Facilitating the Virtual Exercise Games for Youth with T1D (ExerT1D) Peer Intervention: Protocol
Development and Feasibility

Garrett I. Ash¹,², Soohyun Nam³, Matthew Stults-Kolehmainen⁴,⁵, Adrian D. Haughton¹,⁶, Carolyn Turek⁷, Annette Chmielewski¹, Michael Shelver¹, Julien S. Baker⁸, Stuart A. Weinzimer³,⁹, Laura M. Nally⁹

¹Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
²Center for Pain, Research, Informatics, Medical Comorbidities and Education Center (PRIME), VA Connecticut Healthcare System, West Haven, CT, United States
³Yale School of Nursing, Orange, CT, United States
⁴Center for Weight Management, Yale New Haven Hospital, North Haven, CT, United States
⁵Department of Biobehavioral Sciences, Teachers College – Columbia University, New York, NY, United States
⁶Department of Health and Movement Sciences Programs, Southern Connecticut State University, New Haven, CT, United States
⁷Child Study Center, Yale School of Medicine, New Haven, CT, United States
⁸Centre for Health and Exercise Science Research, Population Health and Medical Informatics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
⁹Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States

Correspondence:
Garrett I. Ash, PhD
Yale School of Medicine, Section of General Internal Medicine
Building 35A
950 Campbell Avenue
West Haven, CT 06516
Phone: 203-444-3079
Fax: 203-937-3829
Email: garrett.ash@yale.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background

Barriers to moderate-to-vigorous physical activity (MVPA) for adolescents with type 1 diabetes (T1D) include physiology, transition to autonomy, and diabetes-specific stigma. Opportunities for T1D peer activities with T1D role model support are limited. To address this need, our single-arm pilot study tested the Home-based Virtual Activity Program for Youth with T1D (HAP-V-T1D) for feasibility.

Methods

Participants (n=15) were mean age 15.6 [SD 1.5] years, 7 non-Hispanic white, 6 female, 2 non-binary, mean A1c 8.9%±2.2%. The program included an MVPA videogame, physician-led education regarding managing T1D around MVPA, objective habitual MVPA goal-setting, and T1D management skills guided by young adult instructors living with T1D.

Results

For feasibility, 13/15 participants attended 10/12 sessions. Participants' perceptions of the program, comfort, instructors, and group cohesion were rated high/very high (4.2±0.5 to 4.8±0.3 out of 5). Motivation for the videogame was also high (4.1±0.4 out of 5). Instructor-adolescent interactions related to building T1D management skills were rated as excellent for 78% of sessions. Similarly, sharing knowledge and experiences were rated as excellent for 68% of sessions. However, adolescent-adolescent interactions were poor (communication 29% excellent, peer interactions 8% excellent). The most reported barriers to participation were negative mood and oversleeping. No participants experienced diabetic ketoacidosis, severe hypoglycemia, or injuries during the study period. Compared to baseline, glycemic metrics appeared to decrease during and post intervention (d= -0.72, -1.12).

Conclusion

HAP-V-T1D facilitated unprecedented T1D peer support achievements by engaging diverse youth with T1D in an MVPA program led by T1D role models. Larger studies are needed to assess if this intervention can improve glycemic measures and reduce diabetes-specific stigma.

Abstract word count: 264 (limit 300)
INTRODUCTION

The adolescent years present unique challenges to youth with type 1 diabetes (T1D). While it is estimated that only 20% of youth meet the recommended A1c level below 7%, it is well-known that intensive management of T1D is necessary for long-term health.1,2 Interventions aimed at improving health outcomes need to be introduced during the transition period of adolescence when youth are developing the skills they will need as adults to manage T1D. Navigating this transitional time presents challenges for adolescents with diabetes, creating a vital need for interventions to address T1D self-management support for adolescents.

Moderate-to-vigorous intensity physical activity is an essential complement to insulin therapy in T1D that has been demonstrated to improve overall physical (body composition, muscle strength, and cardiopulmonary fitness) and mental health, as well as diabetes-specific risks, including improving glycemic management, reducing insulin resistance, and potentially attenuating risk of long-term cardiovascular complications.3 Yet, MVPA is largely unaddressed by T1D support interventions for individuals with T1D at any age. Predicting an individual’s glycemic response to MVPA is incredibly complex and requires more frequent glucose monitoring with subsequent adjustments to diet and insulin dosing. Further, managing MVPA can be especially challenging due to puberty-specific physiologic factors like increased insulin resistance.3-6 Moreover, for adolescents with T1D, glycemic variability encountered during MVPA may impede adopting healthy, active behaviors. Barriers to physical activity reported by adolescents include the psychological fear of glycemic destabilization7 and social stigma associated with disclosing an individual’s diabetes diagnosis when engaging in MVPA. Apart from psychosocial factors, adolescents report that the logistical complications of glycemic dysregulation also impede their MVPA (e.g., needing to interrupt for carbohydrate supplementation).7 Adolescents also report teachers and coaches have limited T1D knowledge8 and their parents discourage MVPA.7 It is therefore no surprise that adolescents with T1D engage in less MVPA than the general adolescent population,9 of which less than 10% meets the MVPA recommendations of the Centers for Disease Control and Prevention (60min per day).10 Thus, it is warranted to pursue
multifaceted interventions targeted at addressing these barriers.

Current pediatric T1D MVPA guidelines detail the basic factors to consider during MVPA, but most providers do not actively prescribe them\(^{11}\) and there is a striking lack of data regarding feasibility, acceptability, safety, and efficacy of protocols supporting their implementation for those with low baseline MVPA.\(^{3}\) Active videogames, defined as videogames that are controlled by gross motor body movements, have been leveraged as an alternative strategy to promote MVPA among youth,\(^{12}\) aligned with new consensus guidelines that screen time should be tailored to achieve health benefits rather than minimized.\(^{13}\) Group activities incorporating active videogame technology with T1D mentors would provide an exciting new avenue to deliver all the components of a successful T1D self-management intervention:\(^{14}\) 1) behavior modification (goal setting, self-monitoring); 2) psychosocial support (interactions with T1D peers and role models); and 3) medical guidance (MVPA safety monitoring and advice). The purpose of the present study was to deliver a 6-week alpha version of a virtual home intervention to promote MVPA among adolescents with T1D, evaluate its feasibility, acceptability, safety, and describe its final curriculum for purposes of a future larger study. We hypothesized that metrics of feasibility and acceptability would meet our set criteria for warranting a future definitive trial.

