Evaluation of the diagnostic value of YiDiXie™-SS, YiDiXie™-HS and YiDiXie™-D in lung tumors

Xutai Li1,2, Wenkang Chen1,2, Wuping Wang1,2, Chen Sun1,2,3, Huimei Zhou1,2,4, Yutong Wu1,2, Zhenjian Ge2,4, Yingqi Li1,2, Shengjie Lin1,2, Pengwu Zhang1, Siwei Chen1,2, Wei Li, Hua Chen1, Ling Ji1,2, Jixian Liu2, Yongqing Lai1,2

1 Department of Urology, Peking University Shenzhen Hospital, Shenzhen, 518036; 2 Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036; 3 The Fifth Clinical Medical College of Anhui Medical University, Hefei 230032; 4 Shantou University Medical College, Shantou, Guangdong 515041; 5 Shenzhen University Health Science Center, Shenzhen, China 518055; 6 Shenzhen KeRuiDa Health Technology Co., Ltd., Shenzhen, 518071; 7 Department of Thoracic surgery, Peking University Shenzhen Hospital, Shenzhen, 518036; 8 Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036.

# Contributed equally to this work.

*Corresponding author: Yongqing Lai, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, E mail: yqlord@163.com; Jixian Liu, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, E mail: 252110465@qq.com; Ling Ji, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, E mail: 1120303921@qq.com; Hua Chen, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, E mail: chenhua0212@126.com.

Background: Lung cancer poses a serious threat to human health. CT plain scan is widely used for lung tumor screening or initial diagnosis, while contrast-enhanced CT is extensively employed in lung tumor diagnosis. However, false-positive results from both CT plain scan and contrast-enhanced CT lead to unnecessary mental distress, costly examinations, physical harm, and even adverse outcomes such as organ removal and functional loss. False-negative results from contrast-enhanced CT can delay treatment, leading to poorer prognosis, higher treatment costs, lower quality of life, and shorter survival for patients. There is an urgent need to find convenient, cost-effective and non-invasive diagnostic methods to reduce the false-positive rate of CT plain, false-negative and false-positive rates of enhanced CT in lung tumors. The aim of this study was to evaluate the diagnostic value of YiDiXie™-SS, YiDiXie™-HS and YiDiXie™-D, in lung tumors.

Patients and methods: This study finally included 476 subjects (the malignant group, n=304; the benign group, n=172). Remaining serum samples from the subjects were collected and tested using the YiDiXie™ all-cancer detection kit, which was applied to assess the sensitivity and specificity of YiDiXie™-SS, YiDiXie™-HS and YiDiXie™-D, respectively.

Results: The sensitivity of YiDiXie™-SS in patients with positive lung CT plain was 98.4% (95% CI: 96.2% - 99.3%; 299/304) and its specificity was 62.8% (95% CI: 55.4% - 69.7%; 108/172). Compared with enhanced CT alone, sequential use of YiDiXie™-SS and CT had comparable sensitivity, but the false-positive rate decreased from 27.3% (95% CI:21.2% - 34.4%; 47/172) to 9.3% (95% CI:5.8% - 14.8%; 16/172). This means that the application of YiDiXie™-SS reduced the false-positive rate of CT plain by 62.8% (95% CI: 55.4% - 69.7%; 108/172) and the false-positive rate of enhanced CT by 66.0% with essentially no increase in malignancy leakage. The sensitivity of YiDiXie™-HS in patients with negative enhanced CT was 87.4% (95% CI: 78.8% - 92.8%; 76/87), the specificity was 82.4% (95% CI: 74.8% - 88.1%; 103/125). This means that YiDiXie™-HS reduced the false-negative rate of enhanced CT by 87.4% (95% CI: 78.8% - 92.8%; 76/87). The sensitivity of YiDiXie™-D in patients with enhanced CT positivity was 27.6% (95% CI: 22.1% - 34.0%; 60/217), a specificity of 95.7% (95% CI: 85.8% - 99.2%, 45/47). This means that YiDiXie™-D reduced the false-positive rate of enhanced CT by 95.7% (95% CI: 85.8% - 99.2%, 45/47).

Conclusion: YiDiXie™-SS dramatically reduces the false-positive rate of CT scan and enhanced CT with essentially no increase in delayed treatment of malignant tumors. YiDiXie™-HS dramatically reduces the false-negative rate of enhanced CT. YiDiXie™-D dramatically reduces the false-positive rate of enhanced CT. The YiDiXie™ test has significant diagnostic value in lung tumors, and is expected to solve the problems of “high false-positive rate of CT plain”, “high false-negative rate of enhanced CT” and “high false-positive rate of enhanced CT” in lung tumors.

