Evaluation of the diagnostic value of YiDiXie™-SS, YiDiXie™-HS and YiDiXie™-D in pancreatic cancer

Xutai Li1,2,*, Pengwu Zhang1,2, Hui Zhang1,2, Chen Sun1,2, Yutong Wu1,2, Huimei Zhou1,2, Zhenjian Ge1,2, Shengjie Lin1,2, Yingqi Li1,2, Wenkang Chen1,2, Wuping Wang1,2, Siwei Chen1,2, Wei Li1, Fei Feng1, Zewei Lin1, Ling Ji1, Yongqing Lai1,*

1 Department of Urology, Peking University Shenzhen Hospital, Shenzhen, 518036; 2 Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036; 3 The Fifth Clinical Medical College of Anhui Medical University, Hefei 230032; 4 Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, 518036; 5 Shantou University Medical College, Shantou, Guangdong 515041; 6 Shenzhen University Health Science Center, Shenzhen, China 518055; 7 Shenzhen KeRuiDa Health Technology Co., Ltd., Shenzhen, 518071; 8 Department of Hepatobiliary-Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036; 9 Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036.

Corresponding author: Yongqing Lai, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, E mail: yqlord@163.com;
Ling Ji, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, E mail: 1120303921@qq.com; Zewei Lin, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, E mail: szlinzw@126.com; Fei Feng, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, E mail: szf668@163.com.

Background: Pancreatic cancer is a serious threat to human health. Ultrasound is widely used in screening or preliminary diagnosis of pancreatic cancer, and enhanced CT is widely used in the diagnosis of pancreatic cancer. However, false-negative results of ultrasound and enhanced CT will bring unnecessary mental pain, expensive examination costs, physical injuries, and even adverse consequences such as organ removal and loss of function; while false-negative results of enhanced CT bring delayed treatment, and patients will thus have to bear the adverse consequences of poor prognosis, high treatment costs, poor quality of life, and short survival period. There is an urgent need to find convenient, cost-effective and non-invasive diagnostic methods to reduce the false-positive rate of ultrasound and the false-negative and false-positive rates of enhanced CT in pancreatic tumors. The aim of this study was to evaluate the diagnostic value of YiDiXie™-SS, YiDiXie™-HS and YiDiXie™-D in pancreatic cancer.

Patients and methods: 62 subjects (malignant group, n=37; benign group, n=25) were finally included in this study. Remaining serum samples from the subjects were collected and tested by applying the YiDiXie™ all-cancer detection kit to evaluate the sensitivity and specificity of YiDiXie™-SS, YiDiXie™-HS and YiDiXie™-D, respectively.

Results: The sensitivity of YiDiXie™-SS in pancreatic ultrasound-positive patients was 100% (95% CI: 90.6% - 100%) and the specificity was 60.0% (95% CI: 55.4% - 69.7%). Compared with enhanced CT alone, sequential use of YiDiXie™-SS and enhanced CT resulted in comparable sensitivity, but the false-positive rate decreased from 24.0% (95% CI: 11.5% - 43.4%) to 8.0% (95% CI: 1.4% - 25.0%). This means that the application of YiDiXie™-SS reduces the false-positive rate of ultrasound by 60.0% (95% CI: 55.4% - 69.7%) and reduces the false-positive rate of enhanced CT by 66.7% with essentially no increase in the leakage of malignant tumors. YiDiXie™-HS had a sensitivity of 85.7% (95% CI: 48.7% - 99.3%) and a specificity of 84.2% (95% CI: 62.4% - 92.5%) in enhanced CT-negative patients. This means that YiDiXie™-HS reduces the false-negative enhancement CT rate by 84.2% (95% CI: 62.4% - 92.5%). YiDiXie™-D has a specificity of 33.3% (95% CI: 19.2% - 51.2%) and a specificity of 100% (95% CI: 61.0% - 100%) in patients with positive enhancement CT. This means that YiDiXie™-D reduces the false positive rate of enhanced CT by 100% (95% CI: 61.0% - 100%).

