A Monte Carlo simulation framework for histology-informed diffusion MRI cancer characterisation and microstructural parameter estimation

Athanasiou Grigoriou1,2, Carlos Macarro1,2, Marco Palombo3,4, Anna Voronova1,2, Kinga Bernatowicz1, Ignasi Barba1,5, Alba Escriche1, Emanuela Greco1, María Abad1, Sara Simonetti1, Garazi Serna1, Richard Mast6,7, Xavier Merino6,7, Núria Roson6,7, Manuel Escobar6,7, María Vieito8, Paolo Nuñiforo1, Rodrigo Toledo1, Elena Garralda8, Roser Sala-Llonch8,9,10, Els Fieremans11, Dmitry S. Novikov11, Raquel Perez-Lopez1,11,11, and Francesco Grussu1,11,11

Abstract

Computer simulations within substrates that mimic the complexity of biological tissues are key to the development of biophysical diffusion Magnetic Resonance Imaging (dMRI) models. Realistic simulations have enabled, for example, the non-invasive estimation of fine neuronal sub-structures, which is playing an increasingly key role in neurology and neuroscience. However, biologically-realistic, simulation-informed dMRI techniques are also needed in other applications, as for example in oncological imaging of body tumours. This article aims to fill this gap by presenting a Monte Carlo (MC) framework tailored for histology-informed simulations in body imaging applications. The framework, which combines free software with custom-written routines, is demonstrated on substrates reconstructed from hematoxylin-eosin (HE) stains of human liver biopsies, including non-cancerous liver and primary/metastatic liver cancer tissues. The article has four main contributions. Firstly, it provides practical guidelines on how to conduct realistic MC diffusion simulations informed by HE histology. Secondly, it reports reference values on cell size (CS), cell density and on other cellular properties in non-cancerous and cancerous liver — information not easily found in the literature, yet essential to inform the design of innovative dMRI techniques. Thirdly, it presents a detailed characterisation of synthetic signals generated for clinically feasible dMRI protocols, shedding light onto patterns of intra-/extra-cellular (IC/EC) water diffusion in liver. Finally, it illustrates the utility of the framework, by devising a strategy where synthetic signals inform the estimation of unexplored microstructural properties, as the EC intrinsic diffusivity and CS distribution skewness. The strategy is demonstrated on both normal liver and in cancer patients in vivo.

1 Introduction

The ultimate aim of diffusion MRI (dMRI) is the estimation of statistics of the cellular environment — referred to as tissue microstructure — from sets of diffusion-weighted (DW) signal measurements, by solving an inverse mathematical problem [Novikov et al., 2019, Kiselev, 2017]. Multi-compartment biophysical dMRI models have gained momentum as practical approaches for this task, being capable of providing maps of biologically-meaningful properties, such as cell size (CS) indices. These have found applications in multiple organs, e.g., brain [Veraart et al., 2020], muscles [Fieremans et al., 2017], breast [Xu et al., 2020], liver [Jiang et al., 2020b], prostate [Panagiotaki et al., 2015, Lemberskiy et al., 2018] and beyond. Non-invasive CS measurement may be particularly relevant for disease characterisation and treatment response assessment in oncology, given the variety of cell types that can coexist within tumours, each featuring unique, distinctive dimensions (e.g., normal vs malignant cells, immune cell infiltration, etc) [Reynaud, 2017, Jiang et al., 2020a, Hoffmann et al., 2023, Palombo et al., 2023].

However, current biophysical models are often based on idealised representations of tissue components, such as spheres of fixed radii to describe cells [Panagiotaki et al., 2015, Jiang et al., 2020b, Hoffmann et al., 2023]. This implies that they may neglect other, relevant features of intra-voxel microstructure, e.g., the existence of distributions of CSs, intra-cellular (IC) kurtosis [Lee et al., 2020a, Grussu et al., 2022], or extra-cellular (EC) diffusion time dependence [Burcaw et al., 2015, Xu et al., 2023]. Neglecting such characteristics may bias parameter estimation, and may also cause clinically-relevant information to be missed.

Recently, numerical methods based on more realistic tissue representations have enabled the development of accurate dMRI signal models [Nedjati-Gilani et al., 2017, Lee et al., 2021].
increasing the biological specificity of parameter estimation [Nilsson et al., 2010, Palombo et al., 2016, Palombo et al., 2019, Buizza et al., 2021, Morelli et al., 2023]. In particular, Monte Carlo (MC) diffusion simulations within 3D meshes derived from histology have enabled the characterisation of fine, sub-cellular microstructural details, such as axonal beading/undulation [Lee et al., 2020b, Lee et al., 2024], or neural process complexity [Palombo et al., 2016, Palombo et al., 2019]. Nevertheless, to date histology-informed dMRI has focussed heavily on neural tissue, with only a few examples outside the central nervous system [Berry et al., 2018]. More accurate biophysical models are urgently needed in a variety of other contexts beyond brain dMRI, as in oncological body imaging of solid tumours [O’Connor et al., 2017]. New dMRI approaches could tackle several, unmet clinical needs, such as patient stratification for treatment selection, response assessment in immunotherapy [Pilard et al., 2021], or the determination of the malignity of lesions that cannot be biopsied [Doblas et al., 2013].

This article aims to fill this gap by introducing a histology-informed Monte Carlo (MC) dMRI simulation framework tailored for microstructural characterisation of body tissues. We present a rich database of meshes of cellular environments reconstructed directly from haematoxylin and eosin (HE) stains of liver biopsies, and use these to synthesise signals for clinically feasible dMRI protocols. The database provides the community with reference values of key cellular properties in cancerous and non-cancerous tissues, and enables the synthesis of realistic dMRI signals. This set of cellular-level characteristics allowed us to gain insight into IC and EC diffusion, and to devise a strategy for the numerical estimation of microstructural properties that are not commonly accessible to analytical biophysical models. In particular, we tested the estimation of the intrinsic EC diffusivity and of CS distribution moments, which we showcase in pre-clinical scans of fixed mouse tissues and in cancer patients in vivo.

2 Materials and methods

2.1 Simulation framework

In our framework, illustrated in Fig. 1, we create 3D meshes of histological structures, such as cells, from segmentations drawn on histological images. These meshes can be used to generate random walks in MC simulations and, finally, dMRI signals, for any dMRI protocol of interest. We proceed as follows.

First, a histological image is opened with QuPath [Bankhead et al., 2017] and a region-of-interest (ROI) is selected and cropped, taking care to include in the image the scale of magnification. The image is then opened in Inkscape, where cells and other geometric features are manually segmented and separated into layers. We segmented cells and cell debris, luminal spaces, and vessels. Here we demonstrate the framework with careful, manual segmentation, but automatic segmentations would also be possible. Two types of files are then exported: a 3D object with all the features included included in a single SVG file, as well as an individual SVG file for each feature. The SVG format is used as it allows for replicating 2D contours along the rough-plane direction, thus generating cylinders with irregular sections. Nonetheless, 3D segmentations could also be used (e.g., from 3D confocal microscopy).

Meshes are then fed to the MCDC Simulator, an open-source MC engine [Rafael-Patino et al., 2020], in order to synthesise random walks. We used the large mesh including all the segmented structures to generate EC random walks, by seeding walkers outside all such structures, uniformly. Conversely, we generated IC random walks for each cell independently. For this first proof-of-concept we did not model permeability of barriers, i.e., we did not account for exchange between EC and IC spaces, with walkers experiencing elastic collisions at cell boundaries.

We used 10 linearly-spaced values in the range [0.8, 3] μm²/ms for both IC and EC intrinsic diffusivities (referred to as $D_{ic(lm)}$ and $D_{ic(ex)}$, covering all possible combinations of the two (100 unique $(D_{ic(lm)}, D_{ic(ex)})$ pairs for each substrate). Each simulation was run with a duration of $T = 140$ ms and step number of $N_{step} = 3000$. The IC simulations were performed with 1000 water molecules for each cell, while EC random walks were obtained for 10 000 walkers. As mentioned, vessel structures were included in the segmentation as they influence the patterns of EC diffusion, but they were not seeded with walkers (so they do not directly generate MRI signal). Regarding lumen spaces, spin walks were generated similarly to the IC case: spins were seeded within each lumen independently, and no crossing of the lumen membrane was possible (elastic reflection in presence of collisions; 1000 walkers per lumen).

Lastly, custom-written python code was used to synthesise dMRI signals from the random walks for a given acquisition protocol of interest. The signal S_n for the n-th structure is [Fieremans and Lee, 2018]

$$ S_n = \left[\frac{1}{W} \sum_{\mu=1}^{W} e^{-\frac{\gamma}{\gamma_0} \sum_{\nu=1}^{\nu_f} \mu \gamma_0^\nu \mu \gamma_0^\nu} \right] \left[\frac{1}{S_{in}} \sum_{k \in EC} \frac{V_k}{S_{ex}} \right], $$

Above, $r_{u,w}(t)$ is the w-th walker trajectory within the n-th structure; $\Delta T = T/N_{step}$ is the temporal resolution; T is the simulation duration; and $g(t)$ is the diffusion-encoding gradient. The IC/EC signals S_{in}/S_{ex} were respectively obtained as

$$ S_{in} = \sum_{n \in EC} \frac{V_n}{\sum_{k \in EC} V_k} S_n, $$

and

$$ S_{ex} = \sum_{n \in EC} \frac{V_n}{\sum_{k \in EC} V_k} S_n. $$

with V_n/V_k standing for the volume of the n-th/k-th structure. The index n loops over cells (including debris) in Eq. 2, referring to the IC signal; likewise, it loops over the set of EC structures in Eq. 3, i.e., the EC space itself and the luminal spaces. Last, the total signal is

$$ S = f_{in} S_{in} + (1 - f_{in}) S_{ex}, $$

with f_{in} being the IC volume fraction. Note that signal fractions f_{in} and $f_{ex} = 1 - f_{in}$ are T_2-weighted in principle, given that the intra-/extra-cellular spaces may feature different T_2 constants [Lemberskiy et al., 2018, Palombo et al., 2023]. Nonetheless, in this first demonstration of our MC framework, we do not account for intra-compartment relaxation properties, in order to reduce the number of tissue parameters required to characterise the signal.