Clinical trial number: ChiCTR2200066840.

Key words: Lung cancer, CT plain, Enhanced CT, False-positive, False-negative, YiDiXie™-SS, YiDiXie™-HS, YiDiXie™-D
INTRODUCTION

Lung cancer is one of the most common malignant tumors. According to the latest data, the number of new lung cancer cases reached 2.5 million and the number of new deaths was 1.8 million in 2022 globally. Compared with 2020, lung cancer incidence and mortality in 2022 increased by 12.4% and 1.2%, respectively. Due to the lack of typical clinical symptoms, the majority of lung cancer patients are diagnosed at an advanced stage with extensive metastasis of the tumor, thus missing out on optimal treatment. The five-year survival rate of lung cancer in most countries around the world is 10-20%, while the five-year survival rate of distant metastasis in small cell lung cancer is less than 5%. Thus, lung cancer is a serious threat to human health.

CT plain is widely used in screening or initial diagnosis of lung tumors. However, it often produces a large number of false-positive results. According to the National Lung Screening Trial Study (NLST), the false-positive rate was as high as 96.4% when defining a nodule >4 mm as a positive screening. A Chinese study also confirmed that 804 participants screened positive under the NLST criteria, but only 51 were diagnosed with lung cancer at the two-year follow-up, a false-positive rate as high as 93.7%. Enhanced CT is often performed when a plain CT scan is positive, but high false-positive results on CT scans for lung tumors mean that patients may be subjected to unnecessary expensive and radioactive examinations, mental anguish, and potential radiologic injuries. Therefore, there is an urgent need to discover a convenient, cost-effective, and noninvasive diagnostic method to reduce the false-positive rate of plain lung CT scans.

Enhanced CT is widely used in the diagnosis of lung tumors. On the one hand, enhanced CT can produce a large number of false-positive results. In a study focusing on the characterization of lung nodules by enhanced CT, the false positive rate was 32%. The false positive rate increased to 41.5% when the scan lasted longer than 4 minutes. With a positive enhanced CT, patients usually undergo tumor resection or radical resection. Positive enhancement CT results may lead to benign diseases being misdiagnosed as malignant tumors, and patients may face undesirable consequences such as unnecessary emotional distress, costly surgeries and investigations, surgical trauma, and even organ removal and loss of function. Therefore, there is an urgent need to find a convenient, cost-effective, and noninvasive diagnostic method to reduce the false-positive rate of enhanced CT for lung tumors.

On the other hand, enhanced CT can also produce a large number of false-negative results. In a study of non-small cell lung cancer, the false negative rate of enhanced CT was found to be 12% (48/393). A multicenter study showed an 18.9% false-negative rate on enhanced CT for malignant lung nodules when patients had intravenous contrast injected for >1 minute. When enhancement CT is negative, patients are usually taken for observation and regular follow-up. Negative enhancement CT results may lead to malignant tumors being misdiagnosed as benign diseases, delaying the timing of treatment and progression of the disease to an advanced stage, and as a result, patients may face adverse consequences such as poor prognosis, high cost of treatment, decreased quality of life, and shorter survival. Therefore, there is an urgent need to find a convenient, cost-effective and noninvasive diagnostic method to reduce the false-negative rate of enhanced CT examination of lung tumors.

Based on the detection of miRNAs in serum, Shenzhen KeRuiDa Health Technology Co., Ltd. has developed “YiDiXie™ all-cancer test” (hereinafter referred to as the YiDiXie™ test). With only 200 milliliters of whole blood or 100 milliliters of serum, the test can detect multiple cancer types, enabling detection of cancer at home. The YiDiXie™ test consists of three independent tests: YiDiXie™-HS, YiDiXie™-SS and YiDiXie™-D.

The purpose of this study is to evaluate the diagnostic value of YiDiXie™-HS, YiDiXie™-SS and YiDiXie™-D in lung tumors.
PATIENTS AND METHODS

Study design

This work is part of the sub-study “Evaluating the diagnostic value of the YiDiXie™ test in multiple tumors” of the SZ-PILOT study (ChiCTR2200066840).

SZ-PILOT is a single-center, prospective, observational study (ChiCTR2200066840). Subjects who gave informed consent for the donation of their residual samples at the time of admission or during physical examination were taken into consideration for inclusion. For this study, a serum sample of 0.5 milliliters was obtained. Participants in this study were kept blinded.