Conclusion: YiDiXie™-SS significantly reduces the false-positive rate of ultrasound and enhanced CT in ultrasound-positive pancreatic patients with essentially no increase in delayed treatment of malignant tumors. YiDiXie™-HS significantly reduces the false-negative rate of enhanced CT in patients with pancreatic tumors. YiDiXie™-D significantly reduces the false-positive rate of enhanced CT in patients with pancreatic tumors. The YiDiXie™ test has significant diagnostic value in pancreatic cancer, and is expected to solve the problem of excessive false-positive rate of ultrasound, “enhanced CT” and “false-negative rate of pancreatic tumors” in pancreatic tumors.

Key words: Pancreatic cancer, Ultrasound, Enhanced CT, False-positive, False-negative, YiDiXie™-SS, YiDiXie™-HS, YiDiXie™-D
INTRODUCTION

Among the most prevalent malignant tumors is pancreatic cancer. According to recent data, 510,000 new instances of pancreatic cancer and 460,000 new deaths from the disease are expected worldwide in 2022; the incidence and mortality of pancreatic cancer have increased by 2.9% and 0.2%, respectively, in 2022 compared to 2020. Since there is no early warning sign of pancreatic cancer, many patients are diagnosed with advanced disease, which contributes to a high death rate even though total surgical resection is the only treatment that can cure the disease. A extremely low rate of surgical resectability at the time of diagnosis is also linked to this. More than 80% of patients with pancreatic cancer are diagnosed with locally advanced or metastatic disease and are lost to surgery, with less than 20% surviving for 5 years, and the median survival for patients with advanced and metastatic disease is less than one year with treatment. Thus, pancreatic cancer is a serious threat to human health.

Ultrasound is widely used in the screening or initial diagnosis of pancreatic cancer. However, ultrasound can produce a large number of false-positive results. The false-positive rate for ultrasound diagnosis of pancreatic cancer is approximately 40%-60%. When ultrasound is positive, the patient usually undergoes enhanced CT. A false-positive result on pancreatic ultrasound means that the patient undergoes an unnecessarily expensive and radiologic examination, and the patient will have to bear the adverse consequences of mental anguish, costly examination, and radiologic injury. Therefore, there is an urgent need to find a convenient, cost-effective and non-invasive diagnostic method to reduce the rate of false-positive pancreatic ultrasound results.

Enhanced CT is widely used in the diagnosis of pancreatic tumors. On the one hand, enhanced CT can produce a large number of false-positive results. The false-positive rate of enhanced CT for the diagnosis of recurrent pancreatic cancer is about 24%-33%. With a positive enhanced CT, patients usually undergo radical resection. A false-positive result on enhanced CT means that a benign disease is misdiagnosed as a malignant tumor, and the patient will have to bear the undesirable consequences of unnecessary mental anguish, costly surgeries and investigations, surgical trauma, organ removal, and loss of function. Therefore, there is an urgent need to find a convenient, cost-effective and noninvasive diagnostic method to reduce the rate of false-positive pancreatic enhanced CT.

On the other hand, enhanced CT can produce a large number of false-negative results. The negative predictive value of enhanced CT for the diagnosis of pancreatic cancer is only 16.7%, and its false-negative rate is 26.3%. In diagnosing recurrent pancreatic cancer tumors, the negative predictive value of enhanced CT is only 30-50%, and its false-negative rate is about 25-27%. When enhancement CT is negative, patients are usually taken for observation and regular follow-up. A false-negative result on enhanced CT implies misdiagnosis of a malignant tumor as a benign disease, which will likely lead to delayed treatment, progression of the malignant tumor, and possibly even development of an advanced stage. Patients will thus have to bear the adverse consequences of poor prognosis, high treatment costs, poor quality of life, and short survival. Therefore, there is an urgent need to find a convenient, economical and noninvasive diagnostic method to reduce the false-negative rate of pancreatic enhancement CT.

Based on the detection of novel tumor markers of miRNA in serum, Shenzhen KeRuiDa Health Technology Co., Ltd. has developed an in vitro diagnostic test, YiDiXie™ all-cancer test (hereinafter referred to as YiDiXie™ test), which can detect multiple types of cancers with only 200 microliters of whole blood or 100 microliters of serum each time. The YiDiXie™ test consists of three different tests, YiDiXie™-HS, YiDiXie™-SS and YiDiXie™-D.
The purpose of this study was to evaluate the diagnostic value of YiDiXie™-SS, YiDiXie™-HS, and YiDiXie™-D in pancreatic cancer.