METHODS

Overview

We present a single-arm prospective feasibility study of youth with T1D who underwent a 6-week intervention aimed at promoting MVPA. The study was approved by the Institutional Review Board (Yale-HIC#2000030105) in accordance with the Declaration of Helsinki and registered on clinicaltrials.gov (NCT05163912).

Participants and Enrollment

Participants were eligible if they were between the ages of 14 and 19 years (inclusive), had diagnosis of T1D for at least 6 months, were not achieving recommended physical activity targets (i.e., <4 days/wk with 60+ min MVPA according to self-report at baseline), already wearing or willing to wear...
a continuous glucose monitor (CGM) for the duration of the study, and did not have medical conditions that would preclude participation in group MVPA (cerebral palsy, current pregnancy, or others at investigator’s discretion).

Participants were recruited from the Yale Children’s Diabetes Center, clinicaltrials.gov, and diabetes social media groups (Facebook) between December 23, 2021 and June 15, 2022. In addition, recruitment materials were distributed publicly in collaboration with Children with Diabetes (T1-Today, Inc., Columbus, OH), a non-profit dedicated to providing education and support to families living with T1D.

First, potential participants completed a telephone screening to see if they met inclusion criteria for the study. The screening included questions about current MVPA by the Prochaska Physical Activity Assessment Question (specificity 61%-80%, test-retest ICC=0.6-0.8),\(^\text{15}\) as well as the Physical Activity Readiness Questionnaire.\(^\text{16}\) For any health conditions presenting special considerations for physical activity, additional documentation was requested from the primary care physician or sub-specialist for MVPA clearance. Each qualifying participant and one parent completed an electronic informed permission/assent and consent process prior to any study-related activities. Following consent/assent, two additional descriptive surveys were completed by the participant (recreational screen time,\(^\text{17}\) pubertal development status\(^\text{18}\)) and a demographics form was completed by the parent. The research team shipped supplies to the participant and held a 1.5-hour HIPAA compliant Zoom (Zoom Video Communications, San Jose, CA) tele-video call to guide setup.

Equipment setup

Participants fitted their home television monitor with a Nintendo Switch Entertainment System (Nintendo of America, Inc., Redmond, WA) including Ring Fit Adventure cartridge and equipment. Ring Fit Adventure alternates low- (stationary walking or jogging) with higher-intensity exercises that are dynamic (e.g., knee-lifts) or resistance-based (e.g., overhead press, squat, abdominal press). The game uses a leg-strap accelerometer and handheld ring with gyroscopic/accelerometer sensors to measure distance covered and successful repetitions of each exercise. Success with exercises leads
to unlocking of more advanced adaptations (e.g., abdominal press upgraded to Russian twist). It has been previously demonstrated to stimulate activity intensity reaching the MVPA threshold among children. Participants were also provided with a metal tripod and Bluetooth headphones, so they could position their smartphone to capture the game screen while communicating over Zoom during the group MVPA. They were also provided a yoga mat, poster with Borg 6-20 rating of perceived exertion scale, Precision Xtra Blood Ketone meter and strips (Abbott Diabetes Care, Alameda, CA), and Fitbit Inspire 2 (San Francisco, CA) to track goals for weekly steps and MVPA heart rate. Fitbit accuracy studies have yielded variable results but a systematic review with quantitative synthesis reported the majority found overestimation of steps (~5%) and underestimation of heart rate (~3%).

Intervention

The intervention was based upon Social Cognitive Theory which predicts that an individual health behavior such as MVPA is influenced by individual experiences, environmental factors, and the actions of others. We therefore integrated peer and role model interactions into home-based MVPA: livestreamed active videogame sessions and tele-video discussions about experiences self-monitoring MVPA and glucose.

We involved three role models ages 20-39yr living with T1D and participating in nationally visible athletics, amateur athletics, and a non-performance-based physically active lifestyle respectively. Additionally, two of them were nationally visible advocates for T1D and the third was a certified diabetes care and education specialist. They agreed to work in a rotation to attend classes. The sessions were also monitored by a board-certified pediatric endocrinologist living with T1D and an exercise physiologist. Each of these two monitors attended all but two classes respectively, for which they designed the lesson plan and remained available by phone in the event of clinical concerns. Planning discussions and two pilot sessions were held with input from the above leaders, a pediatric exercise physiologist, an exercise telemedicine clinician, a pediatric psychologist seeing patients with T1D, and senior diabetes investigators in behavioral science and technology respectively.

Participants were recruited in 4 sequential cohorts for a 6-week intervention with meetings every
Saturday and Wednesday (Table 1) over HIPAA compliant Zoom tele-video. Sessions began with an icebreaker question that was either T1D-related (e.g., “what is your favorite low blood sugar treatment?”) or not (e.g., “if you could bring one thing with you on a deserted island, what would it be?”). At the first session in each cohort, the pediatric endocrinologist gave an overview of safe exercise practices related to T1D management based on national and international guidelines current at the time of the study. At each session, before and after exercise teens reported verbally or through the Zoom chat function to the clinician their sensor glucose value and trend arrow, insulin dosing (last bolus and/or insulin-on-board), and results of a ketone test if sensor glucose exceeded 250mg/dL (13.9 mmol/L). The clinician then provided recommendations for exercise based on published guidelines. Clinical guidance was given when ketones were present (≥0.6mmol/L). For safety, the instructors also confirmed that the participants had fast-acting carbohydrates accessible (e.g., orange juice, glucose tablets), proper exercise shoes and clothing, and an 8’-by-8’ unobstructed space for exercise. On a weekly basis, the endocrinologist reviewed data from CGM, ketone tests, and clinical events, identified any safety concerns related to exercise, and communicated these concerns to the participants and their parents.

The segment devoted to exercise was 32min the first Saturday, 40min subsequent Saturdays, and 20min on Wednesdays. Participants were required to remain “present” for the full session, with either their image or the television display of their avatar reflecting their exercise in Zoom camera view (Figure 1). They communicated to the instructor if they needed to leave the session for any reason. For the purposes of coaching exercise, we tracked the proportion of each session spent in active movement, repetitions of each exercise, Borg 6-20 rating of perceived exertion of each exercise, and average Fitbit heart rate.

