Fragile X Syndrome Carrier Screening Using a Nanopore Sequencing Assay

Running title: FXS Carrier Screening using Nanopore Sequencing

Zhongmin Xia\(^a\,\dagger\), Qiuxiao Deng\(^a\,\dagger\), Ping Hu\(^c\,\dagger\), Chunliu Gao\(^d\), Yu Jiang\(^e\), Yulin Zhou\(^a\,\dagger\), and Qiwei Guo\(^a\,\dagger\)

\(^a\)Department of Medical Genetics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China.

\(^b\)School of Medicine, Xiamen University, Xiamen, Fujian, China.

\(^c\)Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.

\(^d\)School of Public Health, Xiamen University, Xiamen, Fujian, China.

\(^e\)Molecular Diagnostic Laboratory for Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.

\(^\dagger\)Zhongmin Xia, Qiuxiao Deng, and Ping Hu contributed equally to this work.

*Correspondence to:

Qiwei Guo, Department of Medical Genetics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China. Tel: +86-592-7805028. Email: guoqiwei@xmu.edu.cn

Yulin Zhou, Department of Medical Genetics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China. Tel: +86-592-7805028. Email: zhou_yulin@126.com

Keywords: AGG interruption, carrier screening, CGG repeat, fragile X syndrome, nanopore sequencing
Word count: 2969

Figures: 4

Tables: 2

Nonstandard abbreviations: FXS, fragile X syndrome; TP-PCR, triplet-primed PCR.

Human gene: FMR1, fragile X messenger ribonucleoprotein 1.
BACKGROUND: Fragile X syndrome (FXS) is the leading cause of monogenic autism spectrum disorder and inherited intellectual disabilities. Although the value of population-based FXS carrier screening has been acknowledged, appropriate screening methods are urgently required to establish and implement screening programs.

METHODS: We developed a nanopore sequencing-based assay that includes data analysis software to identify FXS carriers. Reference and clinical samples were used to evaluate the performance of our nanopore sequencing assay. Triplet-primed PCR and PacBio long-read sequencing were used for comparisons.

RESULTS: Nanopore sequencing identified reference carrier samples with a full range of premutation alleles in single-, 10-, and 100-plex assays, and identified AGG interruptions in an allele-specific manner. Nanopore sequencing revealed no size preference for amplicons containing different length CGG repeat regions. Finally, nanopore sequencing successfully identified three carriers among ten clinical samples for preliminary clinical validation. The observed variation in CGG repeat region size resulted from the base-calling process of nanopore sequencing.

CONCLUSIONS: Our nanopore sequencing assay is rapid, high-capacity, inexpensive, and easy to perform, thus providing a promising tool and paving the way for population-based FXS carrier screening.
Introduction

Fragile X syndrome (FXS) (#MIM300624) is the leading cause of monogenic autism spectrum disorders and inherited intellectual disability, affecting approximately 1/7,000 females and 1/4,000 males worldwide (1, 2). The causative gene of FXS is fragile X messenger ribonucleoprotein 1 (FMR1), an X-linked dominant gene with full penetrance in all males and many females that plays a fundamental role in synapse formation and normal dendrite development (3, 4). FMR1 can be categorized into four allelic forms based on the number of CGG trinucleotide repeats in its 5’ untranslated region: (a) normal alleles contain ~5 to ~44 repeats and are stable in meiosis or mitosis; (b) intermediate alleles contain ~45 to ~54 repeats and during intergenerational transmission, their repeat number can change slightly; (c) premutation alleles contain ~55 to ~200 repeats and can expand to full mutation during maternal transmission to offspring; premutation alleles are associated with risk of fragile X-associated primary ovarian insufficiency, fragile X-associated tremor/ataxia syndrome, and fragile X-associated neuropsychiatric disorders; (d) full mutation alleles have more than 200 repeats that frequently accompany hypermethylation in adjacent CpG islands and in the repeat region itself, which silences transcription and causes most cases of FXS (4). Asymptomatic women with pre-mutation or full mutation alleles are thus termed FXS carriers because their offspring are at risk of FXS (5). The prevalence of FXS carriers varies among different populations, ranging from approximately 1/149 in Israel to approximately 1/581 in East Asia (6-9). In many cases, CGG repeats are interrupted by one or more AGG trinucleotides (i.e., AGG interruptions), which can prevent strand slippage during replication, thus functioning as a protective factor that decreases the risk of intergenerational CGG expansion (9). Evaluation
of AGG interruptions among CGG repeats is thus essential for genetic counseling, especially for FXS carriers (4).