PATIENTS AND METHODS

Study design

This work is part of the sub-study “Evaluating the diagnostic value of the YiDiXie™ test in multiple tumors” of the SZ-PILOT study (ChiCTR2200066840).

SZ-PILOT is a single-center prospective observational study (ChiCTR2200066840)17. Subjects who provided informed agreement to donate their residual samples at the time of admission or during physical examination were considered for inclusion. For this study, a 0.5 milliliter serum sample was collected.

The participants in this investigation were kept blind. the YiDiXie™ test was conducted by laboratory specialists without knowledge of the subjects’ clinical information. The personnel of KeRuiDa laboratory analyzed the test data. Clinical specialists examining individuals’ clinical data were uninformed of the YiDiXie™ test results.

The study was carried out in accordance with the Declaration of Helsinki and the International Conference on Harmonization (ICH) Code of Practice for the Quality Management of Pharmaceutical Clinical Trials, with approval from the Ethics Committee of Peking University’s Shenzhen Hospital.

Participants

This study comprised participants with ultrasound-positive pancreatic tumors; the subjects were enrolled individually, and the subjects were continually added as long as they met the inclusion criteria17.

Initially included in this study were inpatients with “suspected (solid or blood) malignancy” who signed the informed consent for the remaining samples. Subjects classified as having a malignant tumor (postoperative pathological diagnosis of “malignancy”) or a benign tumor (postoperative pathological diagnosis of “benign tumor”) were assigned to the respective groups. This study did not include the pathology data that were malignant or benign. A portion of the samples from the group studying malignant tumors were utilized in earlier work of our team17.

Excluded from this study were subjects who had previously failed the YiDiXie™ test due to a failure in the serum sample quality test. See our earlier article17 for details on enrollment and disqualification.

Sample collection, processing

There was no need for further blood sampling because the serum samples utilized in this study were from serum that was left over from a typical medical doctor visit. A volume of 0.5 milliliters was taken out of each person’s leftover serum and kept at -80°C in order to perform the YiDiXie™ test.

"YiDiXie™ test"

The YiDiXie™ all-cancer detection kit, an in vitro diagnostic kit created and produced by Shenzhen KeRuiDa Health Technology Co., is used in the YiDiXie™ test17. In order to identify cancer in participants, this test evaluates the expression levels of several dozen miRNA indicators in serum17. Through the integration of separate assays into a contemporaneous testing format and the establishment of appropriate criteria for every miRNA biomarker, the YiDiXie™ test preserves specificity and improves sensitivity in a broad spectrum of cancer types17.

Three separate tests are included in the YiDiXie™ test: YiDiXie™-Super Sensitive (YiDiXie™-SS),
YiDiXie™ -Highly Sensitive (YiDiXie™-HS), and YiDiXie™-Diagnosis (YiDiXie™-D). While YiDiXie™-SS dramatically increases the number of miRNA tests to achieve high sensitivity across all clinical phases of diverse malignant tumor types, YiDiXie™-HS places a higher priority on specificity and sensitivity. YiDiXie™-Diagnosis (YiDiXie™-D) ensures high specificity (low misdiagnosis rate) for all cancer types by raising the diagnostic threshold of a single miRNA test.

The YiDiXie™ all-cancer detection kit’s instructions should be followed when conducting the YiDiXie™ test. Our previous work has comprehensive instructions.

The laboratory technicians of Shenzhen KeRuiDa Health Technology Co., Ltd evaluated the initial test results once it was finished and classified the YiDiXie™ test results as “positive” or “negative”.

Diagnosis of Enhanced CT

The diagnostic conclusion of the enhanced CT examination is judged to be “positive” or “negative”. If the diagnostic conclusion is positive, more positive, or favors malignant tumors, the result is considered “positive”. If the diagnosis is positive, more positive, or favors a benign tumor, or if the diagnosis is ambiguous, the result is considered “negative”.

Extraction of clinical data

The clinical, pathological, laboratory, and imaging data used in this inquiry came from the individuals’ inpatient medical records or physical examination reports. Clinical staging was conducted by qualified physicians who were evaluated in compliance with the AJCC staging manual (7th or 8th edition).