A repository with step-by-step guidelines on how to implement the framework is released at https://github.com/radiomicsgroup/dMRIMC.
Figure 1: Illustration of our MC simulation framework generating synthetic dMRI signals from histological images. The framework relies on the following open-source software packages: QuPath, Inkscape, Blender.

2.2 Substrates

We reconstructed 18 cellular environments, referred to as substrates from now on. These were derived from biopsies of malignant solid tumours of the liver (primary cancer and metastatic) of 10 different patients (1 to 3 substrates drawn per patient, see Table 1), acquired as part of ongoing imaging studies at the Vall d’Hebron Institute of Oncology (Barcelona, Spain). The substrates spanned a rich set of different cytoarchitectures, from non-cancerous liver parenchyma to cancer areas, such as dense cancer cell packings, fibrosis, necrosis, and a mix of all the above.

We characterised each substrate with the following microstructural parameters:

- **ROI area and cellularity (number of cells per mm\(^2\) of biopsied tissue);**
- **IC area fraction \(f_{\text{IC}}\);**
- **lumen fraction of EC area \(f_1\);**
- **lumen diameters \(d_{\text{lumen}} = 2\sqrt{A_{\text{lumen}}/\pi}\), with \(A_{\text{lumen}}\) being the segmented lumen area;**
- **mean CS index \(mCS = \langle d_{\text{cell}} \rangle\), where \(d_{\text{cell}} = 2\sqrt{A_{\text{cell}}/\pi}\) is the individual cell diameter calculated from its area \(A_{\text{cell}}\), and \(\langle \ldots \rangle\) is the average over the distribution in a substrate;**
- **CS variance index \(\text{varCS} = \langle (d_{\text{cell}} - mCS)^2 \rangle\);**
- **CS skewness index \(\text{skewCS} = \langle (d_{\text{cell}} - mCS)^3 \rangle/\text{varCS}^{3/2} \);**
- **volume-weighted CS (vCS) index for a system with spherical geometry [Novikov et al., 2019, Grussu et al., 2022] (vCS\(_{\text{sph}}\)), defined as**

 \[
 \text{vCS}_{\text{sph}} = \left(\frac{\langle d_7_{\text{cell}} \rangle}{\langle d_{\text{cell}} \rangle} \right)^{1/4}.
 \]
- **vCS index for a system with cylindrical geometry [Burcaw et al., 2015, Veraart et al., 2020] (vCS\(_{\text{cyl}}\)), defined as**

 \[
 \text{vCS}_{\text{cyl}} = \left(\frac{\langle d_6_{\text{cell}} \rangle}{\langle d_2_{\text{cell}} \rangle} \right)^{1/4}.
 \]
shape and scale parameters of a gamma-distribution [Assaf et al., 2008], fitted to the set of cell diameters \{d_{cell,1}, d_{cell,2}, ...\} (see Supplementary Methods for more details).

2.3 Characterisation of IC and EC diffusion

We used the substrates to generate synthetic dMRI signals for routine pulsed-gradient spin echo (PGSE) acquisitions (Supplementary Figure S1). We considered diffusion times (e.g., gradient duration \(\delta\) and separation \(\Delta\)) that could be realistically probed in pre-clinical and clinical imaging. Signals were processed with the aim of gaining insight into the biological factors that drive the diffusion contrast in both IC and EC spaces, in order to inform biophysical signal modelling.

To this end, we studied the diffusion-time dependence of the IC and EC apparent diffusion coefficients (ADCs) ADC_{in} and ADC_{ex}. In all substrates, we estimated ADC_{in} and ADC_{ex} for all possible pairs of \(\delta\) and \(\Delta\) in the set \(\{5, 15, 25, 35\}\) ms \(\times\) \(\{5, 15, 25, 35, 45, 55, 65\}\) ms, s.t. \(\Delta \geq \delta\). The estimation of ADC_{in} and ADC_{ex} was performed by regressing ln\(S_{in/ex}\) = \(-b\)ADC_{in/ex} with respect to \(b = \{0, 100, 200, 300, 400, 500\}\) s/mm^2 (with \(b\) being the average of two in-plane, orthogonal gradient directions for each \(b\)). For this, we used increasing values of the intrinsic IC/EC diffusivities \(D_{0in}\) and \(D_{0ex}\) (both ranging in \(\{0.8, 1.5, 2.2, 3.0\}\) \(\mu m^2/\text{ms}\) for any fixed \((\delta, \Delta)\)).

We used the set of synthetic ADC_{in} and ADC_{ex} to characterise IC and EC diffusion, framing the observed patterns in the context of common assumptions used in biophysical dMRI models. Specifically:

1. we compared values of ADC_{in} and ADC_{ex} at varying \(\delta\) (\(\Delta\)), to test the parameter constraint ADC_{in} < ADC_{ex} used in body dMRI techniques such as Restriction Spectrum Imaging [White et al., 2014, Feng et al., 2021, Conlin et al., 2023];

2. we scattered ADC_{ex} against \(f_{in}\) and assessed the dependence of ADC_{ex} on \(f_{in}\), in order to test whether the mean-field tortuosity limit of ADC_{ex}, i.e.,

\[
ADC_{ex} = (1 - f_{in})D_{0ex}
\]

for cylindrical geometries [Szafer et al., 1995, Zhang et al., 2012], offer a good approximation of ADC_{ex} at clinical diffusion times;

3. finally, we also assessed the dependence of ADC_{in} on salient features of the underlying CS distribution, given the urgent need for non-invasive cell profiling in diseases such as cancer (i.e., to differentiate lymphocytes from malignant cells [Jiang et al., 2020a, Hoffmann et al., 2023]). We specifically tested whether salient features of CS distribution, namely its moments mCS, varCS and skewCS, are encoded in the intra-cellular dMRI signal, by scattering ADC_{in} against each of those at varying \(\Delta\).

2.4 Simulation-informed microstructural parameter inference

We investigated the potential utility of our synthetic signals to inform microstructural parameter estimation. We used the MC random walks within our histological substrates to synthesise signals for realistic dMRI protocols, and devised a strategy enabling histological property estimation from noisy dMRI signal measurements. The strategy was tested in silico, and then on ex vivo and in vivo dMRI scans.

2.4.1 In silico data

We synthesised DW signals according to three dMRI protocols, matching those implemented for in vivo and ex vivo MRI acquisition. We simulated 100 signals per substrate (10 values of \(D_{0in} \times 10\) values of \(D_{0ex}\)), for a total of 1800 signals. The protocols were:

- a PGSE protocol, matching that implemented on a 3T clinical system in vivo (referred to as: PGSE-in). It consisted of \(3 b = 0 \text{ and 18 DW measurements, namely: } b = \{50, 100, 400, 900, 1200, 1500, 50, 100, 400, 900, 1200, 1500\}\) s/mm^2, \(\delta = \{3.9, 5.2, 9.2, 15.0, 18.2, 21.0, 3.9, 5.2, 9.2, 13.0, 18.5, 3.9, 5.2, 9.2, 13.0, 18.5, 18.5\}\) ms, \(\Delta = \{27.8, 29.0, 33.0, 28.7, 31.8, 34.7, 7.8, 29.0, 33.0, 37.0, 39.6, 42.3, 7.8, 29.0, 33.0, 37.0, 39.6, 42.3\}\) ms.

- a DW twice-recoussed spin echo (TRSE) protocol, matching that implemented on a 1.5T clinical system in vivo (referred to as: TRSE). It consisted of \(3 b = 0\) and 18 DW measurements, namely: \(b = \{0, 50, 100, 400, 900, 1200, 1600\}\) s/mm^2, repeated for 3 different diffusion times. The duration/separation of the gradient lobes (Supplementary Figure 1) for the 3 diffusion times were:

\(\delta_1 = \{8.9, 13.2, 18.9\}\) ms, \(\delta_2 = \{17.6, 19.3, 21.0\}\) ms, \(\delta_3 = \{20.4, 24.8, 30.5\}\) ms, \(\Delta_1 = \{6.0, 7.7, 9.5\}\) ms, \(\Delta_{1,2} = \{17.4, 21.7, 27.5\}\) ms, \(\Delta_{1,3} = \{63.9, 74.2, 87.5\}\) ms.

- A second PGSE protocol, matching that implemented on a pre-clinical 9.4T system for ex vivo imaging (referred to as: PGSE-ex). It consisted of \(2 b = 0\) and 6 DW measurements, namely: \(b = \{0, 500, 2000, 4500\}\) s/mm^2 acquired for each of \(\Delta = \{16.5, 37.0\}\) ms, with \(\delta = 12\) ms.

For all protocols, we obtained the final measurement set by averaging signals generated for two orthogonal directions, perpendicular to the substrate longitudinal axis.

We then interpolated the set of paired examples of tissue parameters \(p\) and dMRI signals \(s(p)\) with a radial basis function (RBF) regressor, which implements the forward model \(p \mapsto s(p)\). This was finally embedded into routine non-linear least square (NNLs) fitting, based on maximum-likelihood estimation [Panagiotaki et al., 2012]. To test the feasibility of using simulation-informed forward models for parameter estimation, we performed a leave-one-out experiment. Briefly, for all substrates in turn, we learnt \(p \mapsto s(p)\) on noise-free signals from 17/18 substrates, and then plugged the learnt model in NNLs fitting of the noisy signals from the 18th substrate (Rician noise; \(b = 0\) signal-to-noise ratio (SNR) of 50).