Participants

This study included participants who had a positive CT plain for lung tumors. The two groups of subjects were enrolled independently, and each subject who satisfied the inclusion criteria was added one after the other.

Inpatients with “suspected malignancy” who had provided general informed consent for the donation of the remaining samples were initially included in the study. The study classified subjects into two groups based on their postoperative pathological diagnostic: those with a diagnosis of “malignant tumor” and those with a diagnosis of “benign disease”. The study omitted subjects whose pathology findings were not entirely clear. Some of samples in the malignant group were used in our prior works.

This study did not include those who failed the serum sample quality test before the YiDiXie™ test. For information on enrollment and exclusion, please see the subject group’s prior article.

Sample collection, processing

The serum samples used in this study were obtained from serum left over after a normal medical consultation, which eliminated the need for additional blood sampling. To conduct the YiDiXie™ test, 0.5 ml of serum was extracted from the individuals’ residual serum and stored at -80°C.

“YiDiXie™ test”

The YiDiXie™ test utilizes the YiDiXie™ all-cancer detection kit, an in vitro diagnostic kit developed and manufactured by Shenzhen KeRuiDa Health Technology Co. This test assesses the expression levels of several dozen miRNA biomarkers in serum to detect cancer in subjects. By integrating independent assays in a contemporaneous testing format and predefining suitable criteria for each miRNA biomarker, the YiDiXie™ test maintains specificity and enhances sensitivity across a wide range of malignancies.

The YiDiXie™ test comprises three distinct tests: YiDiXie™ -Highly Sensitive (YiDiXie™ -HS), YiDiXie™ -Super Sensitive (YiDiXie™ -SS), and YiDiXie™ -Diagnosis (YiDiXie™ -D). YiDiXie™ -HS prioritizes specificity and sensitivity, while YiDiXie™ -SS significantly increases the number of miRNA tests to achieve high sensitivity across all clinical stages of various malignant tumor types. YiDiXie™ -Diagnosis (YiDiXie™ -D) elevates the diagnostic threshold of a single miRNA test to ensure high specificity (low misdiagnosis rate) for all malignancy types.

The YiDiXie™ test should be performed according to the instructions provided in the YiDiXie™ all-cancer detection kit. Detailed
procedures can be found in our prior works.\textsuperscript{12}

Following the completion of the test, the original results were analyzed by laboratory technicians from Shenzhen KeRuiDa Health Technology Co., Ltd, who determined the YiDiXie™ test outcomes as either "positive" or "negative".

**Diagnosis of Enhanced CT**

The determination of "positive" or "negative" results is based on the diagnostic conclusion derived from the enhanced CT examination. A result is classified as "positive" if the diagnostic conclusion explicitly indicates malignancy. Conversely, if the diagnostic conclusion suggests a specific tumor type, leans towards benign interpretations, or includes phrases such as "probable malignant" or "further examination recommended", the result is deemed "negative".

**Extraction of clinical data**

The hospitalized medical records or physical examination reports of the subjects were the source of the clinical, pathological, laboratory, and imaging data used in this investigation. Trained doctors assessed in accordance with the AJCC staging manual completed clinical staging. (7th or 8th edition).\textsuperscript{13,14}

**Statistical analyses**

For the baseline qualities and demographic variables, descriptive statistics were given. The total number of individuals (n), mean, standard deviation (SD) or standard error (SE), median, first quartile (Q1), third quartile (Q3), minimum, and maximum values were used to describe continuous variables. The number of individuals in each group and their proportion were used to express categorical variables. The 95% confidence intervals (CI) for the different indicators were determined using the Wilson scoring approach.
RESULTS

Participant disposition

This study ultimately included 476 study subjects (malignant group, n = 304; benign group, n = 172 cases). The demographic and clinical characteristics of the 476 study subjects are listed in Table 1.

The two groups of study subjects were comparable in terms of demographic and clinical characteristics (Table 1). The mean (standard deviation) age was 50.6 (13.02) years and 50.0% (238/476) were female.