Statistical analyses

Descriptive statistics were provided for the demographic variables and baseline attributes. Continuous variables were described by the total number of individuals (n), mean, standard deviation (SD) or standard error (SE), median, first quartile (Q1), third quartile (Q3), minimum, and maximum values. To express categorical variables, the number of individuals in each group and their proportion were utilized. The Wilson scoring method was used to calculate the 95% confidence intervals (CI) for each of the indicators.
RESULTS

Participant disposition

62 participants were finally included in this study (malignant group, n=37; benign group, n=25). The demographic and clinical characteristics of the 62 participants in the study are presented in Table 1.

In terms of clinical and demographic traits, the two study subject groups were similar (Table 1). The mean (standard deviation) age was 56.3 (16.25) years and 58.1% (36/62) were female.

<table>
<thead>
<tr>
<th>Table 1. Participants’ demographic and clinical manifestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
</tr>
<tr>
<td>Mean (SD)</td>
</tr>
<tr>
<td>Median (Q1,Q3)</td>
</tr>
<tr>
<td>Min, max</td>
</tr>
<tr>
<td>Age, group, n (%)</td>
</tr>
<tr>
<td>< 50</td>
</tr>
<tr>
<td>≥ 50</td>
</tr>
<tr>
<td>< 65</td>
</tr>
<tr>
<td>≥ 65</td>
</tr>
<tr>
<td>Sex, n (%)</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Body mass index (kg/m2)</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>Mean (SD)</td>
</tr>
<tr>
<td>Median (Q1,Q3)</td>
</tr>
<tr>
<td>Min, max</td>
</tr>
<tr>
<td>Body mass index category, n (%)</td>
</tr>
<tr>
<td>Underweight</td>
</tr>
<tr>
<td>Benign</td>
</tr>
<tr>
<td>Overweight</td>
</tr>
<tr>
<td>Obese</td>
</tr>
<tr>
<td>Missing</td>
</tr>
<tr>
<td>AJCC clinical stage</td>
</tr>
<tr>
<td>Stage I</td>
</tr>
<tr>
<td>Stage II</td>
</tr>
<tr>
<td>Stage III</td>
</tr>
<tr>
<td>Stage IV</td>
</tr>
<tr>
<td>Missing</td>
</tr>
</tbody>
</table>

Q1,Q3, first quartile, third quartile; SD, standard deviation.
Diagnostic performance of enhanced CT in pancreatic ultrasound-positive patients

As shown in Table 2, the sensitivity of enhanced CT was 81.1% (95% CI: 65.8% - 90.5%; 30/37) and its specificity was 76.0%(95% CI: 56.6% - 88.5%; 19/25).

Table 2. Performance of CT

<table>
<thead>
<tr>
<th></th>
<th>Malignant</th>
<th>Benign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>37</td>
<td>25</td>
<td>62</td>
</tr>
<tr>
<td>Negative</td>
<td>30</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>SEN = 30/37 = 81.1% (65.8% - 90.5%)</td>
<td>SPE = 19/25 = 76.0% (56.6% - 88.5%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagnostic performance of sequential use of YiDiXie™-SS and CT in patients with positive pancreatic ultrasound

In order to address the challenge of high false-positive rate of pancreatic ultrasound, YiDiXie™-SS was applied to pancreatic ultrasound-positive patients.

As shown in Table 3, the sensitivity of YiDiXie™-SS was 100%(95% CI: 90.6% - 100%; 37/37) and its specificity was 60.0%(95% CI: 55.4% - 69.7%; 15/25).

This means that the application of YiDiXie™-SS reduces the false-positive rate of pancreatic ultrasound by 60.0%(95% CI: 55.4% - 69.7%; 15/25) with essentially no increase in malignant leakage.

Table 3. Performance of YiDiXie™-SS

<table>
<thead>
<tr>
<th></th>
<th>Malignant</th>
<th>Benign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>37</td>
<td>10</td>
<td>47</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>SEN = 37/37 = 100% (90.6% - 100%)</td>
<td>SPE = 15/25 = 60.0% (55.4% - 69.7%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEN, Sensitivity. SPE, Specificity. Two-sided 95% Wilson confidence intervals were calculated.
To further identify the benign and malignant pancreatic tumors, enhanced CT was applied to YiDiXie™-SS-positive patients. As shown in Table 4, the sensitivity of enhanced CT was 81.1%(95% CI: 65.8% - 90.5%; 30/37) and its specificity was 80.0%(95% CI: 49.0% - 96.4%; 8/10).