The remaining 20-30min of each session was spent on discussion activities over Zoom. Week 1 sessions were dedicated to creating exercise goals. Instructors and participants discussed and agreed upon individual fitness-related goals. Goal-setting followed the SMART principle (Specific, Measurable, Attainable, Relevant, Timely). In addition, participants in each cohort formulated a group goal of...
cumulative achievements (e.g., group steps) to promote a cooperative rather than competitive approach. Goal progress was checked and discussed each week, including the provision of MVPA and T1D management information that helped support the specific goals. At the week 6 sessions, the instructors led a discussion about the relevance of the intervention’s MVPA to building and sustaining an overall active lifestyle.

At the week 2-5 sessions, instructors engaged teens to create role-playing skits that involved educational points related to T1D management. Skit planning and acting occurred through verbal dialogue on Zoom. It included choosing a plot based on suggestions from instructors and the teens, developing a list of roles, choosing and assigning roles, developing a script with a combination of set and improvised lines, and acting. The instructors and endocrinologist guided the planning so that the skit integrated educational points about T1D.

Figure 1. Virtual exercise session livestreamed over Zoom.
Table 1. Structure of intervention sessions.

<table>
<thead>
<tr>
<th>Component</th>
<th>Saturdays Time of Day</th>
<th>Wednesdays Time of Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icebreaker question</td>
<td>10:00-10:05</td>
<td>19:00-19:05</td>
</tr>
<tr>
<td>Sensor glucose check and guidance²</td>
<td>10:05-10:20</td>
<td>19:05-19:20</td>
</tr>
<tr>
<td>Exercise</td>
<td>10:20-11:00</td>
<td>19:20-19:40</td>
</tr>
<tr>
<td>Sensor glucose check and guidance³</td>
<td>11:00-11:05</td>
<td>19:40-19:45</td>
</tr>
<tr>
<td>Discussion Activities</td>
<td>11:05-11:30</td>
<td>19:45-20:00</td>
</tr>
</tbody>
</table>

- MVPA goals (week 1: set goals; weeks 2-5: check progress and provide MVPA and T1D management information supporting goals; week 6: reflection on relationship to overall active lifestyle)
- Role-playing skits (weeks 2-5: planning and acting)

¹USA eastern time zone, which was the local time of all participants except 1 who was USA mountain time zone (2 hours earlier)
²Extended to 30 minutes at first session to give general overview of guidelines. This session had reduced exercise by 8 minutes and discussion activities by 5-10 minutes.
³Cohort #1 only had these components on Saturdays (i.e., Wednesday session only met 19:00-19:20). Added these components to Wednesdays per expressed interest of cohort #2.

Assessments

Fidelity

Session recordings were double-coded by two exercise physiologists (one not involved with intervention). They identified missed opportunities for practicing each core competency of a role model and peer intervention: building skills, sharing knowledge and experiences, enriching communication, and facilitating peer interactions. Each competency was then coded as “excellent” (competency evident with 0 missed opportunities), “fair” (competency evident with ≥1 missed opportunities), or “poor” (competency not evident). The identified missed opportunities were discussed with instructors at weekly meetings as areas to iteratively improve the intervention. To generate rich discussion, each missed opportunity identified by either rater was included provided agreement by the other rater.

Follow-Up Retrospective Survey of Acceptability
The Motivation for Exergame Play Inventory\(^29\) in our sample had adequate reliability for the full scale \((\alpha=0.79, 22 \text{ items})\) and the sensory immersion/flow subscale \((\alpha=0.79, 8 \text{ items})\). The other subscales are typically considered too short to establish meaningful reliability \((3-4 \text{ items})\) but nonetheless reported.\(^29\)

The perceived cohesion scale had adequate reliability for the morale \((e.g., \text{“I am happy to be part of this group”})\) \((\alpha=0.78)\) and belonging subscales \((e.g., \text{“I see myself as part of this group”})\) \((\alpha=0.83)\).\(^30\)

We also issued a satisfaction survey taken from our past work\(^26\) for participants to evaluate program components/strategies \((5 \text{ items}, \alpha=0.72)\), personal comfort level \((6 \text{ items}, \alpha=0.81)\), and interactions with instructors \((12 \text{ items}, \alpha=0.95)\). Participants also rated their top-3 of these factors by order of importance.

Finally, participants and leaders each completed a semi-structured satisfaction interview which will be reported separately. Leaders consented verbally after reviewing an information sheet.

Ancillary Analysis of Glycemic Outcomes

HbA1c was unlikely to change during the short timeframe of the intervention. To explore probable magnitude of glycemic effects to inform future trials, we calculated the glucose management indicator \((\text{GMI})\) for each 14-day block of the 6-week intervention. GMI uses CGM to project HbA1c using an equation from cohort data.\(^31\) We also estimated maintenance of glycemic effects using follow-up HbA1c values 39 (SD=15) weeks later, collected at screening for an addendum study (September 1, 2022 through September 19, 2023).

Data Analysis

Criteria for warranting a future definitive trial were recruitment uptake \((\geq35\%)\),\(^32\) attendance \((\geq75\%)\) attending \((\geq75\% \text{ of sessions})\),\(^33\) biosensor wear-time \((\geq70\%)\),\(^34\) survey completion \((\geq85\%)\), fidelity ratings \((\geq70\% \text{ excellent, } \geq90\% \text{ at least fair})\), and psychosocial perceptions of acceptability \((\geq3.0 \text{ out of 5})\).

Metrics were tested for normality using the Shapiro-Wilks test, then reported by mean and standard deviation, median and interquartile range, or frequencies as appropriate. We refined the curriculum based on data after each cohort, ending the trial when no further refinements were found. Probable
magnitude of glycemic effect from baseline was calculated non-parametrically due to the small sample size, by calculating the Wilcoxon Signed Rank test statistic (SPSS v28, Chicago, IL) then using Fritz’s formulas35 to calculate biserial r and convert to Cohen’s d (\(\geq 0.20\) is small, \(\geq 0.50\) moderate, \(\geq 0.80\) large).