<table>
<thead>
<tr>
<th>Table 1. Participants' demographic and clinical manifestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer (n =304)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Age, years</td>
</tr>
<tr>
<td>Mean (SD)</td>
</tr>
<tr>
<td>Median (Q1,Q3)</td>
</tr>
<tr>
<td>Min, max</td>
</tr>
<tr>
<td>Age, group, n (%)</td>
</tr>
<tr>
<td>&lt; 50</td>
</tr>
<tr>
<td>≥ 50</td>
</tr>
<tr>
<td>&lt; 65</td>
</tr>
<tr>
<td>≥ 65</td>
</tr>
<tr>
<td>Sex, n (%)</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>Mean (SD)</td>
</tr>
<tr>
<td>Median (Q1,Q3)</td>
</tr>
<tr>
<td>Min, max</td>
</tr>
<tr>
<td>Body mass index category, n (%)</td>
</tr>
<tr>
<td>Underweight</td>
</tr>
<tr>
<td>Benign</td>
</tr>
<tr>
<td>Overweight</td>
</tr>
<tr>
<td>Obese</td>
</tr>
<tr>
<td>Missing</td>
</tr>
<tr>
<td>AJCC clinical stage</td>
</tr>
<tr>
<td>Stage I</td>
</tr>
</tbody>
</table>

Q1,Q3, first quartile, third quartile; SD, standard deviation.
Diagnostic performance of enhanced CT in patients with positive lung CT plain

As shown in Table 2, the sensitivity of enhanced CT was 71.4% (95% CI: 66.1% - 76.2%; 217/304) and its specificity was 72.7% (95% CI: 65.6% - 78.8%; 125/172).

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Benign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>304</td>
<td>172</td>
<td>476</td>
</tr>
<tr>
<td>Positive</td>
<td>217</td>
<td>47</td>
</tr>
<tr>
<td>Negative</td>
<td>87</td>
<td>125</td>
</tr>
</tbody>
</table>

SEN = 217/304 = 71.4% (66.1% - 76.2%)  
SPE = 125/172 = 72.7% (65.6% - 78.8%)  
FNR = 87/304 = 28.6% (23.8% - 33.9%)  
FPR = 47/172 = 27.3% (21.2% - 34.4%)

Two-sided 95% Wilson confidence intervals were calculated.

SEN, Sensitivity. SPE, Specificity. FNR, False negative rate. FPR, False positive rate.

Diagnostic performance of sequential use of YiDiXie™-SS and CT in patients with positive lung CT plain

To resolve the challenge of high false-positive rate of lung CT plain, YiDiXie™-SS was applied to lung CT plain-positive patients.

As shown in Table 3, the sensitivity of YiDiXie™-SS in patients with positive lung CT plain was 98.4% (95% CI: 96.2% - 99.3%; 299/304) and its specificity was 62.8% (95% CI: 55.4% - 69.7%; 108/172). This means that the application of YiDiXie™-SS reduced the false positive rate of lung CT plain by 62.8% (95% CI: 55.4% - 69.7%; 108/172) with essentially no increase in malignancy leakage.

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Benign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>304</td>
<td>172</td>
<td>476</td>
</tr>
<tr>
<td>Positive</td>
<td>299</td>
<td>64</td>
</tr>
<tr>
<td>Negative</td>
<td>5</td>
<td>108</td>
</tr>
</tbody>
</table>

SEN = 299/304 = 98.4% (96.2% - 99.3%)  
SPE = 108/172 = 62.8% (55.4% - 69.7%)  
FNR = 5/304 = 1.6% (0.7% - 3.8%)  
FPR = 64/172 = 37.2% (30.3% - 44.6%)

Two-sided 95% Wilson confidence intervals were calculated.

SEN, Sensitivity. SPE, Specificity. FNR, False negative rate. FPR, False positive rate.
To further identify benign and malignant lung tumors, enhanced CT was applied to patients with positive YiDiXie™-SS. As shown in Table 4, the sensitivity of enhanced CT was 71.6%(95% CI: 66.2% - 76.4%; 214/299) and its specificity was 75.0%(95% CI: 63.2% - 84.0%; 48/64).

Table 4. Performance of enhanced CT in positive YiDiXie™-SS patients

<table>
<thead>
<tr>
<th></th>
<th>Cancer</th>
<th>Benign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>299</td>
<td>64</td>
<td>363</td>
</tr>
<tr>
<td>Negative</td>
<td>85</td>
<td>48</td>
<td>133</td>
</tr>
</tbody>
</table>

SEN = 214/299 = 71.6% (66.2% - 76.4%)  SPE = 48/64 = 75.0% (63.2% - 84.0%)
FNR = 85/299 = 28.4% (23.6% - 33.8%)  FPR = 16/64 = 25.0% (16.0% - 36.8%)

Two-sided 95% Wilson confidence intervals were calculated.
SEN, Sensitivity. SPE, Specificity. FNR, False negative rate. FPR, False positive rate.