Table 5 shows the diagnostic performance of sequential use of YiDiXie™-SS and CT in pancreatic ultrasound-positive patients. As shown in Table 5, the sensitivity of sequential use of YiDiXie™-SS and CT was 81.1%(95% CI: 65.8% - 90.5%; 30/37), and its specificity was 92.0%(95% CI: 75.0% - 98.6%; 23/25).

This means that the application of YiDiXie™-SS reduced the enhanced CT false-positive rate from 24.0%(95% CI: 11.5% - 43.4%; 6/25) (Table 2) to 8.0%(95% CI: 1.4% - 25.0%; 2/25) with essentially no increase in the leakage of malignant tumors, decreasing the false-positive rate of enhanced CT by 66.7%.

Table 4. Performance of CT in patients with positive YiDiXie™-SS results

<table>
<thead>
<tr>
<th></th>
<th>Malignant</th>
<th>Benign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>37</td>
<td>10</td>
<td>47</td>
</tr>
<tr>
<td>Negative</td>
<td>30</td>
<td>2</td>
<td>34</td>
</tr>
</tbody>
</table>

SEN = 30/37 = 81.1% (65.8% - 90.5%) SPE = 8/10 = 80.0% (49.0% - 96.4%)

SEN, Sensitivity. SPE, Specificity. Two-sided 95% Wilson confidence intervals were calculated.

Table 5. Performance of sequential use of YiDiXie™-SS and CT

<table>
<thead>
<tr>
<th></th>
<th>Malignant</th>
<th>Benign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>37</td>
<td>25</td>
<td>62</td>
</tr>
<tr>
<td>Negative</td>
<td>30</td>
<td>2</td>
<td>32</td>
</tr>
</tbody>
</table>

SEN = 30/37 = 81.1% (65.8% - 90.5%) SPE = 23/25 = 92.0% (75.0% - 98.6%)

SEN, Sensitivity. SPE, Specificity. Two-sided 95% Wilson confidence intervals were calculated.
Diagnostic Performance of YiDiXie™-HS in enhanced CT negative patients

In order to solve the challenge of high rate of missed diagnosis in enhanced CT, YiDiXie™-HS was applied to enhanced CT-negative patients.

As shown in Table 6, the sensitivity of YiDiXie™-HS was 85.7%(95% CI: 48.7% - 99.3%; 6/7) and its specificity was 84.2%(95% CI: 62.4% - 92.5%; 16/19).

This means that the application of YiDiXie™-HS reduces the false-negative rate of enhanced CT by 84.2%(95% CI: 62.4% - 92.5%; 16/19).

<table>
<thead>
<tr>
<th></th>
<th>Malignant</th>
<th>Benign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>6</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Negative</td>
<td>1</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

SEN = 6/7 = 85.7% (48.7% - 99.3%)
SPE = 16/19 = 84.2% (62.4% -92.5%)

Diagnostic Performance of YiDiXie™-D in enhanced CT positive patients

False-positive consequences are significantly worse than false-negative consequences in certain patients with pancreatic tumors, so YiDiXie™-D is applied to these patients to reduce their false-positive rate.

As shown in Table 7, the sensitivity of YiDiXie™-D was 33.3%(95% CI: 19.2% - 51.2%; 10/30) and its specificity was 100%(95% CI: 61.0% - 100%; 6/6).

This means that YiDiXie™-SS reduces the false positive rate of enhanced CT by 100%(95% CI: 61.0% - 100%; 6/6).