Owing to the severe morbidity of FXS, carrier screening, and subsequent prenatal diagnosis are still warranted for this disease until the development of effective treatments (4, 10). Although all major ethnic groups and races appear to be susceptible to FXS, and FXS carrier prevalence is high, whether FXS carrier screening should be offered to the general population has long been a subject of debate (5, 9, 11-13). We previously showed that population-based carrier screening is the dominant strategy for FXS intervention in East Asia (9). Recently, population-based pan-ethnic FXS carrier screening was officially endorsed by the American College of Medical Genetics and Genomics (10). Clinical interest has shifted from “whether to perform” to “how to perform” population-based FXS carrier screening. An assay to capably address this issue should be able to examine a large number of female samples with high accuracy, low cost, short turnaround time, and ease of performance.

FXS genetic testing was performed using Southern blotting, a labor-intensive method that allows estimation of CGG expansion size but cannot accurately quantitate CGG repeat number and AGG interruption patterns (4). These drawbacks have been overcome with the triplet-primed PCR (TP-PCR) assay, which has become the mainstay method in clinical use, with several kits, including AmpliMex™ FMR1 PCR Kit (Asuragen) and Molecular Fragile X PCR Kit (Biofast) commercially available (4, 14). Typing AGG interruptions at the allelic level in female samples with TP-PCR remains challenging. Long-read sequencing-based assays for FXS genetic testing using Nanopore and PacBio sequencing have recently been developed (15-19). Theoretically, with the ability to directly sequence entire CGG repeats
and/or the full-length *FMR1* gene, long-read sequencing-based assays enable quantitative evaluation of CGG repeat number, AGG interruptions, rare intragenic variants, and large deletions in a single allele, dramatically advancing genetic diagnosis of FXS (16). To date, the clinical utility of long-read sequencing-based assays for population-based screening of FXS carriers has not been demonstrated.

In this study, we developed a nanopore sequencing assay that includes data analysis software and demonstrated its clinical potential as a promising tool for population-based FXS carrier screening.

Materials and Methods

SAMPLES

Eight (P2, P3, P4, P5, N1, N2, N3, and N4) and two (NA06968 and NA20239) reference samples with known *FMR1* genotypes were obtained from the National Institutes for Food and Drug Control of China and the Coriell Institute, respectively (20, 21). P3, P4, NA06968, and NA20239 provide genomic DNA from FXS carriers with different extents of CGG expansion, and N1, N2, N3, and N4 provide genomic DNA from women with normal *FMR1* alleles. N1/P2 and N1/P5 mixtures represent genomic DNA from women carrying CGG repeats near the intermediate/premutation boundary (Supplemental Table 1).

The genomic DNA of ten women whose *FMR1* genotypes have been examined via clinical FXS genetic testing was obtained from the Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University. Signed informed consent was obtained from each participant to authorize the use of their genetic data for research purposes. This study was approved by the Research Ethics Committee of Xiamen University.
The CGG repeats and flanking sequences of FMR1 were amplified using a T100 Thermal Cycler (Bio-Rad, Hercules, CA, USA). A 50-µL reaction containing 1× Expand Long Template buffer 2 (Roche Diagnostics, Mannhei, Germany), 3.75U Expand Long Template Enzyme mix (Roche Diagnostics, Mannhei, Germany), 0.5 mmol/L dNTPs (Takara, Kyoto, Japan), 2.2 mol/L Betaine (SIGMA-Aldrich, Saint Louis, Missouri, USA), 0.33 mmol/L of each forward and reverse primer (Sangon, Shanghai, China), and 50 ng DNA template. Primer information and amplification conditions are listed in Supplemental Tables 2 and 3, respectively. After amplification, PCR products were purified with a TIANquick Midi Purification Kit (TIANGEN, Beijing, China) and subsequently quantified with a Qubit™ dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA) on a Qubit™ fluorometer (ThermoFisher Scientific, Waltham, Massachusetts, USA) according to the respective manufacturers’ instructions.

