>VA (L)</td>
<td>5.8 (1.4)</td>
<td>5.1 (1.6)</td>
<td>.2</td>
</tr>
<tr>
<td>VA %pred</td>
<td>103 (14)</td>
<td>96 (18)</td>
<td>.3</td>
</tr>
<tr>
<td>KCO mL/min/mmHg/L</td>
<td>5.8 (0.9)</td>
<td>4.6 (1.3)</td>
<td>.004</td>
</tr>
<tr>
<td>KCO %pred</td>
<td>119 (18)</td>
<td>99 (17)</td>
<td>.003</td>
</tr>
<tr>
<td>ACQ-6</td>
<td>–</td>
<td>1.5 (1.0)</td>
<td></td>
</tr>
<tr>
<td>AQLQ</td>
<td>–</td>
<td>5.3 (1.0)</td>
<td></td>
</tr>
<tr>
<td>SGRQ</td>
<td>–</td>
<td>37 (21)</td>
<td></td>
</tr>
<tr>
<td>VDP %</td>
<td>1 (1)</td>
<td>8 (8)</td>
<td><.001</td>
</tr>
<tr>
<td>¹²⁹Xe RBC:Membrane</td>
<td>0.47 (0.12)</td>
<td>0.32 (0.09)</td>
<td>.01*</td>
</tr>
<tr>
<td>¹²⁹Xe Membrane:Gas</td>
<td>0.99 (0.26)</td>
<td>0.89 (0.36)</td>
<td>.05*</td>
</tr>
<tr>
<td>¹²⁹Xe RBC:Gas</td>
<td>0.47 (0.19)</td>
<td>0.30 (0.16)</td>
<td>.08*</td>
</tr>
</tbody>
</table>

n=11 for Asthma DLCO, VA, KCO; n=12 for Healthy VDP; n=23 for Asthma SpHb; n=26 for Healthy SpHb; n=27 for Asthma SGRQ; n=28 for Healthy DLCO, VA, KCO.

P=Significance values for independent samples t-test; P*=Significance values for ANCOVA adjusted for age. BMI=body mass index; GINA=Global Initiative for Asthma; IQR=interquartile range; SpHb=continuous total hemoglobin; SpO₂=peripheral capillary oxygen saturation; FEV₁=forced expiratory volume in 1 second; %pred=percent of predicted value; FVC=forced vital capacity; DLCO=diffusing capacity of the lungs for carbon monoxide; VA=alveolar volume; KCO=transfer coefficient of the lung for carbon monoxide; ACQ-6=Asthma Control Questionnaire; AQLQ=Asthma Quality-of-Life Questionnaire.
FIGURES:

Figure 1. 129Xe MRI RBC:membrane in Asthma and relationships with age & sex

Box and whisker plots show there was significantly different RBC:Membrane ($P=.01$), but not Membrane:Gas ($P=.5$) or RBC:Gas ($P=.08$) in healthy and asthma participants. Box represents mean, whiskers represent min–max range. Significant relationship with age for RBC:membrane for healthy ($\rho=-.55$, $P=.002$, $Y=-0.0035x+0.5776$) and asthma participants for RBC:Membrane ($\rho=-.49$, $P=.006$, $Y=-0.0022x+0.4484$). $P=$Significance values for ANCOVA adjusted for sex. ANCOVA model shows significant effects on RBC:membrane of age ($P=.005$), sex ($P<.001$), hemoglobin ($P=.008$), and asthma status ($P=.02$). The model's explanatory power is high ($R^2=.964$; $F=297.747$; $P<.001$). BD=bronchodilator; RBC=red blood cell.

Figure 2. RBC:membrane Relationships.

Significant relationships for RBC:membrane with pulse-oximetry measured hemoglobin ($\rho=.29$, $P=.04$, $y=4.00x+13.48$) and DL$_{CO}$ ($\rho=.71$, $P<.001$, $y=56.06x+6.50$). $P=$Significance values. RBC=red blood cell; DL$_{CO}$=diffusing capacity of the lungs for carbon monoxide.
ANCOVA Model ($R^2 = .964; F = 297.747; P < .001$)

<table>
<thead>
<tr>
<th>Variable (N=64)</th>
<th>F-value</th>
<th>Sig. P</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age y</td>
<td>8.756</td>
<td>.005</td>
<td>0.163</td>
</tr>
<tr>
<td>Sex</td>
<td>21.317</td>
<td><.001</td>
<td>0.321</td>
</tr>
<tr>
<td>Hemoglobin g/dL</td>
<td>7.590</td>
<td>.008</td>
<td>0.144</td>
</tr>
<tr>
<td>Asthma Status</td>
<td>5.738</td>
<td>.02</td>
<td>0.113</td>
</tr>
</tbody>
</table>
\begin{align*}
\rho &= 0.29 \\
P &= 0.04
\end{align*}

\begin{align*}
\rho &= 0.71 \\
P &< 0.001
\end{align*}