<table>
<thead>
<tr>
<th></th>
<th>Malignant</th>
<th>Benign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Negative</td>
<td>20</td>
<td>6</td>
<td>26</td>
</tr>
</tbody>
</table>

SEN = 10/30 = 33.3% (19.2% - 51.2%)
SPE = 6/6 = 100% (61.0% - 100%)

SEN, Sensitivity. SPE, Specificity. Two-sided 95% Wilson confidence intervals were calculated.
DISCUSSION

Clinical significance of YiDiXie™-SS in pancreatic ultrasound-positive patients

The YiDiXie™ test consists of three tests with very different characteristics: YiDiXie™-HS, YiDiXie™-SS and YiDiXie™-D. YiDiXie™-HS balances sensitivity and specificity with high sensitivity and specificity, while YiDiXie™-SS has very high sensitivity for all types of malignant tumors, but has a slightly lower level of specificity. The YiDiXie™-D has very high specificity for all malignant tumor types, but low sensitivity.

For patients with positive ultrasound findings of pancreatic tumors, further diagnostic methods with high sensitivity and specificity are crucial. Balancing these two metrics essentially involves weighing the risks of “missing malignant tumors” against “misdiagnosing benign tumors”. Typically, in cases of false-positive ultrasound results for pancreatic tumors, enhanced CT scans are preferred over surgery. Therefore, false positives in pancreatic tumor ultrasound examinations do not lead to serious consequences such as surgical trauma, organ removal, or functional loss. Consequently, for patients with positive ultrasound findings of pancreatic tumors, the risk of “missing malignant tumors” is far greater than that of “misdiagnosing benign tumors”. Thus, choosing YiDiXie™-SS which offers very high sensitivity but slightly lower specificity, helps reduce the false-positive rate of pancreatic tumor ultrasound.

As shown in Table 3, the sensitivity of YiDiXie™-SS in pancreatic ultrasound-positive patients was 100%(95% CI: 90.6% - 100%; 37/37) with a specificity of 60.0%(95% CI: 55.4% - 69.7%; 15/25). These results indicate that YiDiXie™-SS reduces the false-positive rate in pancreatic ultrasound-positive patients by 60.0%(95% CI: 55.4% - 69.7%; 15/25) with essentially no increase in malignant tumor underdiagnosis.

YiDiXie™-SS has another important diagnostic value. Compared with enhanced CT alone, sequential use of YiDiXie™-SS and CT had comparable sensitivity, but the false-positive rate was reduced from 24.0%(95% CI: 11.5% - 43.4%; 6/25) to 8.0%(95% CI: 1.4% - 25.0%; 2/25)(Tables 2 and 5). This means that the application of YiDiXie™-SS reduces the false-positive rate of enhanced CT by 66.7% with essentially no increase in malignancy leakage.

The above results imply that YiDiXie™-SS greatly reduces the probability of incorrectly performing enhanced CT and subsequent surgery for benign pancreatic tumors, with essentially no increase in missed diagnosis of malignant tumors. In other words, YiDiXie™-SS sharply lowers the mental suffering, expensive examination and surgical costs, radiological injuries, surgical injuries, and other adverse consequences for patients with false-positive pancreatic ultrasound, with essentially no increase in delayed treatment of malignant tumors. Therefore, YiDiXie™-SS well meets the clinical needs and has important clinical significance and wide application prospects.

Clinical significance of YiDiXie™-HS in enhanced CT-negative patients

For enhanced CT negative patients, further diagnostic methods with high sensitivity and specificity are crucial. Balancing these two metrics inherently involves weighing the risks of “missed malignant tumor diagnoses” against “misdiagnosed benign tumors”. A higher false negative rate implies more missed malignant tumors, leading to delayed treatment, tumor progression, and potentially advanced-stage development. This results in poorer prognosis, shorter survival, reduced quality of life, and increased treatment costs for patients.

In general, when benign pancreatic tumors are misdiagnosed as malignant, radical resection is typically performed without adversely affecting patient prognosis, and treatment costs are far lower than for advanced cancer. Therefore, for CT-negative patients, the risk of “missed malignant
tumor diagnoses” outweighs that of “misdiagnosed benign tumors”. Consequently, selecting YiDiXie™-HS, which offers both high sensitivity and specificity, helps reduce false negative rates in pancreatic tumor enhanced CT.

As shown in Table 6, the sensitivity of YiDiXie™-HS was 85.7%(95% CI: 48.7% - 99.3%; 6/7) and the specificity was 84.2%(95% CI: 62.4% -92.5%; 16/19). These results indicate that the application of YiDiXie™-HS reduced the false-negative rate of enhanced CT by 84.2%(95% CI: 62.4% - 92.5%; 16/19).