RESULTS

Recruitment

Clinic recruitment yielded 26 candidates referred from providers. Upon phone call by the study team, 5 were disqualified due to exceeding the baseline physical activity criteria, 6 declined to participate (2 due to lack of energy for physical activity, 2 due to time conflicts, 2 without giving a reason). The remaining 15 scheduled a consenting visit, of whom 8 withdrew prior to starting the intervention (4 without giving a reason, 1 due to technical difficulties sharing CGM, 1 due to time conflicts, 1 due to illness, and 1 due to change in housing conditions). The remaining 7 enrolled. One of them required clearance for a medical condition from a specialist (arthritis).

Children with Diabetes posted the advertisement in three issues of their weekly newsletter (February 9th–February 23rd, 2022) as well as their Facebook page on February 15th. The Facebook post received 12 likes, 10 shares, and 23 email inquiries. After the study team replied with a full description of the study, 17 completed eligibility screening. Among them, 9 were disqualified due to exceeding the baseline MVPA criteria, and the other 8 qualified, consented, and started the intervention.

Thus overall, 23/43 of those screened were eligible and scheduled a consent visit, among whom 15 enrolled (35%). All 15 completed follow-up assessments.

Demographics

Eight states were represented: 8 participants from CT, and 1 each from DE, FL, GA, MD, NJ, UT, VA. Participants represented diverse demographics: 8 people of color, 6 female, 2 non-binary, 4 public insurance, 2 household income below poverty line, and 7 household income <\$60,000. Notably, most of the participants had A1c levels above American Diabetes Association targets: 12 with A1c>7.0\% (>53 mmol/mol), 5 with A1c>10.0\% (>86 mmol/mol). Diverse participants appeared to stem from clinic
recruitment rather than social media (Table 2).

Table 2. Demographics (n=15, mean±SD).

<table>
<thead>
<tr>
<th></th>
<th>Recruited from Clinic</th>
<th>Recruited from Social Media</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>7</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Age (yr) 1</td>
<td>15.8±1.1</td>
<td>15.5±1.9</td>
<td>15.6±1.5</td>
</tr>
<tr>
<td>Gender</td>
<td>3 female (43%)</td>
<td>3 female (38%)</td>
<td>6 female (40%)</td>
</tr>
<tr>
<td></td>
<td>2 non-binary (29%)</td>
<td>0 non-binary (0%)</td>
<td>2 non-binary (13%)</td>
</tr>
<tr>
<td></td>
<td>2 male (29%)</td>
<td>5 male (62%)</td>
<td>7 male (47%)</td>
</tr>
<tr>
<td>Pubertal Stage</td>
<td>0 Early (0%)</td>
<td>1 Early (13%)</td>
<td>1 Early (7%)</td>
</tr>
<tr>
<td></td>
<td>0 Mid (0%)</td>
<td>3 Mid (38%)</td>
<td>3 Mid (20%)</td>
</tr>
<tr>
<td></td>
<td>5 Late (71%)</td>
<td>3 Late (38%)</td>
<td>8 Late (53%)</td>
</tr>
<tr>
<td></td>
<td>2 Post (29%)</td>
<td>1 Post (13%)</td>
<td>3 Post (20%)</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td>1 non-Hispanic black (14%)</td>
<td>2 non-Hispanic black (25%)</td>
<td>3 non-Hispanic black (20%)</td>
</tr>
<tr>
<td></td>
<td>4 Hispanic white or other (57%)</td>
<td>0 Hispanic white or other (0%)</td>
<td>4 Hispanic white (27%)</td>
</tr>
<tr>
<td></td>
<td>0 more than one race</td>
<td>1 more than one race (13%)</td>
<td>1 more than one race (7%)</td>
</tr>
<tr>
<td></td>
<td>2 non-Hispanic white (29%)</td>
<td>5 non-Hispanic white (63%)</td>
<td>7 non-Hispanic white (47%)</td>
</tr>
<tr>
<td>A1c (%) 1</td>
<td>10.1±2.1</td>
<td>7.9±1.8</td>
<td>8.9±2.2</td>
</tr>
<tr>
<td></td>
<td>7 over 7.0% (100%)</td>
<td>5 over 7.0% (63%)</td>
<td>12 over 7.0% (67%)</td>
</tr>
<tr>
<td></td>
<td>4 over 10.0% (57%)</td>
<td>1 over 10.0% (13%)</td>
<td>5 over 10.0% (33%)</td>
</tr>
<tr>
<td>A1c (mmol/mol)</td>
<td>87±34</td>
<td>63±20</td>
<td>74±24</td>
</tr>
<tr>
<td></td>
<td>7 over 53 (100%)</td>
<td>5 over 53 (63%)</td>
<td>12 over 53 (67%)</td>
</tr>
<tr>
<td></td>
<td>4 over 86 (57%)</td>
<td>1 over 86 (13%)</td>
<td>5 over 86 (33%)</td>
</tr>
<tr>
<td>Duration of type 1 diabetes (yr)</td>
<td>8.0±4.1</td>
<td>8.4±3.8</td>
<td>8.2±3.8</td>
</tr>
<tr>
<td>Household income annual</td>
<td>2 <$20,000 (29%)</td>
<td>0 <$20,000 (0%)</td>
<td>2 <$20,000 (13%)</td>
</tr>
<tr>
<td></td>
<td>3 $40,000-$59,999 (43%)</td>
<td>2 $40,000-$59,999 (25%)</td>
<td>5 $40,000-$59,999 (33%)</td>
</tr>
<tr>
<td></td>
<td>1 >$100,000 (14%)</td>
<td>3 $80,000-$99,999 (38%)</td>
<td>3 $80,000-$99,999 (20%)</td>
</tr>
<tr>
<td></td>
<td>1 declined to respond</td>
<td>3 >$100,000 (38%)</td>
<td>4 >$100,000 (27%)</td>
</tr>
<tr>
<td>Insurance public, %</td>
<td>3 (43%)</td>
<td>1 (13%)</td>
<td>4 (27%)</td>
</tr>
<tr>
<td>Therapy pump, %</td>
<td>6 (86%)</td>
<td>8 (100%)</td>
<td>14 (94%)</td>
</tr>
<tr>
<td>Total daily insulin dose (U/kg)</td>
<td>0.8±0.2</td>
<td>0.9±0.3</td>
<td>0.9±0.3</td>
</tr>
<tr>
<td>Body mass index (%'ile) 1</td>
<td>79.0±12.4</td>
<td>55.8±35.7</td>
<td>66.6±29.1</td>
</tr>
<tr>
<td>Physical activity (days/wk with 60+ min MVPA)</td>
<td>1.1±1.1</td>
<td>1.8±1.0</td>
<td>1.5±1.1</td>
</tr>
<tr>
<td>Screen time (hours/day)</td>
<td>9.3±5.2</td>
<td>8.3±4.4</td>
<td>8.8±4.6</td>
</tr>
</tbody>
</table>

1 Non-normally distributed (age right-skewed, body mass index left-skewed).

Bolded figures indicate apparent difference from social media group.