Library preparation and nanopore sequencing methods are described in detail in Supplemental Methods.

Based on the previously described STRique software (15), we developed data analysis software to facilitate the identification of CGG repeat numbers and AGG interruptions for FXS carrier screening in our nanopore sequencing assay. The logic of software is described in detail in Supplemental Methods; the software code was licensed by Xiamen University and is available at https://github.com/guoqiwei-xmu/FXS-carrier-identifier.git.
A CE-certified AmpliX™ FMR1 PCR Kit (Asuragen, Minneapolis, Minnesota, USA) and a Chinese Food and Drug Administration-approved Molecular Fragile X PCR Kit (Biofast, Xiamen, Fujian, China) were used as comparative methods. Respective assays were performed on a T100 Thermal Cycler (Bio-Rad, Hercules, CA, USA) and a 3500 DX Genetic Analyzer (Applied Biosystems, Waltham, Massachusetts, USA), according to the manufacturers’ instructions.

CAFXS ASSAY

A long-read sequencing-based method termed the CAFXS assay, was used as a comparative method and performed by a commercial service (Berry Genomics, Beijing, China). The principle of CAFXS has been previously described (16).

Results

DESIGN OF NANOPORE SEQUENCING ASSAY FOR FXS CARRIER SCREENING

As illustrated in Fig. 1, our nanopore sequencing assay comprises three steps: pre-sequencing preparation, nanopore sequencing, and post-sequencing data analysis. During pre-sequencing preparation, CGG repeats and flanking sequences of each sample are amplified with a pair of primers containing a specific identifier sequence at each strand’s 5’ end. These primers allow the specific identifier sequence to be integrated into the amplicon of each sample to enable the analysis of multiple samples in a single sequencing assay. After purification and quantification, amplicons are pooled to achieve equal masses to prepare the sequencing library. After nanopore sequencing of the library, post-sequencing data analysis is performed using novel data analysis software. Briefly, the nucleotide sequence of each read is translated from a raw...
ionic current signal (base calling), and qualified reads that contain correct identifier, prefix, and suffix sequences, are retained for further analysis. Next, the CGG repeat numbers of qualified reads are evaluated based on the distance between prefix and suffix sequences. After, the presence and position of AGG interruptions are evaluated for each qualified read. For each sample, the distribution of reads with different CGG repeat numbers and AGG statuses is analyzed. Finally, the CGG repeat number and AGG status of a specific allele are determined based on the peaks generated from the aggregated reads with similar CGG repeat numbers and AGG patterns. When an allele with a CGG repeat number over the threshold (e.g., 54 or 55) is identified, an alarm is triggered to flag an FXS carrier.

VALIDATION OF NANOPORE SEQUENCING ASSAY BY EXAMINING FXS CARRIERS WITH VARIOUS CGG REPEAT NUMBERS AND AGG INTERRUPTION PATTERNS

We first validated the nanopore sequencing assay by examining FXS carriers with various numbers of CGG repeats and AGG interruption patterns in a single-plex manner. Reference samples were used as FXS carriers, and TP-PCR and CAFXS were used as methods for comparison. As shown in Fig. 2, nanopore sequencing identified a wide range of expanded alleles. AGG interruption patterns were identified in an allele-specific manner. A slight discordance between nanopore sequencing and comparative method results was observed in the reported CGG repeat numbers of expanded alleles (Table 1). Due to a one CGG repeat difference between methods, the N1/P5 sample was designated as a non-carrier by the nanopore sequencing assay but a carrier by comparative methods.

DETECTION OF FXS CARRIERS FROM WILDETYPE BACKGROUNDS WITH
THE MULTIPLEX NANOPORE SEQUENCING ASSAY

We next evaluated whether the nanopore sequencing assay could examine multiple samples simultaneously and distinguish FXS carriers from wild-type backgrounds, as shown in Fig. 1. Ten pairs of primers labeled with different identifier sequences were designed, validated, and used to amplify ten respective samples (Fig. 3A and Supplemental Table 2). As illustrated in Fig. 1, amplicons were pooled to achieve equal masses for library preparation and nanopore sequencing. Nanopore sequencing successfully detected a wide range of expanded alleles in the 10-plex assay (Fig. 3B-G).