We performed fitting twice, considering two different forward models \(p \mapsto s(p)\):

- in forward model 1,

\[
p = \left\{f_{in}, D_{0in}, vCS_{cyl}, D_{0ex}\right\},
\]

estimating a single CS statistic \(vCS_{cyl}\) per voxel. We chose to estimate vCS_{cyl}, rather than mCS, to enable the comparison of model 1 to fitting a well-established multi-compartment analytical signal model (see below);
• in forward model 2 instead,

\[
p = \left\{ f_{in}, D_{0in}, mCS, \text{varCS, skewCS, } D_{0ex} \right\},
\]

estimating the first three moments of the full CS distribution.

The quality of parameter estimation was assessed by scatter density plots and Pearson’s correlation coefficients between estimated and ground truth parameter values. Moreover, fitting of forward model 1 was compared to a widely-used analytical model, describing the dMRI signal as the sum of IC/EC contributions, i.e.,

\[
S = f_{in} e^{-\frac{b}{2} AD_{in}(D_{0in}, R, \delta, \Delta)} + (1 - f_{in}) e^{-\frac{b}{2} AD_{ex}},
\]

where ADC\(_{in}\) characterises signal decay due to restriction within cells. This approach is used, for example, in popular techniques such as VERDICT and IMPULSED [Panagiotaki et al., 2015, Jiang et al., 2020b]. However, while VERDICT and IMPULSED ADC\(_{in}\) is based on a model of spherical cells, here we used the expression for diffusion within cylinders, given the cylindrical symmetry of our substrates. We used an effective radius \(R = \frac{1}{2} \text{vCS}_{cyl} \). We used \(\text{vCS}_{cyl} \) rather than mCS since the former accounts for the fact that larger cells contain more water, and hence contribute more to the DW signal, than smaller cells [Vercaart et al., 2020], despite being a metric prone to mesoscopic fluctuations, being highly sensitive to the tails of the cell size distribution within a voxel, with increasing sensitivity the smaller the voxel gets [Novikov et al., 2019]. In practice, ADC\(_{in}\) in Eq. 6 is written as

\[
\text{ADC}_{in} = \frac{2 R^4}{D_{0in} \delta (\Delta - \delta/3)} \sum_{m=0}^{\infty} \frac{2 a_m^2 + D_{0in} R^2 (u_m - 2)}{a_m^4 (a_m^2 - 1)},
\]

where

\[
u_m = 2 e^{-\frac{D_{0in}}{R^2} \Delta a_m^2 + 2 e^{-\frac{D_{0in}}{R^2} \Delta a_m^2} - e^{-\frac{D_{0in}}{R^2} (\Delta - \delta) a_m^2} - e^{-\frac{D_{0in}}{R^2} (\Delta - \delta + \Delta) a_m^2}}.
\]

Above, \(D_{0in} \) is the intra-cylinder diffusivity, \(a_m \) is the \(m \)th root of \(J_1'(x) = 0 \), with \(J_1(x) \) being the Bessel function of the first kind, order 1, and \(J_1'(x) = \frac{d}{dx} J_1(x) \) [P. Vangelder et al., 1994]. Note that the analytical model in Eq. 7, while common in dMRI literature, lacks higher-order terms in each compartment. It is therefore only a crude approximation of the signal at a given \(b, \delta \) and \(\Delta \) — this fact is indeed what motivates our efforts to build numerical dMRI signal models informed directly by simulations, which do not rely on approximated analytical signal expressions as the one above.

Both MC simulation-informed and analytical signal model fitting were performed with the freely-available bodymitools python tools (https://github.com/fragrussu/bodymitools; scripts mri2micro_dichtml.py and pgse2cyelperpinex.py).

2.4.2 Ex vivo data

We tested simulation-informed fitting on pre-clinical dMRI data, which were acquired on 8 normal-ex-fixed ex vivo mouse tissue specimens. These were: a non-cancerous breast and 3 breast tumours from the mouse mammary tumour virus (MMTV) polymavirus middle T antigen (PyMT) transgenic mouse model [Guy et al., 1992, Attalla et al., 2021], at weeks 9, 11 and 14; a normal spleen and a spleen suffering from splenomegaly, secondary to advanced breast cancer in one MMTV mouse; two kidneys from C57BL/6 WT male mice (9 weeks old), one normal and one pathological, following folic acid-induced injury [Yan, 2021]. Details on the animal procedures and animal models can be found in the Supplementary Methods.

Briefly, tissue was washed in phosphate-buffered saline (PBS) solution and embedded in agarose within a histological cassette. Specimens were scanned at room temperature on a 9.4T Bruker Avance system, with 200 mT/m gradient insert and a TX/RX birdcage coil. The protocol included a high resolution anatomical T2-weighted RARE scan, and dMRI (DW spin echo), with the protocol matching the PGSE-ex protocol described above (section 2.4.1; same nominal b-values, and same gradient timings). Other salient dMRI scan parameters were: resolution 0.2 × 0.2 × 0.57 mm\(^3\), TE = 55.1 ms, TR = 2250 ms, 3 mutually-orthogonal direction for each gradient timing and b-value. After MRI, standard histological procedures provided sections at known radiographic position, with material sliced following the same orientation of the MRI slices. The material was stained with HE, and high-resolution digital images were acquired on a Hamamatsu C9600-12 scanner (resolution: 0.45 μm).

dMRI scans were denoised [Vercaart et al., 2016] and Gibbs ringing mitigated [Kellner et al., 2016]. Finally, maps from forward model 2 in section 2.4.1 were computed voxel-by-voxel, via NNLS regularised maximum-likelihood fitting. Metrics were: \(f_{in}, D_{0in}, mCS, \text{varCS, skewCS, } D_{0ex} \). When learning the forward signal model via RBF regression, we pooled together all 1800 signals from all substrates.

In parallel, we also processed the HE images to obtain histological counterparts of \(f_{in}, mCS, \text{varCS, skewCS} \). We manually segmented cells on 9 ROIs across the whole sets of samples. Afterwards, we computed \(f_{in}, mCS, \text{varCS, skewCS} \) given the set of segmented cells, as illustrated in section 2.2. Fitting was not performed in areas rich of fat as seen on HE images, given that dMRI acquisitions are typically fat-suppressed. We also extracted mean and standard deviation of dMRI metrics in 10 ROIs of size of 3 voxel × 3 voxel. These were drawn in areas approximately matching the locations of the histological ROIs. Finally, we used the set of 9 paired dMRI-histological metrics to compute a Pearson’s correlation coefficient.

2.4.3 In vivo data

Lastly, we also tested simulation-informed parameter estimation in scans from cancer patients, acquired in vivo for an ongoing imaging study. All participants provided informed written consent, and were scanned in imaging sessions approved by the Clinical Research Ethics Committee (CEIm) of the Vall d’Hebron University Hospital (Barcelona, Spain; code: PR(AG)29/2020).

We studied scans from 9 patients suffering from advanced solid tumours, which were acquired either at abdominal or pelvic level (referred to as Cases A to I), 4 patients were scanned on a 1.5T Siemens Avanto system (Cases A-D), and 5 on a 3T GE SIGNA Pioneer system (Cases E-I). For the 1.5T system, the protocol included anatomical T2-weighted fast spin echo imaging and dMRI. dMRI was based on a DW TRSE Echo Planar Imaging (EPI) sequence, with the diffusion encoding pro-
tocol matching exactly the TRSE protocol used in simulations (see above for details). Other salient parameters were: resolution 1.9 × 1.9 × 6 mm³, TE = 93, 105, 120 ms, TR = 7900 ms, trace DW imaging. NEX = 2, GRAPPA = 2, 6/8 Partial Fourier imaging, BW = 1430 Hz/pixel, acquisition of a b = 0 image with reversed phase encoding. For the 3T scanner instead, the protocol also included anatomical T2-weighted fast spin echo imaging and dMRI, acquired with PGSE EPI according to the “PGSE-in” protocol described in simulations above. Other salient parameters were: resolution 2.4 × 2.4 × 6 mm³, TE = 75, 90, 105 ms, TR ≈ 3000 ms (respiratory gated), trace DW imaging, NEX = 2, ASSET = 2, BW = 1953 Hz/pixel. The dMRI protocol took approximately 15 minutes in both machines.

Scans were denoised [Vercaut et al., 2016], corrected for Gibbs ringing [Kellner et al., 2016] and motion, and EPI distortions mitigated (1.5T system only) [Andersson et al., 2003]. Afterwards, each DW image was normalised to the b = 0 acquired at the corresponding TE [Panagiotaki et al., 2015] and forward model 2 (see section 2.4.1) was fitted voxel-by-voxel (regularised maximum-likelihood NNLS fitting; images for b ≤ 100 s/mm² were excluded to minimise vascular contributions). This provided voxel-wise maps of f_In, D_In, mCS, varCS, skewCS, D_O, within manually-outlined tumours. Mean and standard deviation of all metrics within the tumours were extracted.

In parallel, we also assessed visually per-patient HE-stained histological material (Hamamatsu C9600-12 scanner; resolution: 0.45 μm) from one of the imaged tumours, which was acquired through an ultrasound-guided biopsy performed approximately one week after MRI.