Table 5 shows the diagnostic performance of sequential use of YiDiXie™-SS and CT in patients with positive lung CT plain. Sequential use of YiDiXie™-SS and CT had a sensitivity of 70.4%(95% CI: 65.0% - 75.2%; 214/304) and a sensitivity of 90.7%(95% CI: 85.4% - 94.2%; 156/172).

Compared with enhanced CT alone (Table 2), sequential use of YiDiXie™-SS and CT had comparable sensitivity, whereas the false-positive rate decreased from 27.3%(95% CI: 21.2% - 34.4%; 47/172) to 9.3%(95% CI: 5.8% - 14.6%; 16/172).

This means that the application of YiDiXie™-SS reduces the false-positive rate of enhanced CT by 66.0% with essentially no increase in malignancy leakage.

Table 5. Performance of sequential use of YiDiXie™-SS and enhanced CT

<table>
<thead>
<tr>
<th></th>
<th>Cancer</th>
<th>Benign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>304</td>
<td>172</td>
<td>476</td>
</tr>
<tr>
<td>Negative</td>
<td>90</td>
<td>156</td>
<td>246</td>
</tr>
</tbody>
</table>

SEN = 214/304 = 70.4% (65.0% - 75.2%)  SPE = 156/172 = 90.7% (85.4% - 94.2%)
FNR = 90/304 = 29.6% (24.8% - 35.0%)  FPR = 16/172 = 9.3% (5.8% - 14.6%)

Two-sided 95% Wilson confidence intervals were calculated.
SEN, Sensitivity. SPE, Specificity. FNR, False negative rate. FPR, False positive rate.
Diagnostic Performance of YiDiXie™-HS in Enhanced CT Negative Patients

In order to solve the challenge of the high rate of missed diagnosis in enhanced CT, YiDiXie™-HS was applied to patients with negative enhanced CT. As shown in Table 6, the sensitivity of YiDiXie™-HS was 87.4%(95% CI:78.8% - 92.8%; 76/87) and its specificity was 82.4%(95% CI: 74.8% - 88.1%; 103/125). This means that the application of YiDiXie™-HS reduced the false-negative rate of enhanced CT by 87.4%(95% CI:78.8% - 92.8%; 76/87).

Table 6. Performance of YiDiXie™-HS in patients with negative CT results

<table>
<thead>
<tr>
<th></th>
<th>Cancer</th>
<th>Benign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>76</td>
<td>22</td>
<td>98</td>
</tr>
<tr>
<td>Negative</td>
<td>11</td>
<td>103</td>
<td>114</td>
</tr>
</tbody>
</table>

SEN = 76/87 = 87.4% (78.8% - 92.8%)  
FNR = 11/87 = 12.6% (7.2% - 21.2%)

SPE = 103/125 = 82.4% (74.8% - 88.1%)  
FPR = 22/125 = 17.6% (11.9% - 25.2%)

Two-sided 95% Wilson confidence intervals were calculated.  
SEN, Sensitivity. SPE, Specificity. FNR, False negative rate. FPR, False positive rate.

Diagnostic Performance of YiDiXie™-HS in Enhanced CT Negative Patients

False-positive results were significantly worse than false-negative results in some patients, so YiDiXie™-D was applied to these patients to reduce their false-positive rate. As shown in Table 7, the sensitivity of YiDiXie™-D was 27.6%(95% CI: 22.1% - 34.0%; 60/217) and its specificity was 95.7%(95% CI: 85.8% - 99.2%; 45/47). This means that YiDiXie™-SS reduced the false positive rate of enhanced CT by 95.7%(95% CI: 85.8% - 99.2%; 45/47).

Table 7. Performance of YiDiXie™-D in patients with positive CT results

<table>
<thead>
<tr>
<th></th>
<th>Cancer</th>
<th>Benign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>60</td>
<td>2</td>
<td>62</td>
</tr>
<tr>
<td>Negative</td>
<td>157</td>
<td>45</td>
<td>202</td>
</tr>
</tbody>
</table>

SEN = 60/217 = 27.6% (22.1% - 34.0%)  
FNR = 157/217 = 72.4% (66.0% - 77.9%)

SPE = 45/47 = 95.7% (85.8% - 99.2%)  
FPR = 2/47 = 4.3% (0.8% - 14.2%)

Two-sided 95% Wilson confidence intervals were calculated.  
SEN, Sensitivity. SPE, Specificity. FNR, False negative rate. FPR, False positive rate.
DISCUSSION

Clinical significance of YiDiXie™-SS in patients with positive CT plain of lung tumors

The YiDiXie™ test comprises three tests with distinct characteristics: “YiDiXie™-Highly Sensitive” (YiDiXie™-HS), “YiDiXie™-Super Sensitive” (YiDiXie™-SS) and “YiDiXie™-Diagnosis” (YiDiXie™-D). Among these, YiDiXie™-HS offers a balance of high sensitivity and specificity, while YiDiXie™-SS prioritizes high sensitivity for all malignant tumor types at the expense of slightly lower specificity.