We assessed whether the nanopore sequencing assay could simultaneously examine more samples (e.g., 100 samples). Instead of using 100 identifier sequences to identify 100 different samples, we mimicked the scenario by decreasing the pooling proportion of the six target amplicons to 6% (1% each), while increasing the pooling proportion of the four wild-type amplicons to 94% (23.5% each). Similar to the results of the 10-plex assay, the 100-plex assay successfully detected all expanded alleles within wild-type backgrounds (Fig. 3H-M).

INACCURATE BASE CALLING ATTRIBUTED TO VARIATIONS IN CGG REPEAT QUANTIFICATION

Although the nanopore sequencing assay was able to detect various FXS carriers, the reported CGG repeat numbers of expanded alleles differed slightly from those of the comparative methods (Table 1). Moreover, for a specific reference sample, the reported CGG repeat numbers of the expanded alleles were slightly discordant among the different nanopore sequencing assays (Fig. 4A). To investigate the potential causes of these variations, we manually examined the sequences of 20 random reads with fewer CGG repeats than those
expected in the nanopore sequencing assay. As shown in Fig. 4B, sequence variants due to inaccurate base calling were distributed in these reads, including prefix, suffix, and CGG repeat sequences, resulting in the miscalculation of CGG repeat numbers in the subsequent data analysis processes. We analyzed the Fastq data (i.e., data after base calling) for N1/P2 and N1/P5 reference samples derived from the CAFXS assay using our data analysis software, and the reported CGG repeat numbers of these reference samples were concordant between our data analysis pipeline and the CAFXS assay (Supplemental Fig. 1) confirming the accuracy of post-base-calling processes using our data analysis software. Lastly, we reanalyzed N1/P2 and N1/P5 reference samples based on sequencing data derived from the sense and antisense strands, respectively, and confirmed that there was no strand bias in CGG repeat quantification (Fig. 4C). Collectively, the observed variations in CGG repeat quantification are thus mainly attributed to inaccurate base-calling.

NANOPORE SEQUENCING DEMONSTRATES NO SIZE PREFERENCES FOR AMPLICONS WITH DIFFERENT CGG REPEATS

Although the nanopore sequencing assay could detect FXS carriers with a wide range of expanded alleles, we noticed that for a specific carrier, the read ratios of expanded alleles versus their wild-type counterparts tended to decrease with increasing allelic expansion (Fig. 4D). We thus evaluated whether the short amplicons of the wild-type alleles more readily passed through the nanopore than the longer amplicons of the expanded alleles. Two libraries derived from reference samples, N1 (29 CGG repeats) and P5 (55 CGG repeats) were pooled in equimolar amounts and sequenced. The read ratio of P5 to N1 was approximately 1.06, suggesting that there was no size preference for amplicons with different CGG repeats.
Moreover, we compared the read ratios of the expanded alleles with their wild-type counterparts using single-plex, 10-plex, and 100-plex nanopore sequencing assays. As shown in Fig. 4E, the read ratios of each sample were similar among the three assays, suggesting that in the presence of different wild-type backgrounds, large amounts of short amplicons did not skew the target size-indiscriminative characteristics of nanopore sequencing. Finally, we evaluated the same samples on different nanopore sequencing platforms, namely MinION and PromethION, which had 1190 and 8657 active nanopores on their flow cells at the beginning of sequencing, respectively. As shown in Fig. 4F, the read ratios were similar between the two platforms, suggesting that the target-size indiscriminatory characteristics of nanopore sequencing were not influenced by the number of active nanopores in the flow cells.

Preliminary Validation of Clinical Utility of Nanopore Sequencing Assay for the FXS Carrier Screening

To validate the clinical utility of the nanopore sequencing assay for FXS carrier screening, we analyzed 10 female clinical samples using a 10-plex nanopore sequencing assay. Considering the variations in CGG repeat quantification, when an allele with \(\geq 54 \) CGG repeats was identified, an alert would be triggered designating a carrier. These samples were analyzed in parallel with CAFXS assay data. As shown in Table 2 and Supplemental Fig. 3, three carriers were identified using the nanopore sequencing assay, concordant with the results of the CAFXS assays.