3 Results

3.1 Substrates

Table 1 reports the characteristics of the substrates reconstructed from histology for this study, while Supplementary Fig. S2 shows the raw histological HE-stained patches from which substrates were reconstructed. The substrates encompass a rich variety of cytoarchitectures and microenvironments. For example, they include areas featuring densely packed cells, e.g., f_In values as high as 0.868 in the non-cancerous liver parenchyma or 0.747 in HCC, as well as areas with f_In as low as 0.130 in CRC fibrosis or 0.024 (almost complete lack of cells) in necrosis. The table also highlights, for example, that the substrates encompass a variety of CSs. The largest cells are found in the non-cancerous liver (mCS around ~16 μm), while all cancers feature the presence of smaller cells. Differences in CS are also seen within the same type of cancer, e.g., mCS of ~13 μm and ~6 μm in two different CRC substrates. Substrates also feature different skewnesses of the CS distribution, with positive skewCS in most cancers, and negative skewCS in the non-cancerous liver. Finally, in some substrates (e.g., CRC) the EC space features the presence of large lumina, with equivalent diameters as large as ~90 μm. Substrates also include areas of partial volume between non-cancerous hepatocytes and cancer cells (substrates 10, 11, 12) with different proportions, a fact that is reflected in different values of skewCS.

Fig. 2 illustrates the segmentation of the different cellular structures in four representative substrates, namely: non-cancerous liver, CRC, breast cancer, and melanoma. The figure highlights again the richness of microstructural characteristics included in our substrates. For example, tightly packed cells are seen in both non-cancerous liver and in melanoma, with the former showing much larger cells than the latter (mCS of almost 16 μm in non-cancerous liver, twice as large as the approximately 8 μm seen in melanoma). A wide range of IC fraction f_In is also seen, ranging from 0.076 in the breast cancer substrate (containing fibrotic areas and extensive necrosis) up to 0.846 for the non-cancerous liver. Finally, large luminal spaces in CRC substrates occupy a considerable portion of EC space, with areas equivalent to the space taken by hundreds of cells.

3.2 Characterisation of IC and EC diffusion

Fig. 3 visualises ADC_In and ADC_Ex as a function of diffusion gradient timing parameters δ and Δ, and for different values of the intrinsic IC and EC diffusivities (D_O, D_O). The figure reports ADC_In and ADC_Ex for two illustrative cases, i.e., a CRC case (substrate 4) and a non-cancerous liver substrate (substrate 2). The CRC features the presence of very small cells (mCS close to 6 μm), but relatively low cell density (f_In of 0.44), due to the presence of stroma and luminal spaces. For any value of D_O and D_O, as well any possible combination of the gradient timings δ and Δ, ADC_Ex is always considerably higher than ADC_In (maximum ADC_In of 0.19 μm²/ms, minimum ADC_Ex of 0.56 μm²/ms). The non-cancerous liver substrates instead features tight packing of large hepatocytes: f_In is higher than in the previous CRC substrate, and mCS is almost 15 μm. In this case, when D_O = D_O, then ADC_Ex is always comparable if not much higher than ADC_In. However, there are cases in which ADC_Ex is lower than ADC_In, provided that D_O is also lower than D_O and the diffusion time is short (for example, ADC_Ex = 0.64 for (δ, Δ) = (5 ms, 15 ms) and D_O = 1.5 μm²/ms; ADC_In = 0.74 for (δ, Δ) = (5 ms, 15 ms) and D_O = 2.2 μm²/ms). Supplementary Fig. S3 shows ADC_In and ADC_Ex at varying D_O and D_O, as a function of (δ, Δ) for an additional HCC substrate (substrate 14). Results sit in between those observed for the CRC and non-cancerous liver. ADC_Ex is consistently larger than ADC_In, as in the CRC case, but the difference between the two is not as large in the CRC case, which has a lower f_In.

Supplementary Fig. S4 visualises the dependence of ADC_Ex on the IC fraction f_In, for varying gradient separation and duration, and for an illustrative D_O of 2.5 μm²/ms. The figure shows that ADC_Ex decreases with increasing f_In, until it plateaus for f_In of roughly 0.75. ADC_Ex also shows a slight decrease with increasing diffusion time (note that its long time tails are known to be ~ ln(Δ)/Δ [Burcaw et al., 2015]), especially at high cell density (panel b in Supplementary Fig. S4). The functional form ADC_Ex = (1 − f_In) D_O for the long-time asymptotic limit agrees reasonably well with results from simulations for low and intermediate f_In, but deports considerably from those at higher f_In (f_In approximately equal to 0.7 or higher).

Fig. 4 shows scatter plots between ADC_In and CS distribution moments mCS, varCS and skewCS at varying diffusion gradient separation Δ. The figure refers to an illustrative case where δ and D_O have been fixed to 15 ms and 2.2 μm²/ms. There is a strong, positive correlation between ADC_In and mCS and varCS (Pearson’s r of 0.98 and 0.93 for Δ = 65 ms), and a strong negative correlation between ADC_In and skewCS (r = -0.78 for Δ = 65 ms). The dependence of ADC_In on the CS distribution moments is approximately linear and almost perfectly monotonic as far as mCS and varCS are concerned, while it is more
complex for skewCS.

3.3 Simulation-informed microstructural parameter inference

3.3.1 In silico data

Fig. 5 shows scatter density plots reporting on the quality of parameter estimation in silico. The figure refers to the prediction of parameters from forward model 1, which is compared to the standard analytical model in Eq. 6. It is apparent that f_{in} and $D_{0|in}$ are, respectively, the metrics that are the most/the least accurately predicted. Correlation coefficients between ground truth and predicted values are consistently higher for MC-informed fitting compared to fitting of an analytical model. While for both models such a correlation is very strong when f_{in} is concerned, it is moderate for MC-informed fitting ($r = 0.50$) and low for analytical model fitting ($r = 0.24$) regarding vCS_{ext}. For $D_{0|in}$ instead, it is weak for both approaches, although considerably higher for MC-informed fitting ($r = 0.17$ against 0.05). Interestingly, we also observe a moderate correlation between ground truth and predicted $D_{0|ex}$ for MC-informed fitting. Note that the analytical model in Eq. 6 enables the estimation of the EC apparent coefficient ADC_{ex}, and not of the intrinsic EC diffusivity D_{0ex}.

Supplementary Fig. S5, S6 and S7 report instead scatter density plots between ground truth and predicted parameters for forward model 2, which enables the prediction of CS mean, variance and skewness. The figures respectively report results for the three simulated protocols (PGSE-in, TRSE, PGSE-ex). For f_{in}, $D_{0|in}$ and $D_{0|ex}$, results are in line with what was seen for forward model 1. We observe a good agreement and a strong correlation between predicted and reference values for f_{in} in all cases (e.g., $r = 0.93$ for TRSE). For $D_{0|in}$, correlations are weak ($r = 0.36$ for PGSE-ex), while for $D_{0|ex}$ they are weak to moderate ($r = 0.40$ for PGSE-in). Regarding CS distribution moments, mCS is the metric that is most accurately predicted, with correlations varying from moderate ($r = 0.53$ for PGSE-in and 0.68 for TRSE) to strong ($r = 0.77$ for PGSE-ex). For varCS we observe moderate correlations between estimated and ground truth values (up to $r = 0.67$ for PGSE-ex), while for skewCS weaker correlations (highest correlation of $r = 0.29$ for TRSE).

3.3.2 Ex vivo data

Fig. 6 shows dMRI and co-localised HE images in the four breast specimens (one non-cancerous breast; three MMTV-PyM tumours, obtained at weeks 9, 11 and 14). Inspection of the HE images reveals that the specimens contain a variety of cytoarchitectural environments, with higher inter-sample and intra-sample heterogeneity. For example, the non-cancerous breast specimen features areas rich in stroma. Conversely, higher cell density compared to the non-cancerous case are observed in the three MMTV-PyM tumours. At late stages (week 14 tumour), widespread necrosis is also seen. Fig. 7 shows parametric maps from forward model 2 (namely: f_{in}, $D_{0|in}$, mCS, varCS, skewCS and $D_{0|ex}$) in the same breast specimens. The variability of cellular microarchitectures seen in Fig. 6 is reflected in the parametric maps. For example, reduced f_{in} is seen in areas compatible with necrosis within the week 14 tumour (ROI 2, Fig. 7). Additionally, higher f_{in} is seen in the week 11 tumour, compared to the non-cancerous breast. On histology, this contrast corresponds to presence of areas featuring high cellularity (Fig. 7, ROI 4), compared to stroma in the non-cancerous breast (Fig. 7, ROI 5). Changes in CS moments with respect to the non-cancerous breast are also seen, e.g., reduced mCS and varCS in areas compatible with presence of cell debris in necrosis (ROI 2, Fig. 7). Local variations of intrinsic IC and EC diffusivities $D_{0|in}$ and $D_{0|ex}$ are also seen. For example, $D_{0|in}$ is lower in areas with high f_{in} (e.g., in ROI 4 in the week 14 tumour), and $D_{0|ex}$ is the highest at the interface between specimens and agarose.

Supplementary Fig. S8 shows dMRI and HE data in a normal spleen and in splenomegaly secondary to late-stage MMTV tumour growth. The spleens exhibit a patchy structure in most dMRI metrics. The same pattern is seen in HE histology, where an alternation of white and red pulps (higher T-cell density in the white pulps, and lower T-cell density in the red pulps, which are instead rich in blood and iron) is seen.

Supplementary Fig. S9 shows results from the two kidney samples: one normal, and one collected following folic-acid induced injury. On histology, the former shows normal representation of all kidney structures, while the injured case shows proximal tubule alteration and extensive inflammation. In terms of dMRI metrics, the injured kidney shows increased f_{in} and reduced $D_{0|in}$ and $D_{0|ex}$ as compared to the normal case. Higher f_{in} is also seen in the injured kidney cortex as compared to its medulla, a finding that corresponds to higher cell density on visual inspection of histology stains.