Given the clinical importance of both sensitivity and specificity in patients with positive CT scans for lung tumors, the selection of further diagnostic methods involves a trade-off between the risk of missing malignant tumors and the risk of misdiagnosing benign tumors. In general, benign lung tumors identified with false-positive CT scans are typically managed with enhanced CT rather than immediate surgical intervention. Consequently, the consequences of false-positive CT scans, such as surgical trauma or organ loss, are not as severe as those associated with missed malignant tumors. Therefore, in patients with positive CT scans for lung tumors, the priority is to minimize the risk of missing malignant tumors rather than the risk of misdiagnosing benign tumors. Consequently, YiDiXie™-SS, with its very high sensitivity but slightly lower specificity, was chosen to mitigate the false-positive rate of CT scanning for lung tumors.

As shown in Table 3, the sensitivity of YiDiXie™-SS in patients with positive lung CT plain was 98.4%(95% CI: 96.2% - 99.3%; 299/304) and its specificity was 62.8%(95% CI: 55.4% - 69.7%; 108/172). These results indicate that, while maintaining sensitivity close to 100%, YiDiXie™-SS reduced the false-positive rate in 62.8%(95% CI: 55.4% - 69.7%; 108/172) of lung CT plain.

YiDiXie™-SS has another important diagnostic value. Compared to enhanced CT alone, sequential use of YiDiXie™-SS and enhanced CT had comparable sensitivity, but the false positive rate was reduced from 27.3%(95% CI:21.2% - 34.4%; 47/172) to 9.3%(95% CI:5.8% - 14.6%; 16/172) (Tables 2 and 5). This means that the application of YiDiXie™-SS reduced the false-positive rate of enhanced CT by 66.0% with essentially no increase in malignancy leakage.

These results imply that YiDiXie™-SS substantially reduces the probability of incorrectly performing an enhanced CT for benign lung disease without essentially increasing the number of missed diagnoses of malignant tumors. In other words, YiDiXie™-SS substantially reduces the mental suffering, expensive examination and surgical costs, radiological injuries, surgical injuries, and other adverse consequences for patients with false-positive lung CT scans, without essentially increasing the number of cases of delayed treatment of malignant tumors. Therefore, YiDiXie™-SS well meets the clinical needs and has important clinical significance and wide application prospects.

Clinical significance of YiDiXie™-HS in patients with negative enhanced CT

For patients with negative enhanced CT scans, both sensitivity and specificity of further diagnostic methods are crucial. Balancing this contradiction between sensitivity and specificity essentially involves weighing the “risk of missing malignant tumors” against the “risk of misdiagnosing benign diseases”. A higher false-negative rate implies more missed malignant tumors, leading to delayed treatment, disease progression, and potentially advanced-stage malignancies. Patients may then suffer from poorer prognosis, shorter survival, decreased quality of life, and higher treatment costs. Generally, when benign lung tumors are misdiagnosed as malignant, they are typically managed with surgery without affecting patient prognosis, with treatment costs significantly lower than those for advanced cancer. Therefore, for patients with negative enhanced CT scans, the “risk of missing malignant tumors” outweighs the “risk of misdiagnosing benign diseases”. Hence, the choice...
of YiDiXie™-HS with high sensitivity and specificity is selected to reduce the false-negative rate of enhanced CT scans for lung tumors.

As shown in Table 6, the sensitivity of YiDiXie™-HS was 87.4%(95% CI:78.8% - 92.8%; 76/87) and its specificity was 82.4%(95% CI: 74.8% - 88.1%; 103/125). These results indicate that the application of YiDiXie™ -HS reduced the false-negative rate of enhanced CT by 87.4%(95% CI:78.8% - 92.8%; 76/87).