Intervention Feasibility
Attendance

Overall, 13 participants attended 10/12 sessions. Ten participants attended 11 sessions. Three participants attended 10 sessions. Among absences by these participants, 7 were due to family activities, 1 was due to unavailability of television set or computer screen, 2 were due to school extracurricular activities, and 2 were unexplained. The remaining two participants attended 6 sessions. One of these participants reported the main cause of non-attendance was negative mood, and the other reported it was oversleeping. Finally, all 15 participants completed the follow-up survey and interview, the latter lasting 18-48min (median 20 [IQR 19,31]). All 5 staff also completed the interview (31-48min).

The last cohort took one week longer than expected to recruit the minimum 3 participants. In fairness to the 2 participants who signed up on the preset schedule, we offered them 2 sessions during the week of delay which were credited as extra sessions.

Technical Barriers

One participant had technical problems that they rated as causing a moderate or higher disruption, which included 1 day of dead controllers that took 85% of the MVPA session to recharge, and 2 days when they conversed by text chat due to phone audio interruption. In addition, 2 participants had Zoom connectivity interruptions on 1-2 occasions, which they reported caused mild disruption.

Fidelity

Instructor competencies were rated highest for building T1D and MVPA management skills followed by sharing T1D and MVPA knowledge and experiences, enriching communication at the group sessions, and facilitating peer interactions at the group sessions (Table 3). Most competencies trended upward for each successive cohort, except #3 to #4 where they trended downward. Cohort #4 was tied for lowest size and had lowest attendance among those enrolled. Cohorts had different instructors, but all the instructors achieved similar scores on each competency.

Intervention Acceptability

Participant satisfaction ratings were highest for interactions with instructors, followed by perceived
group cohesion, program components and strategies, comfort (Table 3), and lastly Ring Fit game motivation (Table 4). The instructor component was also most frequently selected as a top-1 or top-3 important component (80%, 60%). Nonetheless, a few selections related to comfort (13%, 23%) or program structure (7%, 16%).
Table 3. Attendance, Fidelity, Satisfaction, and Perceived Cohesion by Group

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Size (n)</th>
<th>Attendance (Mean %)</th>
<th>Building T1D and MVPA Management Skills</th>
<th>Sharing MVPA and Knowledge of T1D and Experiences</th>
<th>Enriching Communication at the Sessions</th>
<th>Facilitating Interactions at Group Sessions</th>
<th>Peer Interactions at the Group Sessions</th>
<th>Program Components and Strategies</th>
<th>Group Cohesion (Perceived)</th>
<th>Psychosocial Perceptions mean±SD (% rated ≥4 out of 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>75</td>
<td>58</td>
<td>25</td>
<td>0</td>
<td>4.6±0.7 (67%)</td>
<td>4.2±0.9 (67%)</td>
<td>4.1±0.2 (100%)</td>
<td>3.9±0.9 (67%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>92</td>
<td>100</td>
<td>90</td>
<td>27</td>
<td>4.9±0.0 (100%)</td>
<td>4.6±0.4 (100%)</td>
<td>4.5±0.3 (100%)</td>
<td>4.5±0.1 (100%)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>95</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>4.9±0.2 (100%)</td>
<td>4.2±0.4 (80%)</td>
<td>4.3±0.6 (80%)</td>
<td>4.2±0.4 (80%)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>72</td>
<td>38</td>
<td>25</td>
<td>0</td>
<td>4.8±0.3 (67%)</td>
<td>4.7±0.2 (100%)</td>
<td>4.3±0.7 (33%)</td>
<td>4.3±0.6 (33%)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>76</td>
<td>78</td>
<td>68</td>
<td>29</td>
<td>4.8±0.3 (93%)</td>
<td>4.4±0.5 (87%)</td>
<td>4.3±0.5 (73%)</td>
<td>4.2±0.5 (80%)</td>
<td></td>
</tr>
</tbody>
</table>

*All other sessions were scored “fair” (i.e., none were scored “poor”).
T1D, type 1 diabetes.
MVPA, moderate-to-vigorous physical activity.

Table 4. Exergaming Motivation (n=15)

<table>
<thead>
<tr>
<th>Component</th>
<th>Mean±SD (% rated ≥4 out of 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goals of the Game</td>
<td>4.6±0.4 (93%)</td>
</tr>
<tr>
<td>Performance Feedback</td>
<td>4.3±0.5 (87%)</td>
</tr>
<tr>
<td>User Control</td>
<td>4.3±0.6 (73%)</td>
</tr>
<tr>
<td>Sensor Immersion/Flow</td>
<td>4.0±0.6 (53%)</td>
</tr>
<tr>
<td>Game Challenge and Difficulty</td>
<td>3.2±0.6 (13%)</td>
</tr>
<tr>
<td>Total</td>
<td>4.1±0.4 (60%)</td>
</tr>
</tbody>
</table>
No participants experienced diabetic ketoacidosis, severe hypoglycemia, or other study-related adverse events during the study period. One participant developed elevated ketone levels prior to exercise (1.1 mmol/L), that resolved after insulin administration prior to exercise. One participant deferred exercise due to feeling unwell as a result of having a high sensor glucose level (400mg/dL, 22.2 mmol/L) without elevated ketones. No participants reported a glucose level less than 70mg/dL (3.9 mmol/L) during the sessions, although there were 3 participants who reported hypoglycemia symptoms on 1 occasion that resolved upon ingesting 10g-15g of carbohydrates. As well, CGM review indicated 3 participants had sensor glucose levels less than 70mg/dL (3.9 mmol/L) less than 1 hour after 1 of the sessions. These instances resolved without guidance from staff.