Finally, Table 2 provides descriptive statistics (mean and standard deviation) for all dMRI metrics within the different ROIs, alongside quantitative histology indices from patches whose location matched the dMRI ROIs. Contrasts in histological metrics agree with dMRI in several cases. For example, histological mCS is lower in necrotic compared to non-necrotic areas in the week 14 breast tumour (ROI 2 vs 3), or in the spleens compared to the kidneys (ROI 6 compared to ROI 8). Histological f_{in} is higher in the week 9 breast tumour than in the non-cancerous breast (ROI 1 vs 5). In some cases, differences between dMRI and histology contrasts are also seen. For example, the low f_{in} in the healthy kidney underestimates considerably the corresponding f_{in} values from histology (ROI 8).

The table also reports Pearson’s correlation coefficients between dMRI metrics and histology. The correlation between histological and dMRI values is moderate for all metrics: f_{in}: $r = 0.694$, $p = 0.037$; mCS: $r = 0.671$, $p = 0.047$; varCS: $r = 0.510$, $p = 0.160$; skewCS: $r = 0.460$, $p = 0.212$. The strongest correlations are seen between MRI f_{in} and mCS with their histological counterparts.

3.3.3 In vivo data

Examples of parametric maps from forward model 2 obtained in vivo are shown in Fig. 8 in two patients (ovarian cancer liver metastases, scanned at 1.5T; endometrial cancer, scanned at 3T). Maps show intra-tumour variability. For example, in the ovarian cancer case, the largest liver metastasis features reduced f_{in} and mCS and increased $D_{0|ex}$ in the necrotic core compared to the tumour outer ring. For the endometrial cancer case, maps suggest the existence of different microstructural environments, i.e., areas with higher/lower f_{in} matching areas with lower/higher mCS. Inspection of histological images confirms the existence of heterogeneous cellular characteristics in both cases (Fig. 8). We observe presence of active can-
cer and necrosis in the ovarian cancer case, and presence of
necrotic areas with abundance of cell debris adjacent to areas
with high cellularity in the endometrial tumour. Supplementary
Table S1 summarises mean and standard deviation of all dMRI
metrics within the segmented tumours. The table reveals inter-
tumour heterogeneity: as an example, melanoma tumours show
the highest f_{ox}, with higher figures than endometrial and, even
more, CRC tumours. Among all tumours, melanoma cases are
the only ones exhibiting, on average, slightly negative skewCS.
For all other tumours, a positive mean skewCS is recorded.
Table 1: Properties of the substrates used for MC simulations, drawn on histological tissue coming from liver tumour biopsies from 10 cancer patients. Substrates 1 to 4 contain only non-cancerous hepatocytes. Substrates 5 to 9 contain colorectal cancer (CRC) tissue, featuring large luminal spaces or presence of fibrosis, as in substrate 6 and especially substrate 9. Substrates 10 to 12 contain a mix of non-cancerous and different concentrations of CRC cells. Substrates 13 to 15 are sampled from hepatocellular carcinoma (HCC) cases, with substrate 13 in particular containing HCC cells and necrosis, and substrate 15 taken from an area of extended necrosis with scattered cells and cell debris. Substrates 16 and 18 are ROIs of a melanoma liver metastasis. Finally, substrate 17 was taken from a breast cancer liver metastasis, and shows areas of necrosis and fibrosis.
Figure 2: Visualisation of four illustrative substrates used for MC diffusion simulations. Left column (panels (a), (d), (g), (j)): HE histological images. Central columns (panels (b), (e), (h), (k)): SVG files reconstructed with the Blender software package, showing different substrate features (e.g., cells and debris in green, vessels in red, lumina in dark blue). Right column (panels (c), (f), (i), (l)): histograms depicting the CS (i.e., cell diameter) distribution for each substrate, with summary statistics and with a Gamma distribution fit superimposed onto it (black solid line). From top to bottom: non-cancerous liver (substrate 4), colorectal cancer (substrate 8), breast cancer (substrate 17), melanoma (substrate 18).
Figure 3: Plots visualising IC/EC ADC (\(\text{ADC}_{\text{in}}\) and \(\text{ADC}_{\text{ex}}\)) as a function of the diffusion gradient duration \(\delta\) and separation \(\Delta\) and varying intrinsic IC/EC diffusivities \(D_{0\text{in}}\) and \(D_{0\text{ex}}\) for two representative substrates. (a) on top: CRC substrate, featuring presence of stroma and luminal spaces, as well as packing of small cells (substrate 4). (b): non-cancerous liver tissue, featuring the presence of tightly packed large hepatocytes (substrate 2). From left to right: substrate with properties, and \(\text{ADC}_{\text{in}}\) and \(\text{ADC}_{\text{ex}}\) for increasing values of \(D_{0\text{in}}\) and \(D_{0\text{ex}}\).

Figure 4: Relation between intracellular ADC and CS distribution moments, shown for \(D_{0\text{in}} = 2.2\,\mu m^2/\text{ms}\) and fixed gradient duration \(\delta = 15\,\text{ms}\) with increasing gradient separation \(\Delta\).
Figure 5: Scatter density plots between ground truth and estimated tissue parameters for MC-informed parameter estimation (forward model 1; panel (a) on top) and for standard NNLS fitting of a related hindered-restricted diffusion analytical model (panel (b), on the bottom). From left to right: IC fraction f_{in}, CS statistic vC_{cyl}, intrinsic IC diffusivity D_{0in}, intrinsic EC diffusivity D_{0ex} (only for MC-informed fitting on top). The plots also include the identity line for reference, and the Pearson’s correlation coefficient between ground truth and estimated parameter values. Results are shown for dMRI protocol PGSE-in.

Figure 6: Images from the breast tissue samples that were scanned ex vivo at 9.4T. Top (panel 1): $b = 0$ dMRI image and co-localised HE-stained section. From top left, clock-wise: week 9 MMTV-PyM breast tumour, non-cancerous breast, week 11 MMTV-PyM breast tumour, week 14 MMTV-PyM breast tumour.
Figure 7: Parametric maps from forward model 2 as obtained on the mouse breast specimens scanned ex vivo on a 9.4T system. First row: IC fraction \(f_{in} \) (a); mean CS index mCS (b); variance of CS varCS (c). Second row: skewness of the CS distribution skewCS (d); intrinsic IC diffusivity \(D_{0|in} \) (e); intrinsic EC diffusivity \(D_{0|ex} \) (f). For each metric, we show results on the four breast specimens. Moving clock-wise: week 9 MMTV-PyM breast tumour (top left), non-cancerous breast (top right), week 11 MMTV-PyM breast tumour (bottom right), week 14 MMTV-PyM breast tumour (bottom left).
<table>
<thead>
<tr>
<th>Description</th>
<th>f_{in}</th>
<th>f_{in} - histology</th>
<th>mCS (μm)</th>
<th>mCS - histology (μm)</th>
<th>varCS (μm2)</th>
<th>varCS - histology (μm2)</th>
<th>skewCS</th>
<th>skewCS - histology</th>
<th>D_{int} (μm2/ms)</th>
<th>D_{ext} (μm2/ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROI 1: Breast tumour - Week 9</td>
<td>0.64</td>
<td>0.69</td>
<td>14.9</td>
<td>7.5</td>
<td>16.2</td>
<td>2.3</td>
<td>0.310</td>
<td>0.312</td>
<td>0.80</td>
<td>1.40</td>
</tr>
<tr>
<td>ROI 2: Breast tumour - Week 14</td>
<td>0.02</td>
<td>0.03</td>
<td>7.5</td>
<td>4.0</td>
<td>3.7</td>
<td>0.5</td>
<td>0.345</td>
<td>0.228</td>
<td>1.75</td>
<td>2.06</td>
</tr>
<tr>
<td>ROI 3: Breast tumour - Week 14</td>
<td>0.70</td>
<td>0.72</td>
<td>15.3</td>
<td>9.0</td>
<td>15.9</td>
<td>3.6</td>
<td>0.295</td>
<td>-0.214</td>
<td>0.90</td>
<td>1.42</td>
</tr>
<tr>
<td>ROI 4: Breast tumour - Week 11</td>
<td>0.48</td>
<td>0.64</td>
<td>13.1</td>
<td>7.2</td>
<td>12.7</td>
<td>2.8</td>
<td>0.252</td>
<td>-0.004</td>
<td>1.01</td>
<td>0.80</td>
</tr>
<tr>
<td>ROI 5: Non-cancerous breast</td>
<td>0.02</td>
<td>0.11</td>
<td>6.5</td>
<td>6.3</td>
<td>5.7</td>
<td>2.0</td>
<td>0.614</td>
<td>0.681</td>
<td>1.63</td>
<td>2.50</td>
</tr>
<tr>
<td>ROI 6: Healthy spleen</td>
<td>0.34</td>
<td>0.75</td>
<td>8.1</td>
<td>4.4</td>
<td>5.1</td>
<td>1.0</td>
<td>0.126</td>
<td>0.244</td>
<td>1.47</td>
<td>2.26</td>
</tr>
<tr>
<td>ROI 7: Splenomegaly</td>
<td>0.40</td>
<td>0.64</td>
<td>6.2</td>
<td>4.0</td>
<td>4.6</td>
<td>0.7</td>
<td>0.506</td>
<td>0.131</td>
<td>1.80</td>
<td>2.31</td>
</tr>
<tr>
<td>ROI 8: Healthy kidney</td>
<td>0.18</td>
<td>0.82</td>
<td>12.3</td>
<td>10.1</td>
<td>12.5</td>
<td>6.6</td>
<td>0.246</td>
<td>-0.970</td>
<td>1.61</td>
<td>1.80</td>
</tr>
<tr>
<td>ROI 9: Injured kidney</td>
<td>0.62</td>
<td>0.66</td>
<td>13.6</td>
<td>5.0</td>
<td>15.7</td>
<td>1.3</td>
<td>0.249</td>
<td>0.085</td>
<td>1.18</td>
<td>1.40</td>
</tr>
</tbody>
</table>