These findings imply that YiDiXie™ -HS significantly reduces the probability of missed malignant tumors in patients with negative enhanced CT scans. In other words, YiDiXie™ -HS substantially decreases the negative consequences such as poorer prognosis, higher treatment costs, decreased quality of life, and shorter survival in patients with false-negative enhanced CT scans for lung tumors. Therefore, YiDiXie™ -HS effectively meets clinical needs, offering significant clinical significance and promising application prospects.

Clinical significance of YiDiXie™-D in patients with positive enhanced CT

Patients with positive enhanced CT for lung tumors usually undergo surgery. However, there are some conditions that require extra caution in choosing whether to operate or not, hence further diagnosis, e.g., smaller tumors, tumors that require lobectomy, patients with significant pulmonary insufficiency, patients in poor general condition, etc.

In patients with positive enhanced CT for lung tumors, both the sensitivity and specificity of further diagnostic approaches are important. Weighing the contradiction between sensitivity and specificity is essentially weighing the contradiction between the “harm of malignant tumor underdiagnosis” and the “harm of benign tumor misdiagnosis”. Because smaller tumors have a lower risk of tumor progression and distant metastasis, the “risk of malignant tumor underdiagnosis” is much lower than the “risk of benign tumor misdiagnosis”. For tumors requiring lobectomy, the risk of misdiagnosis of benign tumors is much higher than the risk of misdiagnosis of malignant tumors because the affected lobe of the lung needs to be removed. For patients with obvious pulmonary insufficiency, the risk of misdiagnosis of benign tumors is much higher than that of malignant tumors because of the likelihood of postoperative dyspnea. For patients with poor general conditions, the “risk of misdiagnosis of benign tumors” is much higher than the “risk of malignant tumors” because the perioperative risk is much higher than the general condition. Therefore, for these patients, YiDiXie™ -D, which is very specific but less sensitive, was chosen to reduce the false-positive rate of enhanced CT for lung tumors.

As shown in Table 7, the sensitivity of YiDiXie™-D was 27.6%(95% CI: 22.1% - 34.0%; 60/217) and its specificity was 95.7%(95% CI: 85.8% - 99.2%; 45/47). These results indicate that YiDiXie™-SS reduced the false positive rate of enhanced CT by 95.7%(95% CI: 85.8% - 99.2%; 45/47).

These results imply that YiDiXie™ -D significantly reduces the likelihood of incorrect surgery in these patients who require extra caution. In other words, YiDiXie™ -D significantly reduces the risk of adverse outcomes such as surgical trauma, organ resection, pulmonary insufficiency, ventilator maintenance, and even death and other serious perioperative complications in these patients. Therefore, YiDiXie™ -D well meets the clinical needs and has important clinical significance and wide application prospects.

YiDiXie™ test has the potential to solve three challenges of lung tumor

First, the three products of the YiDiXie™ test are clinically important in lung tumors. As mentioned earlier, the YiDiXie™ -SS, YiDiXie™ -HS and YiDiXie™ -D have significant diagnostic value in patients with positive CT plain scan, negative enhanced CT or positive enhanced CT, respectively.

Secondly, the three products of YiDiXie™ test can greatly relieve the work pressure of clinicians and promote timely diagnosis and timely treatment of malignant tumor cases that would otherwise be
delayed. On the one hand, “YiDiXie™-SS” can greatly reduce the pressure of non-essential work for imaging physicians. When a CT scan is positive, the patient usually undergoes an enhanced CT examination. The timeliness of these enhanced CT examinations is directly dependent on the number of imaging physicians. In many parts of the world, appointments are made for months or even more than a year. This inevitably delays the treatment of malignancy cases among them, and thus it is not uncommon for patients with CT scan-positive lung tumors awaiting enhanced CT to develop malignancy progression or even distant metastases. As shown in Table 3, YiDiXie™-SS reduces the false-positive rate of 62.8%(95% CI: 55.4% - 69.7%; 108/172) in patients with CT plain-scan positive lung tumors with essentially no increase in the leakage of malignant tumors. As a result, YiDiXie™-SS can greatly reduce the non-essential workload of imaging physicians and facilitate the timely diagnosis and treatment of lung tumors or other tumors that would otherwise be delayed.