All participants were using a CGM in their clinical care before the study (12 Dexcom G6, 3 Abbott Libre 2). Weekly CGM audits found 75.3% of the possible readings were captured across all study participants. Ten participants met the recommended ≥70% completeness. Primary reasons for not wearing CGM at least 70% of the time included scanning the Libre 2 sensor less frequently than its 8hr memory duration (n=2), cloud syncing errors (n=1), changing the Dexcom G6 sensor less frequently than its 10-day life (n=1), and periodic psychological discomfort with being monitored (n=1).

Study coordinators checked CGM wear-time twice weekly at the group sessions and addressed barriers with participants outside of each session.

Weekly CGM physician reviews resulted in 4 participants being referred to their providers for insulin dose adjustments to address elevated percentages of low sensor glucose values. In 3 cases the issue was resolved following adjustment by the diabetes provider, and in 1 case it was resolved following a small adjustment by the parent (change in insulin correction factor by 20%) and checking in with the teen about accurate carbohydrate counting. The physician also noted 3 instances among 3 participants where sensor glucose had overnight lows after evening exercise. Trends were addressed with the participant directly. Topics related to avoiding hypoglycemia after exercise were also discussed in the group lesson.
Fitbit heart rates were captured for 96/117 person-sessions (82%), with 14 having at least one session. Among them, 1 averaged in the vigorous range of 70%-90% age-predicted maximum, 12 averaged in the moderate range of 55%-70%, and 1 averaged below the moderate range. The average participant heart rate across sessions was 61.4% (SD=5.2%) of maximum.

Intervention Activities

Participants set individual goals related to achieving Fitbit step counts, playing a sport, playing Ring Fit outside of group sessions, or managing diabetes (Table 5). The success rate was 33% overall and similar across categories. One participant declined to wear the Fitbit due to wrist joint discomfort, so instead quantified a step goal as walking from school to home. Group goals related to sleep duration (1 group), playing Ring Fit outside of class (2 groups), and average Fitbit distance (1 group). The last two of the four were successful.

Table 5. Individual Goals (n=15)

<table>
<thead>
<tr>
<th>Goal Category</th>
<th>Number of participants</th>
<th>Specific Value</th>
<th>Achieved Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steps</td>
<td>6</td>
<td>School to home, 3d/week</td>
<td>2 / 6 (33%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4000 per day</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7000 per day</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8500 per day</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10000 per day</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12500 per day</td>
<td></td>
</tr>
<tr>
<td>Sport</td>
<td>5</td>
<td>Find a soccer group</td>
<td>2 / 5 (40%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bike 26.2 miles</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Run 8:00 mile</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Run 6:35 mile</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Run 7:30 pace for 5 miles</td>
<td></td>
</tr>
<tr>
<td>Ring Fit</td>
<td>3</td>
<td>20 minutes per day</td>
<td>1 / 3 (33%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 reps of 1 specific movement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reach world 9</td>
<td></td>
</tr>
<tr>
<td>Diabetes management</td>
<td>1</td>
<td>7.0% estimated A1c from CGM</td>
<td>0 / 1 (0%)</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td></td>
<td>5 / 15 (33%)</td>
</tr>
</tbody>
</table>

Fitbit wear time on average met literature standards (70.5%, or 16.9 hours per day suggesting an average of 10-15 hours during waketime)\(^4\). Cohort 1 participants stopped wearing the Fitbit with 2-4 weeks left in the program, so we instilled a biweekly check of wear-time and troubleshooting after which this pattern did not repeat. Average steps for those with Fitbit step goals were 8274 (SD=3734) per day and for the total sample were 7178 (SD=4013) per day.
Each skit successfully integrated 3-5 educational points (Table 6).

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Topic</th>
<th>Roles</th>
<th>Educational Points and How Integrated</th>
</tr>
</thead>
</table>
| 1 | Team sports and type 1 diabetes (T1D) | - Athlete with newly diagnosed with T1D
- Teammate living with T1D for several years
- Continuous glucose monitor with alerts
- Coach | - Speaking to coaches who are not familiar with T1D management around MVPA
- Peer mentoring
- Competitive sports and glycemic management |
| 2 & 3 | Zombie Apocalypse | - Zombie
- Zombie-killing engineer
- Teen newly diagnosed with T1D and knows nothing about what they need for T1D management during an apocalypse
- Teen with longer duration of T1D
- Dr. Rescue
- News host
- Continuous glucose monitor with alerts | - Essential supplies for T1D
- Prioritizing aspects of T1D management
- Operating continuous glucose monitors
- Impact of MVPA on glycemic management
- Impact of stress on glycemic management |
| 4 | Wilderness Excursion | - Lilo (Hawaiian girl)
- Stitch (helpful alien)
- Evil singing crab
- Battler of evil singing crab
- Diabuddy (diabetes buddy)
- Angel
- Narrator | - Same as Zombie Apocalypse |

"Self-chosen by interested participants, remaining ones assigned. MVPA, moderate-to-vigorous physical activity"
Ancillary Analysis of Glycemic Outcomes

Compared to baseline HbA1c, GMI during the intervention was moderately lower and HbA1c at maintenance follow-up was largely lower (Table 7). From baseline to maintenance follow-up, change in body mass index percentile was negligible (67±29 to 66±30 %’ile, d = -0.10, 95% CI [-0.37, 0.17]) and in total daily insulin dose was small (0.88±0.27 to 0.83±0.24 U/kg, d = -0.35, 95% CI [-0.62, -0.07]). Seven participants upgraded their insulin device to a closed-loop system, but device upgrades did not drive HbA1c changes; i.e., the average HbA1c change among these 7 participants was the same as the full cohort.