Discussion

Given that the value of population-based FXS carrier screening has been acknowledged (10),
appropriate screening methods are urgently needed to implement such screening programs. A favorable testing method should be able to examine large-scale samples with high accuracy, low cost, short turnaround times, and ease of performance. Our nanopore sequencing assay would be one option that can meet these demands. First, we developed reliable and user-friendly software to facilitate sequencing data analysis and output results. Second, using reference and clinical samples, we demonstrated that the nanopore sequencing assay was able to identify the full range of premutation \textit{FMR1} alleles, which account for the majority of FXS carriers, and the nanopore sequencing assay was able to reliably quantify CGG repeats and AGG interruptions, which are two important determinants for assessing the risk of full mutation expansion in carriers, thus facilitating genetic counseling for carrier screening. Third, using identifier sequences, we tested multiple samples in one assay, dramatically increasing test capacity and decreasing cost. In our 100-plex assay, the cost per sample was less than USD 10. Moreover, nanopore sequencing demonstrated no size preferences for amplicons with different CGG repeats, suggesting that the detection of expanded alleles will not be compromised by wild-type allele abundance as long as sufficient data are collected for each sample, while tens of thousands of identifier sequences are available in the form of different short combinations of nucleotides. In this regard, we could further increase sample capacity and decrease cost per sample by collecting more data using an advanced nanopore sequencing platform, such as PromethION. Fourth, the nanopore sequencing assay can be easily accomplished with a short turnaround time (for example, a 100-plex assay requires approximately two days) by a technician in a regular molecular diagnostics laboratory. Lastly, in comparison with TP-PCR and CAFXS, the equipment for nanopore sequencing assays is
more available and portable, and thus could be more readily and widely adapted, particularly
in underdeveloped regions of the world (22). In comparison with NGS or PacBio-based long-read sequencing, nanopore sequencing
has a relatively higher sequencing error rate in single reads owing to inaccuracies in ionic
current signal-to-nucleotide sequence translation (i.e., the base calling process) (22). This
innate error would cause one to several copy number variations during quantification of CGG
repeats in our nanopore assays, which may cause misclassification of subjects whose CGG
repeat numbers are near the boundary between intermediate and premutation alleles.
Technical limitation-associated variations in CGG repeat sizing are common to most methods
and are allowed to a certain extent in technical standards (4). The accuracy of CGG repeat
sizing can be improved, rendering it not a major concern in the use of our nanopore
sequencing assay. For example, base calling is educable with machine learning models, and
its accuracy continuously increases with the accumulation of nanopore sequencing data
(23-25). Even at the current stage, a reference sample, such as N1/P5, can be used as a
quantitative control to monitor variation in base calling and direct the threshold setting for
carrier identification.

In comparison with amplification-free methods (15, 18), amplification of FMR1 alleles
drastically increases the sequencing depth of the target region and decreases costs. However,
owing to the high GC content of the target region and competitive effects of wild-type alleles,
the amplification efficiencies of expanded alleles tend to decrease with increasing allelic
expansion (4). In this study, carriers with a full range of premutation alleles were identified by
our nanopore sequencing assay; however, carriers with full mutation alleles, which constitute
approximately 3% of FXS carriers (9), could be missed by our assay. This issue can be
partially resolved by further optimizing the amplification system through the optimization of
reagents or reaction conditions. While the sensitivity of mosaicism detection has not been
systematically examined because its clinical significance in carrier screening remains unclear,
this sensitivity could be compared between nanopore sequencing and TP-PCR (~5-10%) (26)
using the mosaicism detection results of reference sample P3.

In conclusion, we developed a nanopore sequencing-based assay to identify FXS carriers
that includes data analysis software. This assay was demonstrated to be rapid, high-capacity,
inexpensive, and easy to perform, thus providing a promising tool for population-based FXS
carrier screening.

Conflict of interest

None

Research Funding

This work was supported by the National Natural Science Foundation of China [grant
numbers 82071662] and the Natural Science Foundation of Xiamen Municipality [grant
numbers 3502ZZ20227141].