Correlations

| | 0.694, p-value=0.037 | 0.671, p-value=0.047 | 0.510, p-value=0.160 | 0.460, p-value=0.212 |

Table 2: Summary statistics of metrics from forward model 2 and from histology within different ROIs drawn on the breast, kidney and spleen tissue scanned ex vivo on a pre-clinical 9.4T MRI system. The table also includes Pearson’s correlation coefficients between each dMRI metric and its direct histological counterpart.
Figure 8: Parametric maps from forward model 2 as obtained on two representative patients in vivo, scanned on two different MRI scanners. Panel 1 on top: maps shown in Case G (liver metastases from ovarian cancer; 3T GE SIGNA Pioneer scanner). Panel 2 on the bottom: Case A (endometrial cancer; 1.5T Siemens Avanto scanner). From left to right, each panel reports a $b = 0$ image with the tumour outline (a) and then metrics f_{in} (b), mCS (c), varCS (d), skewCS (e), $D_{0|in}$ (f) and $D_{0|ex}$ (g). Below the metrics, details from a biopsy taken from one of the imaged tumours are also included (HE staining).
4 Discussion

4.1 Summary and key findings

This article presents a framework for MC diffusion simulations within cellular environments reconstructed from histology. We use it to study diffusion patterns in the liver, and to enable the non-invasive estimation of heretofore unexplored microstructural properties. Our work has four main contributions. Firstly, it describes a practical step-by-step procedure, based entirely on freely available software, to reconstruct meshed cellular environments from histological images, which can be fed to popular MC diffusion simulators. Secondly, it provides the dMRI community with unique reference values of histology-derived cell size and density in non-cancerous and cancerous human liver tissues. Information of this type, not easily found in the literature, is essential to inform the design of new dMRI signal models, or to optimise acquisition protocols for real-world imaging. Thirdly, the simulations performed within the reconstructed cellular environments shed light onto IC and EC diffusion, e.g., highlighting that for clinically realistic diffusion times, the EC ADC is higher than the IC ADC, regardless of the intrinsic IC/EC diffusivity. The measured IC and EC characteristics could be used, for example, to inform biophysically meaningful constraints in dMRI parameter estimation. Lastly, our paper showcases a numerical approach for dMRI parameter estimation informed directly by the simulated MC diffusion signals. The approach is shown to outperform classical fitting of analytical signal models, and it delivers innovative metrics, such as moments of the CS distribution or estimates of the intrinsic EC diffusivity. CS distribution moment estimates are shown to be meaningful constraints in dMRI parameter estimation. Lastly, the intrinsic IC/EC diffusivity. The measured IC and EC characteristics are related to different histological properties of the substrates themselves. A number of key observations can be made. For example, we observed that for clinically-relevant diffusion times, the IC ADC (ADC_{IC}) was smaller than the EC ADC (ADC_{EC}), regardless of the value of the intrinsic IC/EC diffusivities (D_{0,IC}, D_{0,EC}). This fact held true even for the non-cancerous liver substrates, which feature the highest values of IC fraction (f_{IC}), and hence the lowest ADC_{ex}. Only in very a limited number of extreme cases, e.g., for very short PGSE diffusion times and very low intrinsic diffusivities, ADC_{EC} was slightly lower than ADC_{IC}. This was observed, for example, for Δ = 15 ms, and when D_{0,EC} = D_{0,IC} \approx 0.8 \mu m^2/ms. Considering that this scenario is likely closer to what can be expected for ex vivo preclinical MRI, rather than in vivo clinical imaging, we deduce that model fitting constraints of the type ADC_{EC} < ADC_{IC} (as in [White et al., 2014, Feng et al., 2021, Conlin et al., 2023]) appear to be biologically plausible for in vivo clinical application, and may thus be useful to better disentangle IC from EC diffusion signals.

4.4 Characterisation of IC and EC diffusion

We used the proposed MC simulation framework to synthesise dMRI signals for routine PGSE protocols that could be realistically implemented in pre-clinical and clinical settings. This allowed us to relate directly key features of the dMRI signal decay, in terms of an IC and EC ADC metric, to the histological properties of the substrates themselves. A number of key observations can be made. For example, we observed that for clinically-relevant diffusion times, the IC ADC (ADC_{IC}) was smaller than the EC ADC (ADC_{EC}), regardless of the value of the intrinsic IC/EC diffusivities (D_{0,IC}, D_{0,EC}). This fact held true even for the non-cancerous liver substrates, which feature the highest values of IC fraction (f_{IC}), and hence the lowest ADC_{ex}. Only in very a limited number of extreme cases, e.g., for very short PGSE diffusion times and very low intrinsic diffusivities, ADC_{EC} was slightly lower than ADC_{IC}. This was observed, for example, for Δ = 15 ms, and when D_{0,EC} = D_{0,IC} \approx 0.8 \mu m^2/ms. Considering that this scenario is likely closer to what can be expected for ex vivo preclinical MRI, rather than in vivo clinical imaging, we deduce that model fitting constraints of the type ADC_{EC} < ADC_{IC} (as in [White et al., 2014, Feng et al., 2021, Conlin et al., 2023]) appear to be biologically plausible for in vivo clinical application, and may thus be useful to better disentangle IC from EC diffusion signals.

The analysis of EC diffusion has also allowed us to investigate the relationship between ADC_{EC} and f_{EC}. We observed a marked reduction of ADC_{EC} for increasing f_{EC} in line with well-known long-time asymptotic limits, as for example ADC_{EC}/D_{0,EC} = (1 - f_{EC}) [Reynaud, 2017]. However, our plots also revealed differences between the (1 - f_{EC}) limit and the observed dependence of ADC_{EC} on f_{EC}. First, ADC_{EC} varied with the diffusion time, albeit slightly. Second, ADC_{EC} tended to saturate to approximately ADC_{EC} \approx 0.3D_{0,EC} for high cell density, diverging considerably from the monotonic decrease predicted by the asymptotic limit. In view of these results, we conclude that asymptotic limits such as ADC_{EC}/D_{0,EC} = (1 - f_{EC}) only provide a crude approximation of the actual dependence of ADC_{EC} on f_{EC} for clinically achievable diffusion times, while also failing to capture the log-time tail of the diffusion-time dependence of ADC_{EC} [Burcaw et al., 2015]. Therefore, their use as parameter constraints may lead to modelling inaccuracies, especially in presence of tight cell packing.
Finally, our synthetic signals enabled the assessment of the dependency of the ADC\textsubscript{in} on the characteristics of the CS distribution. Scatter plots and correlation analyses demonstrated that key moments of the CS distribution, namely, its mean, variance and skewness, are encoded in ADC\textsubscript{in}, for the typical cell diameters considered here. This is apparent, for example, by noting that ADC\textsubscript{in} increases with increasing mCS and varCS at fixed diffusion time \((\text{e.g., } \text{Pearson’s } r = 0.98 \text{ for } \Delta = 65 \text{ ms for mCS})\), and that it shows a marked diffusion time dependence. To put this trends into context, we notice that ADC\textsubscript{in} decreases from approximately 0.35 to 0.2 \(\mu m^2/\text{ms}\) when the gradient separation \(\Delta\) increases from 35 to 65 ms, given an average mCS of roughly 12 \(\mu m\), and for \(D_{0\text{in}} = 2.2 \mu m^2/\text{ms}\). This decrease in ADC would translate to an increase in dMRI signal attenuation \(s/s(b = 0)\) from approximately 0.41 to 0.48 (17% increase), even for a moderate \(b = 1500 \text{s/mm}^2\), assuming ADC\textsubscript{cyt} \(\approx 1.0 \mu m^2/\text{ms}\) and \(f_{\text{in}} \approx 0.5\). For comparison, note that at a conservative \(b = 0\) SNR of 30 (following post-processing), the signal fluctuation is of the order of \(\sigma/s(b = 0) = 1/\text{SNR} \approx 0.033\), and the noise floor the order of \(\eta \approx 1.25\sigma = 0.042\) [Jones and Basser, 2004]. These observations suggest that the large size of cells found in body tissues, \textit{e.g.}, in liver and liver tumours, may make it feasible to resolve key characteristics of the CS distribution in clinical settings, that is, without relying on ultra-strong gradient systems as required for axon diameter measurement in the brain [Nilsson et al., 2017]. This key result motivates the need for novel microstructural models that enable body CS distribution mapping in clinical settings, as discussed in the following sections.

4.5 Simulation-informed microstructural parameter inference

We investigated whether synthetic signals from our framework can be used to devise new strategies for CS distribution mapping, urgently sought for cell population profiling in oncology [Jiang et al., 2020a, Hoffmann et al., 2023]. To this end, we interpolated the discrete dictionary of paired examples of tissue parameters and synthetic dMRI signals using RBF regressors. This provided numerical forward models that do not rely on approximated analytical functional forms for the IC/EC signal, \textit{e.g.}, restricted diffusion within cells of regular shape and equal size [Panagiotaki et al., 2015, Jiang et al., 2020b], or Gaussian EC diffusion. Such forward models can be easily embedded into routine NNLS fitting, based on likelihood maximisation [Panagiotaki et al., 2012].