Table 7. Glycemic outcomes (n=15)

<table>
<thead>
<tr>
<th></th>
<th>Mean±SD (%)</th>
<th>Mean±SD (mmol/mol)</th>
<th># of participants having decrease from baseline</th>
<th># of participants having increase from baseline</th>
<th># of participants missing*</th>
<th>Effect size (d) vs baseline [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline HbA1c †</td>
<td>8.9±2.2</td>
<td>74±24</td>
<td>N/A</td>
<td>N/A</td>
<td>0 missing HbA1c (6 missing CGM)</td>
<td>N/A</td>
</tr>
<tr>
<td>Weeks 1-2 GMI</td>
<td>8.7±2.0</td>
<td>72±31</td>
<td>6</td>
<td>4</td>
<td>5 missing CGM</td>
<td>-0.35 [-0.62, -0.07]</td>
</tr>
<tr>
<td>Weeks 3-4 GMI</td>
<td>8.4±1.5</td>
<td>68±17</td>
<td>6</td>
<td>6</td>
<td>3 missing CGM</td>
<td>-0.45 [-0.73, -0.17]</td>
</tr>
<tr>
<td>Weeks 5-6 GMI</td>
<td>8.3±1.6</td>
<td>67±18</td>
<td>7</td>
<td>5</td>
<td>3 missing CGM</td>
<td>-0.72 [-1.01, -0.43]</td>
</tr>
<tr>
<td>Long-term HbA1c ‡</td>
<td>8.3±1.8</td>
<td>67±20</td>
<td>10</td>
<td>3</td>
<td>2 missing HbA1c (1 missing CGM)</td>
<td>-1.12 [-0.81, -1.44]</td>
</tr>
</tbody>
</table>

GMI, glucose management indicator which projects HbA1c based on continuous glucose monitor (CGM) data. *Missing values reflect partially complete CGM data (<70%) that was excluded from analysis and handled by intention-to-treat (last observation carried forward) for calculation of mean values and effect size. Every participant had at least one non-imputed value following baseline.
†Taken an average of 7 weeks (range 1-14) before intervention start
‡Taken an average of 45 weeks (range 19-77) after intervention start

DISCUSSION

Adolescents with T1D are vulnerable to inactivity, challenges with diabetes self-management, and social isolation. While many interventions have targeted this problem, the incorporation of peers and role models is in nascent stages and mostly focused on T1D-specific behaviors rather than those important for general health such as MVPA. A major strength of the study was the enrollment of a diverse sample of adolescents in greatest need of support for MVPA and T1D self-management (lower
income, people of color, elevated HbA1c). This study had no A1c upper limit, thus incorporating a
340 group of youth with T1D at high risk of dysglycemia that has been largely excluded from research
341 studies. Further supporting generalizability, instructors from a diversity of backgrounds were able to
342 facilitate with similar competencies. Intervention attendance was excellent and overcame logistical
343 barriers related to alignment of group schedules, availability of MVPA supplies, timing MVPA with
344 insulin and diet, and provision of real-time guidance. Given the focus on feasible uptake of technology
345 and inclusion of youth with all HbA1c levels, we enrolled participants even if they were not consistently
346 wearing CGM at enrollment, which meant glycemic outcomes could only be assessed by combining
347 HbA1c and GMI values in an ancillary analysis. HbA1c and GMI can be discordant due to the
348 timeframe they reflect and non-glycemic factors that can impact HbA1c. Nonetheless, glycemic
349 reductions were seen during and after the intervention. These findings were encouraging, especially in
350 light of the elevated HbA1c levels in the cohort at baseline, as these youth are largely excluded from
351 research.

Prior studies supporting MVPA for adolescents with T1D provided self-management education
352 and decision guidance and only one included personal support, which came from key family
353 members such as a parent. In real-world contexts, 91% of adolescents with T1D report that their
354 parents discourage MVPA. Support from peers and peer mentors, however, was rated as important by
355 adolescents with T1D and associated with increased diabetes self-care. Peer support for
356 adolescents with T1D should be applied to MVPA and other general health metrics, whereas to date it
357 has only been applied to T1D-specific behaviors. Such restriction of peer support to T1D-specific
358 behaviors has been negatively associated with diabetes self-care, similar to the “nagging” perceived
359 from parents. It may also be less engaging, as these prior peer interventions have been almost
360 entirely restricted to asynchronous communications without physical activities. When synchronous
361 chats have been added, just 39%-48% of participants attended one or more sessions. Overall, the
362 present study shows the promise of peer group MVPA as a novel strategy both for supporting MVPA
363 and generally engaging adolescents with T1D.
The primary finding of the study was that the virtual, compared to our previous in-person protocol, greatly increased feasibility while maintaining excellent safety standards. Compared to our in-person group, we doubled recruitment uptake proportion from 16% to 35%, which is comparable to 37% seen in personalized MVPA prescription for T1D that did not require fitting a group schedule. We also expanded from clinic to social media venues. In addition, we improved the attendance from 56% to 85%-90%, while also doubling the frequency of sessions from once to twice per week. A glucose monitoring protocol was followed with no adverse events and occurrence of MVPA-induced hypoglycemia no more frequently than typical daily living. The program was also highly cost-efficient. Social media advertisements utilized community postings rather than paid advertisements, and virtual technology was all within the scope of devices normally owned by diverse families of teens with T1D. Videogame technology is popular among teens and substantially more so among those from lower-income families, the smartwatch was the most economy-grade on the market (retail $80 USD), and T1D was monitored by standard technology within the scope of the standard of care (CGM, fingerstick glucose and ketone meters).

The high acceptability of the in-person protocol was also maintained based on mean satisfaction scores, though unbalanced across subscales. Intervention delivery competencies that could be directly delivered from young adult role model instructors – sharing T1D and MVPA knowledge and experiences and building T1D and MVPA self-management skills – achieved an excellent rating at 68%-78% of sessions. By contrast, those that depended upon teen-to-teen interactions were achieved excellently much less often. Similarly, instructor interactions were the most highly rated and most important component of the program to teens. Perceived group cohesion was also rated highly by the teens, reflecting some combination of perceived cohesion to the instructors and other teens. Program structure and comfort were rated less highly than instructor interactions and perceived group cohesion, though nonetheless received ratings of 4+ out of 5 and were likely essential to the program’s feasibility.

The technological aspects of the virtual MVPA experience received more modest ratings. Participants generally reported that the Ring Fit game functioned well in terms of clear goals, feedback,
and control. Concordantly, we observed that they achieved heart rate in the MVPA range as previously reported for other videogames that elicit full body movements and engage large muscle groups (i.e., active videogames).\(^1\) However, participants were more neutral about the components that reflect enjoyment of the game which include sensory experience, challenge, and difficulty. In summary, the advantages of our program were effectiveness at connecting teens to young adult role models in a way that was logistically feasible, time efficiency for the role models since they could interact with a group all at once, and sustainment of favorable MVPA and clinical metrics. The relative limitations were the capability to facilitate peer interactions and have an enjoyable MVPA experience. It may therefore be beneficial to integrate our curriculum into more immersive technology such as virtual reality headsets allowing interactions through avatars.