Acknowledgement

We thank all the clinical participants, and I-Fan Chiu, Maoli Chen, Sihao Wu, Hanwei Wang,
and Lingfeng Mao for their kind supports to this work.

References

overview and update of the fmr1 gene. Clinical Genetics 2017;93:2:197-205 doi:

Figure 1. Flowchart of screen for fragile X syndrome carriers using our nanopore sequencing assay.
Figure 2. Comparison of nanopore sequencing, TP-PCR, and CAFXS for detection of different FXS carrier reference samples.
Figure 3. Detection of FXS carriers within wildtype backgrounds with multiplex nanopore sequencing assay. (A) Efficacy of ten pairs of primers labeled with different identifier sequences was validated by amplification of wildtype samples. (B-G) CGG repeat numbers associated with reference samples in the 10-plex nanopore sequencing assay. (H-M) CGG repeat numbers associated with reference samples in the 100-plex nanopore sequencing assay.
Figure 4. Evaluation of length variation and length preference of the nanopore sequencing assay. (A) Slight variations were observed in reported CGG repeat numbers for expanded alleles in reference samples among single-plex, 10-plex, and 100-plex nanopore sequencing assays. (B) Representative reads with sequence variants due to inaccurate base calling. (C) Reported CGG repeat numbers of expanded alleles were identical based on reads derived from forward and reverse strands, respectively. (D) Read ratios of expanded alleles versus their wild-type counterparts tend to decrease with increasing allelic expansion. Error bars indicate standard deviation among triplicate samples. (E) Reads ratios of expanded alleles versus their wild-type counterparts were similar among single-plex, 10-plex, and 100-plex nanopore sequencing assays. (F) Reads ratios of expanded alleles versus their wild-type counterparts were similar between MinION and PromethION platforms whose respective flow cells had 1190 and 8657 active nanopores.
Table 1. Comparison of nanopore sequencing, TP-PCR, and CAFXS for the detection of different FXS carrier reference samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Manufacturer’s instruction</th>
<th>CGG repeat number</th>
<th>AGG interruption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TP-PCR</td>
<td>TP-PCR</td>
</tr>
<tr>
<td>N1/P2</td>
<td></td>
<td>29±1/54</td>
<td>29/54</td>
</tr>
<tr>
<td>N1/P5</td>
<td></td>
<td>29±1/56±1</td>
<td>29/55</td>
</tr>
<tr>
<td>P3</td>
<td></td>
<td>30±1/69±3</td>
<td>30/54/67</td>
</tr>
<tr>
<td>NA06968</td>
<td></td>
<td>32/107</td>
<td>33/111</td>
</tr>
<tr>
<td>P4</td>
<td></td>
<td>29±1/155±5</td>
<td>30/156</td>
</tr>
</tbody>
</table>
Table 2. Evaluation of nanopore sequencing assay with clinical samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>CGG repeat number</th>
<th>AGG interruption</th>
<th>AGG interruption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nanopore sequencing</td>
<td>CAFXS sequencing</td>
<td>Nanopore sequencing</td>
</tr>
<tr>
<td>2</td>
<td>33/50</td>
<td>33/51</td>
<td>9A6A6A9/10A39</td>
</tr>
<tr>
<td>5*</td>
<td>36/60</td>
<td>36/61</td>
<td>9A9A6A9/10A49</td>
</tr>
<tr>
<td>7</td>
<td>20/30</td>
<td>20/30</td>
<td>10A9/none</td>
</tr>
</tbody>
</table>

*FXS carrier
Pre-sequencing preparation

Sample 1 → Genomic DNA → PCR → Amplicon → Purification, quantification, equi-mass pooling, and library preparation for sequencing → Nanopore sequencing

1. Base calling
2. Determination of identity
3. Prefix and suffix alignment
4. CGG repeat evaluation
5. AGG identification
6. Peaks calling and results output

Post-sequencing data analysis

For each sample:
- CGG repeat evaluation
- AGG identification
- Peaks calling and results output

Sample 1 → Reads → CGG repeat → AGG position
Sample 2 → Reads → CGG repeat → AGG position
... Sample n → Reads → CGG repeat → AGG position
N1/P2

N1/P5

P3

NA06968

P4

NA20239