We compared the performance of our approach in predicting a single cell diameter statistic [Veraart et al., 2020] (\(\text{CS}_{\text{xy}}\)) against standard analytical approaches based on restricted diffusion within cylinders. Results not only point towards the superiority of our approach in \(\text{CS}_{\text{xy}}\) estimation, but also show benefit in the estimation of other diffusion properties, such as the intrinsic cytosolic diffusivity or the IC fraction. We also went on and tested whether the approach can be deployed for geometries and dMRI sequences for which analytical expressions may not be readily available, provided that they can be simulated. We demonstrated this here, in forward model 2, for the estimation of the intrinsic EC diffusion coefficient and the first three CS distribution moments, without imposing any analytical functional form to the CS distribution. We observe satisfactory performances in the estimation of \(D_{0\text{ex}},\) mCS and varCS, \textit{i.e.}; a moderate correlation between ground truth and estimated values for EC diffusivity \(D_{0\text{ex}}\) \((r \text{ up to } 0.40)\); strong to very strong correlations for mCS \((r \text{ up to } 0.77)\); moderate to strong for varCS \((r \text{ up to } 0.67)\). For skewCS, while performances are worse (correlations up to \(r = 0.29\)), they are comparable to those observed for other metrics, as the IC cytosol diffusivity \(D_{0\text{in}}\) \((r = 0.36)\). Therefore, simulations suggest that our skewCS indices, while difficult to estimate, may still suffice to detect strong contrasts in CS skewness.

After demonstrating CS distribution mapping \textit{in silico}, we tested whether it is also feasible on actual MRI scans. For this experiment, we analysed both pre-clinical \textit{ex vivo} data from 8 mouse tissue samples, as well as \textit{in vivo} scans acquired on cancer patients with two clinical MRI systems. Notably, the tissue scanned on the pre-clinical system was considerably different from that used to build the numerical signal models (\textit{e.g.}, mouse breast tumours, kidneys, and spleens, versus human liver parenchyma and liver tumours), and thus served as useful \textit{out-of-distribution} test bed for generalisation. The parametric maps obtained \textit{ex vivo} show a number of interesting and potentially relevant inter-sample and intra-sample contrasts. In general, several of such contrasts were confirmed by histology both qualitatively and quantitatively, such as reductions of \(f_{\text{in}}\) due to necrosis in an advanced breast tumour (14-week MMTV PyMT mouse), or presence of small cells in the spleens. Nevertheless, some differences between dMRI and histology were also seen: this was the case, for example, of discrepancies in \(f_{\text{in}}\) values in the healthy kidney (low in dMRI, high in histology). Overall, these findings led to moderate correlations between dMRI and histological properties \(f_{\text{in}},\) mCS, varCS, and skewCS, \textit{et statistically significant for }\(f_{\text{in}}\) and mCS, \textit{These correlations are encouraging given i) the relatively small size of our sample; ii) the inherent difficulty of ensuring accurate co-localisation between dMRI and histology; and iii) given the differences between the substrates used to build the models and the tissue imaged }\textit{ex vivo}. Importantly, challenges in segmenting cell boundaries accurately over large field of views, as well as unaccounted water exchange [Jiang et al., 2022, Gardier et al., 2023] and intra-compartmental relaxation [Lemberski et al., 2018, Palombo et al., 2023], may have also contributed to these results (note for example that the correlations observed between dMRI and histology for metrics such as \(f_{\text{in}}\) and mCS are slightly lower than what could be expected from simulations in Supplementary Fig. S7). All in all, the \textit{ex vivo} experiments suggest that MC-informed dMRI modelling may provide new biomarkers of tissue microstructure that are informed directly by histology, and which may shed new light onto the presence of different cell populations in a voxel, through CS distribution mapping. Metrics such as skewCS may have important applications in non-invasive cell profiling [Hoffmann et al., 2023], which we reserve to future studies.

Lastly, we demonstrated simulation-driven CS distribution mapping in a pilot cohort of patients scanned with two different MRI machines. While this demonstration was merely qualitative, it still highlights the potential utility of our approach. dMRI maps show key inter-tumour and intra-tumour contrasts, which are plausible given the high microstructural heterogeneity seen on HE biopsies of the same tumours. For example, areas lying within tumour necrotic cores show reduced \(f_{\text{in}}\) and mCS, compatible with necrosis and cell debris. Moreover, melanoma tumours consistently show negative skewCS (in agreement with Table 1) as well as the highest \(f_{\text{in}}\) values, which may point towards their known malignity. Overall, the plausible metric contrasts seen in both MRI machines, the fact that maps were obtained with 15-minute scans, and without relying on custom
dMRI sequences or high-performance gradient systems, point towards the feasibility of our simulation-informed models in clinical settings.

4.6 Methodological considerations and limitations

We acknowledge some potential limitations of our approach. Firstly, while care has been taken when segmenting cells manually on histology, some segmentations may feature inaccuracies, e.g., at the cell-cell interfaces. This was due to the well-known challenge of visualising accurately cell boundaries on 2D HE stains.

Secondly, we focused here on 2D diffusion within cylindrical geometries. This was due to the availability of a large data set of HE-stained sections in human and mouse tissue, which is inherently 2D. In future, we plan to perform simulations in fully 3D substrates, reconstructed, for example, on 3D micrographs [Lee et al., 2020b] or on 3D confocal microscopy [Khan et al., 2015].

Thirdly, in this study we illustrated the benefits of relaxing some of the assumptions underlying standard analytical diffusion models through numerical simulations. However, we point out that our models are not free of assumptions, since they inherently inherit the hypotheses made to conduct the simulations themselves. In the future, we plan to increase the complexity of the simulations, and account for important aspects of tissue microstructure so far neglected, namely: variability in intrinsic diffusivity among cells or between lumina and extra-cellular space; transtomyoleral water exchange [Jiang et al., 2022, Gardier et al., 2023]; differences in intracompartmental relaxation properties [Lembersky et al., 2018, Fieremans and Lee, 2018, Palombo et al., 2023].

Furthermore, we acknowledge that our signal models do not account for contributions coming from intra-vessel incoherent flow within capillaries [Le Bilhan et al., 1986], which we did not simulate. For this reason, we only fitted them to $b > 100$ s/mm2 measurements in vivo, where vascular signals are negligible [Cui et al., 2015]. In future, we aim to increase the realism of our simulations by including a third compartment of capillary perfusion, alongside intra-extra-cellular diffusion.

Additionally, we remark that our in vivo demonstration, while promising, was merely qualitative. Therefore, it requires further validation through MRI-histology comparisons in larger cohorts, which we warrant in future work.

Lastly, in this work we did not study advanced diffusion encodings such as oscillating gradients [Jiang et al., 2020b], double diffusion [Shemesh et al., 2016] or b-tensor [Westin et al., 2016] encoding, since we focused on off-the-shelf, widespread clinical protocols, which are based on PGSE. In future we aim to simulate such more advanced approaches, since they can provide more detailed information on cancer microstructure than routine PGSE.

5 Conclusions

Our practical framework enables MC diffusion simulations within realistic cellular environments reconstructed directly from HE histology. The realism of the simulations offers unique opportunities to study water diffusion in the body, and to design innovative biophysical dMRI models, which we showcase through CS distribution mapping. The new CS mapping method, demonstrated on both ex vivo mouse data and on in vivo cancer patients, provides histologically-meaningful indices within clinically-acceptable scan times. It may therefore play a key role in the development of new essays for the non-invasive characterisation of solid tumors in the body, which are sought in several oncological applications.

Acknowledgements

VHIO would like to acknowledge: the State Agency for Research (Agencia Estatal de Investigación) for the financial support as a Center of Excellence Severo Ochoa (CEX2020-001024-S/AEI/10.13039/501100011033), the Cellflex Foundation for providing research facilities and equipment and the CERCA Programme from the Generalitat de Catalunya for their support on this research. This research has been supported by PREdict, sponsored by AstraZeneca. This study has been co-funded by the European Regional Development Fund/European Social Fund ‘A way to make Europe’ (to R.P.L.), and by the Comprehensive Program of Cancer Immunotherapy and Immunology (CAIMI), funded by the Banco Bilbao Vizcaya Argentaria Foundation Foundation (FBBVA, grant 89/2017). R.P.L. is supported by the “la Caixa” Foundation CaixaResearch Advanced Oncology Research Program, the Prostate Cancer Foundation (18YOUN19), a CRIS Foundation Talent Award (TALENT19-05), the FERO Foundation through the XVIII Fero Fellowship for Oncological Research, the Instituto de Salud Carlos III-Investigation en Salud (PI18/01395 and PI21/01019), the Asociación Española Contra el Cáncer (AECC) (PRYCO211023SER) and the Generalitat de Catalunya Agency for Management of University and Research Grants of Catalonia (AGAUR) (2023PROD00178). The project that gave rise to these results received the support of a fellowship from “la Caixa” Foundation (ID 100010434). The fellowship code is “LCF/BQ/PR22/11220010” (funding F.G.A., A.G.). This research has received support from the Beatriz de Pinós Postdoctoral Program from the Secretariat of Universities and Research of the Department of Business and Knowledge of the Government of Catalonia, and the support from the Marie Skłodowska-Curie COFUND program (BP3, contract number 801370; reference 2019 BP 00182) of the H2020 program (to K.B.). M.P. is supported by the UKRI Future Leaders Fellowship MR/T020296/2. A.G. is supported by a Severo Ochoa PhD fellowship (PRE2022-102586)

Competing interests

This study has received support by AstraZeneca. K.B. was a researcher at VHIO (Barcelona, Spain), and is now an employee of AstraZeneca (Barcelona, Spain). AstraZeneca was not involved in the acquisition and analysis of the data, interpretation of the results, or the decision to submit this article for publication in its current form.
Data and code availability

The MC simulation framework is made freely available as a GitHub repository at the permanent address: https://github.com/radiomicsgroup/dMRIMC. The repository includes rich sets of synthetic signals that can be used to inform model fitting. The code for simulation-informed fitting is freely available as part of BodyMRITools at the permanent address: https://github.com/fragrussu/bodymritools (script mri2micron_dctml.py). The ex vivo mouse data will be soon released on the Radiomics Group GitHub web site (https://radiomicsgroup.github.io/data). Researchers interested in early access can contact the corresponding author Raquel Perez-Lopez (r.perez@vhio.net). The in vivo human data cannot be made freely available at this stage due to ethical restrictions.