YiDiXie™-SS also offers significant relief from non-essential work for surgeons. Positive enhanced CT lung tumors are often treated surgically. Whether these surgeries can be completed in a timely manner is directly dependent on the number of surgeons. Appointments are booked for months or even more than a year in many parts of the world. A delay in the treatment of these malignant cases is inevitable, and thus malignant progression or even distant metastasis is not uncommon in patients with lung tumors awaiting surgery. When compared with enhanced CT alone, sequential use of YiDiXie™-SS and CT had comparable sensitivity, but the false-positive rate was reduced from 27.3% (95% CI:21.2% - 34.4%; 47/172) to 9.3% (95% CI:5.8% - 14.6%; 16/172)(Tables 2 and 5), lowering the enhanced CT with a 66.0% false-positive rate. It greatly relieves surgeons from non-essential work. Thus, YiDiXie™-SS can significantly reduce the non-essential workload of imaging physicians and surgeons, facilitating timely diagnosis and treatment of lung tumors or other diseases that would otherwise be delayed.

On the other hand, YiDiXie™-HS and YiDiXie™-D can greatly reduce clinicians’ work pressure. When the diagnosis is difficult on enhanced CT, the patient usually requires an enhanced MRI or a puncture biopsy. The timely completion of these enhanced MRIs or puncture biopsies is directly dependent on the number of imaging physicians available. Appointments are available for months or even more than a year in many parts of the world. It is also not uncommon for patients with lung tumors waiting for an enhanced MRI exam or puncture biopsy to experience malignant progression or even distant metastases. YiDiXie™-HS and YiDiXie™-D can replace these enhanced MRI examinations or puncture biopsies, greatly easing clinicians’ workload and facilitating timely diagnosis and treatment of other tumors that would otherwise be delayed.

Final, the YiDiXie™ test can achieve “timely diagnosis” of lung tumors. On the one hand, the YiDiXie™ test requires only a tiny amount of blood and allows patients to complete the diagnostic process non-invasively without having to leave their homes. Only 20 microliters of serum are required to complete a YiDiXie™ test, which is equivalent to approximately one drop of whole blood (one drop of whole blood is approximately 50 microliters, which yields 20-25 microliters of serum). Taking into account the pre-test sample quality assessment test and 2-3 repetitions, 0.2 ml of whole blood is sufficient for the YiDiXie™ test. The 0.2 ml of finger blood can be collected at home by the average patient using a finger blood collection needle, eliminating the need for venous blood collection by medical personnel, and allowing patients to complete the diagnostic process non-invasively without having to leave their homes.

On the other hand, the diagnostic capacity of the YiDiXie™ test is virtually unlimited. Figure 1 shows the basic flowchart of the YiDiXie™ test, which shows that the YiDiXie™ test not only does not require a doctor or medical equipment, but
also does not require medical personnel to collect blood.

As a result, the YiDiXie™ test is completely independent of the number of medical personnel and facilities, and has a virtually unlimited test capacity. In this way, the YiDiXie™ test enables “just-in-time” diagnosis of lung tumors without patients having to wait anxiously for an appointment.

In short, the YiDiXie™ test has significant diagnostic value in lung tumors, and is expected to solve the problems of “high false-positive rate of CT plain”, “high false-negative rate of enhanced CT” and “high false-positive rate of CT” in lung tumors.

**Limitations of the study**

Firstly, the number of cases in this study was small, and future clinical studies with larger sample sizes are needed for further evaluation.

Secondly, this study was a malignant tumor case-benign tumor control study in hospitalized patients, and future cohort studies in the natural population of lung tumors are needed for further evaluation.

Finally, this study was a single-center study, which may have led to some degree of bias in the results of this study. Future multicenter studies are needed for further evaluation.
CONCLUSION

YiDiXie™ -SS has a significant effect on reducing the false-positive rate of CT plain and enhanced CT for lung tumors, with no significant delay in malignancy treatment. YiDiXie™ -HS substantially reduces the false negative rate of enhanced CT. YiDiXie™-D substantially reduces the false positive rate of enhanced CT. The YiDiXie™ test has significant diagnostic value in lung tumors, and is expected to solve the problems of “high false-positive rate of CT plain”, “high false-negative rate of enhanced CT” and “high false-positive rate of enhanced CT” in lung tumors.

FUNDING

This study was supported by Shenzhen High-level Hospital Construction Fund, Clinical Research Project of Peking University Shenzhen Hospital (LCYJ2020002, LCYJ2020015, LCYJ2020020, LCYJ2017001).

REFERENCES

4. Lauren G. Collins, Christopher Haines, Robert Perkel, and Robert E. Enck.: Lung Cancer: Diagnosis and Management.
5. Team TNLSTR: Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening.
12. Chen Sun, Chong Lu, Yongjian Zhang, et al. Evaluation of the Multi-Cancer Early Detection (MCED) value of