In summary, YiDiXie™-HS effectively decreases the likelihood of missed malignant tumor diagnoses in CT-negative patients, thereby mitigating adverse outcomes such as poor prognosis, high treatment costs, reduced quality of life, and shorter survival. Therefore, YiDiXie™-HS meets clinical needs well, offering significant clinical relevance and broad application prospects.

Clinical significance of YiDiXie™-D in patients with positive enhanced CT

Patients with positive pancreatic tumor-enhanced CT scans typically undergo curative resection surgery. However, in certain cases, careful consideration is needed before deciding on surgery, such as for smaller tumors or patients in poor general condition.

Further diagnostic methods with high sensitivity and specificity are crucial for these CT-positive patients. Balancing the trade-off between sensitivity and specificity essentially involves weighing the risk of “missing malignant tumors” against “misdiagnosing benign tumors”. Since smaller tumors have a lower risk of tumor progression and distant metastasis, the risk of “missing malignant tumors” is much lower than the risk of “misdiagnosing benign tumors”. For patients in poor general condition, the perioperative risks are significantly higher than for those in general condition, thus the risk of “misdiagnosing benign tumors” is much higher than the risk of “missing malignant tumors”. Therefore, for these patients, choosing YiDiXie™-D with very high specificity but lower sensitivity helps reduce the false positive rate of pancreatic tumor-enhanced CT scans.

As shown in Table 7, YiDiXie™-D had a sensitivity of 33.3%(95% CI: 19.2% - 51.2%; 10/30) and a specificity of 100%(95% CI: 61.0% - 100%; 6/6). The results above indicate that YiDiXie™-SS reduced the false-positive rate of enhanced CT by 100%(95% CI: 61.0% - 100%; 6/6).

This implies that YiDiXie™-D substantially lowers the probability of erroneous surgeries for these patients who require careful consideration. In other words, YiDiXie™-D greatly reduces the risks of surgical trauma, organ removal, pancreatic insufficiency, pancreatic dialysis, and even death, which are serious perioperative complications. Therefore, YiDiXie™-D effectively meets clinical needs, offering significant clinical relevance and broad application prospects.
YiDiXie™ test has the potential to solve three challenges of pancreatic tumor

Firstly, YiDiXie™ test have significant clinical implications in pancreatic tumors. As previously mentioned, YiDiXie™-SS, YiDiXie™-HS and YiDiXie™-D respectively hold important diagnostic value in patients with ultrasound-positive, contrast-enhanced CT-negative or contrast-enhanced CT-positive results.

Second, the three tests of YiDiXie™ test can significantly alleviate the workload of clinical physicians and facilitate timely diagnosis and treatment of malignancies that were previously subject to delayed treatment. On the one hand, YiDiXie™-SS can greatly reduce unnecessary workload for radiologists. In cases where ultrasound shows positive results, these patients typically undergo contrast-enhanced CT scans. The completion of these scans in a timely manner depends directly on the availability of radiologists, which in many regions worldwide results in appointment delays of several months to over a year. This inevitably delays treatment for pancreatic tumors, potentially leading to progression to malignancy or distant metastasis, as frequently observed. As shown in Table 3, YiDiXie™-SS reduces the false-positive rate of 60.0%(95% CI: 55.4%-69.7%; 15/25) in pancreatic ultrasound-positive patients with essentially no increase in malignant tumor leakage. This significantly reduces non-essential workload stress for imaging physicians.

YiDiXie™-SS also provides significant relief from non-essential work for surgeons. Patients with Enhanced CT-positive pancreatic tumors usually receive surgical treatment. Whether these surgeries can be completed in a timely manner is directly dependent on the number of surgeons. In many regions of the world, appointments are booked for months or even more than a year. This inevitably delays the treatment of malignant cases among them, and thus it is not unusual for patients with pancreatic tumors awaiting surgery to develop malignant progression or even distant metastases. Compared with enhanced CT alone, sequential use of YiDiXie™-SS and enhanced CT had equivalent sensitivity, but the false-positive rate was reduced from 24.0% (95% CI: 11.5%-43.4%; 6/25) to 8.0% (95% CI: 1.4%-25.0%; 2/25) (Tables 2 and 5), lowering the enhanced CT 66.7% false positive rate. This significantly eased the stress of non-essential work for surgeons. Thus, YiDiXie™-SS can greatly reduce the non-essential workload of both the imaging physicians and surgeons, and facilitate the timely diagnosis and treatment of pancreatic tumors or other diseases that would otherwise be delayed.