References

Appendix

Gamma distribution fit

For each substrate we fitted a Gamma distribution to the set of individual cell diameters \(\{D_1, D_2, \ldots \} \) obtained from manual segmentations. The distribution is defined as

\[
p(D; h, c) = \frac{1}{\Gamma(h) c^h} D^{h-1} e^{-D/c}.
\]

Above, \(\int_0^\infty p(D; h, c) dD = 1 \), \(D \) is the generic cell diameter (units: \(\mu m \)), \(c \) is the scale parameter (units: \(\mu m \)), \(h \) is the shape parameter (dimensionless), and \(\Gamma(z) \) is the Gamma function

\[
\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt, \quad \Re(z) > 0.
\]

Animal models and \textit{ex vivo} MRI and histology

This section summarises the procedures followed to obtain breast, spleen and kidney tissue in mice for \textit{ex vivo} MRI.

Mice were housed at the Specific Pathogen-Free barrier area of the Vall d’Hebron Institute of Oncology (VHIO). All animal procedures were approved by the Animal Care unit and the Ethics Committee for Animal Experimentation (CEEA) of the Vall d’Hebron Research Institute (VHIR) and the Generalitat de Catalunya, and were performed according to the European legal framework for research animal use and bioethics. Animals were monitored daily and euthanised upon signs of humane endpoints. Two mouse models were used, generating breast, spleen and kidney samples. These were processed for further histological analyses, as part of ongoing studies at VHIO. A dMRI scan of the tissue was performed at room temperature before inclusion in paraffin for histology.

Briefly, collected tissues were fixed for 24 hours in buffered 4% formaldehyde, transferred to PBS solution and embedded in 1% agarose gel dissolved in PBS. Embedded samples were kept in PBS until dMRI. After dMRI, samples were transferred to 70% ethanol for 24 hours and then embedded in paraffin. The whole samples were sectioned and were stained with HE. HE staining was performed on 3 \(\mu m \) paraffin sections in a Robust carousel tissue stainer (Slee Medical) according to common methods. Digital images of the HE-stained sections were acquired on a Hamamatsu C9600-12 scanner (resolution: 0.45 \(\mu m \)). Breast and spleen samples where obtained from the mouse mammary tumour virus (MMTV) polyomavirus middle T antigen (PyMT) transgenic mouse model. Kidney samples were obtained from a folic acid-induced kidney injury mouse model.

MMTV-PyMT transgenic mouse model. The MMTV-PyMT FVB/NJ mouse strain [Guy et al., 1992] is commonly employed to mimic human breast cancer progression [Attalla et al., 2021]. The model relies on the MMTV long terminal repeat promoter, which drives the expression of the antigen of PyMT, a potent oncogene. These transgenic mice are viable despite loss of lactational ability, which is coincident with the transgene expression. Breast tumours arise in virgin and breeder females as well as in males starting from 9 weeks of age. Splenomegaly is also observed at the latter stages of the tumour growth. For this study, we used 4 MMTV-PyMT FVB/NJ female mice, which were euthanised by CO\(_2\) asphyxiation at different time points to collect the following samples: non-cancerous breast and non-pathological spleen (2 weeks); a breast tumour at weeks 9, 11 and 14; an enlarged spleen (splenomegaly) at late stage cancer (14 weeks).

Folic acid-induced kidney injury. The folic acid-induced kidney injury mouse model is based on the fact that high doses of folic acid are toxic, despite being the same substance beneficial at low doses [Yan, 2021]. For this study, we used two male mice (C57BL/6 WT, approximately 9 weeks old), which were intra-peritoneally injected with a single dose of vehicle (300 mM NaHCO\(_3\)) or with folic acid (250 mg/kg). 30 days after the injection, mice were euthanised by CO\(_2\) asphyxiation and the kidneys were collected for downstream processing.
Supplementary Material

Figure S1: Illustration of the pulsed-gradient spin echo (PGSE, (a) on top) and diffusion-weighted (DW) twice-refocussed spin echo (TRSE, (b), on the bottom) sequences used in this study for both simulations and ex vivo/in vivo imaging.

Figure S2: The dataset of histological patches from HE-stained biopsies that were manually segmented to reconstruct substrates for Monte Carlo diffusion simulations. NC: non-cancerous liver; CRC: colorectal cancer; HCC: hepatocellular carcinoma.
Figure S3: Plots visualising IC/EC ADC (ADC$_{in}$ and ADC$_{ex}$) as a function of the diffusion gradient duration δ and separation Δ and varying intrinsic IC/EC diffusivities $D_{0|in}$ and $D_{0|ex}$ for a HCC substrate (substrate 14). From left to right: substrate with properties, and ADC$_{in}$ and ADC$_{ex}$ for increasing values of $D_{0|in}$ and $D_{0|ex}$.

Figure S4: Plots showing the dependence of the EC ADC ADC$_{ex}$ with respect to f_{in} across substrates. Fig (a): From left to right, results from increasing values of the gradient duration δ are reported. In each plot, smooth curves are obtained by interpolating results from all substrates. These were coloured depending on the gradient separation Δ. Reference values from $ADC_{ex}/D_{0|ex} = (1 - f_{in})$ are also shown. To generate this figure, $D_{0|ex} = 2.5 \, \mu m^2/ms$ was used. Fig (b): This plot shows the time dependence of $D_{0|ex}$. For $\Delta \in [35, 65]$ there is practically no t-dependence.
Figure S5: Scatter density plots between ground truth and estimated tissue parameters for MC-informed parameter estimation (forward model 2) and dMRI protocol PGSE-in. Each plot corresponds to a metric. From the top left corner, in clock-wise order: IC fraction \(f_{in} \), mean CS index, variance of CS \(\text{varCS} \), intrinsic EC diffusivity \(D_{0ex} \), intrinsic IC diffusivity \(D_{0in} \), skewness of CS distribution \(\text{skewCS} \). The plots also include the identity line for reference, and the Pearson’s correlation coefficient between ground truth and estimated parameter values. Results are shown for dMRI protocol PGSE-in.

Figure S6: Scatter density plots between ground truth and estimated tissue parameters for MC-informed parameter estimation (forward model 2) and dMRI protocol TRSE. Each plot corresponds to a metric. From the top left corner, in clock-wise order: IC fraction \(f_{in} \), mean CS index, variance of CS \(\text{varCS} \), intrinsic EC diffusivity \(D_{0ex} \), intrinsic IC diffusivity \(D_{0in} \), skewness of CS distribution \(\text{skewCS} \). The plots also include the identity line for reference, and the Pearson’s correlation coefficient between ground truth and estimated parameter values. Results are shown for dMRI protocol TRSE.
Figure S7: Scatter density plots between ground truth and estimated tissue parameters for MC-informed parameter estimation (forward model 2) and dMRI protocol PGSE-ex. Each plot corresponds to a metric. From the top left corner, in clock-wise order: IC fraction f_{in}, mean CS index, variance of CS varCS, intrinsic IC diffusivity $D_{0|\text{in}}$, intrinsic EC diffusivity $D_{0|\text{ex}}$, skewness of CS distribution skewCS. The plots also include the identity line for reference, and the Pearson’s correlation coefficient between ground truth and estimated parameter values. Results are shown for dMRI protocol PGSE-ex.

*Figure S7: Scatter density plots between ground truth and estimated tissue parameters for MC-informed parameter estimation (forward model 2) and dMRI protocol PGSE-ex. Each plot corresponds to a metric. From the top left corner, in clock-wise order: IC fraction f_{in}, mean CS index, variance of CS varCS, intrinsic IC diffusivity $D_{0|\text{in}}$, intrinsic EC diffusivity $D_{0|\text{ex}}$, skewness of CS distribution skewCS. The plots also include the identity line for reference, and the Pearson’s correlation coefficient between ground truth and estimated parameter values. Results are shown for dMRI protocol PGSE-ex.**
Figure S8: MRI and histological results as obtained on two mouse spleens scanned *ex vivo* on a 9.4T system. Right: $b = 0$ image, co-localised HE-stained section, and high-resolution histological patches. Left: parametric maps from forward model 2. First row: IC fraction f_{in} (a); mean CS index mCS (b); variance of CS $varCS$ (c). Second row: skewness of the CS distribution $skewCS$ (d); intrinsic IC diffusivity $D_{0,icin}$ (e); intrinsic EC diffusivity $D_{0,icex}$ (f). For each metric, we show results on both samples: Normal spleen (top), splenomegaly (bottom).
Figure S9: MRI and histological results as obtained on two mouse kidneys scanned \textit{ex vivo} on a 9.4T system. Left: \(b = 0 \) image, co-localised HE-stained section, and high-resolution histological patches. Right: parametric maps from forward model 2. First row: IC fraction \(f_\text{i} \) (a); mean CS index mCS (b); variance of CS varCS (c). Second row: skewness of the CS distribution skewCS (d); intrinsic IC diffusivity \(D_\text{i} \) (e); intrinsic EC diffusivity \(D_\text{ex} \) (f). We show again results on both samples: Normal kidney (top), folic-acid induced kidney injury (bottom).
Table S1: Mean and standard deviation of metrics from forward model 2 computed from in vivo dMRI scans, within manually segmented tumours. The table reports results from 9 cancer patients suffering from advanced solid tumours and participating in ongoing imaging studies. The table also includes summary clinical information, namely: patients’ age, sex, primary cancer, biopsy location, and MRI scanner used for in vivo imaging. Patients’ age is given in 5 year intervals.