On the other hand, YiDiXie™-HS and YiDiXie™-D can significantly alleviate the workload of clinical physicians. In cases where diagnosis with contrast-enhanced CT is difficult, these patients often require contrast-enhanced MRI or pancreatic biopsy. The timely completion of these MRI scans or pancreatic biopsies also depends on the availability of radiologists. In many regions worldwide, appointment delays of several months to over a year are common. Pancreatic tumor patients waiting for contrast-enhanced MRI scans or pancreatic biopsies frequently experience tumor progression to malignancy or distant metastasis. YiDiXie™-HS and YiDiXie™-D can replace these contrast-enhanced MRI scans or pancreatic biopsies, thereby significantly alleviating the workload of clinical physicians and facilitating timely diagnosis and treatment of other malignancies that were otherwise subject to delayed treatment.

Final, the YiDiXie™ test enables “just-in-time” diagnosis of pancreatic tumors. On the one hand, the YiDiXie™ test requires only microscopic amounts of blood, allowing patients to complete the diagnostic process non-invasively at home. A single YiDiXie™ test requires only 20 microliters of serum, which is equivalent to the volume of 1 drop of whole blood (1 drop of whole blood is about 50 microliters, which produces 20-25 microliters of serum)11. Considering the pre-test sample quality assessment experiments and 2-3 repeat
experiments, 0.2 ml of whole blood is sufficient to complete the YiDiXie™ test17. The 0.2 ml of finger blood can be collected at home using a finger blood collection needle, eliminating the need for venous blood collection by medical personnel and allowing patients to complete the diagnostic process non-invasively without having to leave their homes17.

On the other hand, the diagnostic capacity of the YiDiXie™ test is nearly limitless. Figure 1 shows the basic flow chart of the YiDiXie™ test, which shows that the YiDiXie™ test requires neither a doctor or medical equipment, nor medical personnel to collect blood17. Therefore, the YiDiXie™ test is completely independent of the number of medical personnel and medical facilities, and its testing capacity is nearly unlimited17. Thus, the YiDiXie™ test enables “just-in-time” diagnosis of pancreatic tumors without the patient having to wait anxiously for an appointment.

In summary, the YiDiXie™ test holds significant diagnostic value for pancreatic tumors, promising to address three challenges, namely, “high false-positive rate of ultrasound”, “high false-negative rate of enhanced CT” and “high false-positive rate of enhanced CT”.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{flowchart.png}
\caption{Basic flowchart of the YiDiXie™ test.}
\end{figure}

Limitations of the study

First, there were not many patients in this investigation; therefore, more extensive evaluation will require bigger sample numbers in future clinical trials.

Second, further cohort studies in the natural population of pancreatic tumors are required for further evaluation, as this study was a malignant tumor case–benign tumor control study in hospitalized patients.

Last, the fact that this study was conducted in a single center raises the possibility of bias in the findings. Subsequent multi-center research is required for additional assessment.
CONCLUSION

YiDiXie™-SS significantly reduces the false-positive rate of ultrasound and enhanced CT in ultrasound-positive pancreatic patients with essentially no increase in delayed treatment of malignant tumors. YiDiXie™-HS significantly reduces the false-negative rate of enhanced CT in patients with pancreatic tumors. YiDiXie™-D significantly reduces the false-positive rate of enhanced CT in patients with pancreatic tumors. The YiDiXie™ test has significant diagnostic value in pancreatic cancer, and is expected to solve the problem of “excessive false-positive rate of ultrasound”, “enhanced CT” and “false-negative rate of pancreatic tumors” in pancreatic tumors.

FUNDING

This study was supported by Shenzhen High-level Hospital Construction Fund, Clinical Research Project of Peking University Shenzhen Hospital (LCYJ20200002, LCYJ2020015, LCYJ2020020, LCYJ2017001).

REFERENCES