Guidelines for safe MVPA with T1D provide general rules for maintaining glycemic stabilization through the adjustment of factors like diet, insulin, and type of MVPA.\(^3\) However, they presently lack adequate real-time support for their implementation. They acknowledge that they need a trial-and-error refinement process for each individual; the existing knowledge does not provide a one-size-fits-all approach nor can the needed refinements to it be accomplished within the scope of clinical appointments. Therefore, youth with T1D need to be given support during the time of MVPA in order to interpret and overcome the glycemic and psychosocial challenges that arise with the sometimes unpredictable glycemic responses to MVPA and the opportunity to build problem-solving skills “in the moment”.

Thus, there is a need for interventions that not only facilitate MVPA, but do so with a combination of behavior-change theory and practical considerations. First, from a practical standpoint, teens with T1D could benefit from regular interactions with their clinicians so they can ask questions about glycemic changes related to specific MVPA experiences, but most clinicians lack the time and resources to make this commitment. In the present study, the time efficiency of this process was quadrupled due to the group setting. Second, basic resources such as neighborhoods with safe play space are often inequitably accessed across socioeconomic groups.\(^37\) In the present study, resources
were accessible by a diverse group of participants and socioeconomic levels. Third, advanced
resources including peer support and role model mentoring are typically even less available than the
basic guidance to teens with T1D due to the rarity of the condition, and guidance given in schools and
through sports is not T1D-specific. Fourth, in our study, the activities and group process were driven by
participants who could individually and collaboratively choose MVPA goals, giving them more flexibility
and individualization than a prescribed curriculum.

The study had some limitations. First, it was a single-group study evaluating the feasibility and
acceptability of the intervention with planned outcome metrics pertaining to safety and the most
promising program components but not efficacy. Second, there are concerns about Fitbit heart rate
measurements as two studies have reported they were less accurate for those with darker skin tone.46
However, Fitbit was mainly used for step-counting which does not have this limitation, and heart rate
was only used for an assessment of convergent validity with the validated videogame.19 Third, while
participants perceived high group cohesion, they had minimal verbal interactions with each other.
Instructors were trained in group facilitation strategies derived from our expert planning group
discussions and pilot sessions, but for future studies we will utilize an accredited group facilitation
course. Peer interactions might also be enhanced by interoperable virtual reality technology that
creates a more immersive experience. Finally, the study was limited to those who were able to afford
Internet access at home, those who had television/computer screens, and time to attend the sessions.

CONCLUSIONS

Overall, we demonstrated the feasibility of facilitating a virtual network for MVPA, self-
management education and guidance, diabetes-specific management skills, and peer and role model
support for adolescents with T1D. We combined a fitness videogame, wearable step-tracking, a
telehealth glucose safety monitoring protocol, diabetes self-management education, and skits designed
to address diabetes-specific management skills. Successes included attraction of a diverse group, high
attendance at the sessions, T1D self-management guidance that promoted safe MVPA, and meaningful
connections to role-model instructors including shared experiences and skills in T1D self-management
and coping. The challenge was promoting immersive interaction among the adolescents. Therefore, future trials testing efficacy and moderators warrant upgrades of delivery to include more immersive virtual reality technologies, and financial investment to integrate and interoperate the components of our curriculum: MVPA, discussion, skits, viewership of glucose, and insulin dosing.

DATA AVAILABILITY

The individual participant data, study protocol, statistical analysis plan, informed consent form, and analysis code used to support the findings of this study are available from the corresponding author upon request. The data will be shared with researchers who provide a methodologically sound proposal to achieve the aims of the approved proposal. To gain access, data requesters must sign a data access agreement which will be drafted by Yale University and include the data requester’s proposal as an exhibit.

CONFLICTS OF INTEREST

G.I.A. has in the last 3 years received grant support (to his institution) from the Patterson Trust, American Heart Association, National Institutes of Health, and Veterans Health Administration. He has also received professional services from Fitscript and Calm, on projects separate from the present study. S.N. receives grant support (to her institution) from the National Institutes of Health. C.T. is a consultant for Calm. M.S. is employed as a senior product manager by Abbott Laboratories and receives restricted stock units. S.A.W. currently receives grant support (to his institution) from Abbott Laboratories and the National Institutes of Health. In the last 3 years he has received honoraria for serving as a speaker for Abbott and Dexcom and as a consultant for Zealand Pharma. The Yale Children’s Diabetes Center receives free CGM supplies through the Abbott Laboratories clinical sample program, which are distributed to patients including some who participated in this study. L.M.N. receives funding for research from the National Institutes of Health and Medtronic Diabetes. She is also a consultant for Medtronic, WebMD, and Calm. The authors attest that the Patterson Trust, American Heart Association, National Institutes of Health, Veterans Health Administration, Fitscript, Calm, Abbott Laboratories, Dexcom, Zealand Pharma, Medtronic, and WebMD had no influence on the design of this
study or its outcomes. The authors conducted the research outside of their responsibilities and affiliations with these entities.

FUNDING STATEMENT

The study and G.I.A. were supported by American Heart Association Grant #852679 (G.I.A., 2021–2024) and a Robert E. Leet and Clara Guthrie Patterson Trust Mentored Research Award, Bank of America, N.A., Trustee. G.I.A. and L.M.N. were supported by the National Institute of Diabetes, Digestive, and Kidney Diseases of the National Institutes of Health under mentored research scientist development awards (K01DK129441, K23DK128560). The study was further supported by the National Institutes of Health under the Yale Diabetes Research Center (P30DK045735). None of these entities were involved in the manuscript writing, editing, approval, or decision to publish.

ACKNOWLEDGMENTS

The authors thank the families and participants that help made this research possible. We also acknowledge Sa’Ra Skipper and Juanita Montoya for their assistance with conducting the study. Study data were collected and managed using REDCap electronic data capture tools hosted at Yale University.

AUTHORSHIP CONFIRMATION/CONTRIBUTION STATEMENT

GIA: Conceptualization (lead), data curation (lead), formal analysis (lead), funding acquisition (lead), investigation (equal), methodology (equal), project administration (lead), resources (lead), software (support), supervision (lead), validation (equal), visualization (lead), writing – original draft (lead). **SN:** Conceptualization (equal); investigation (equal); methodology (equal); writing – review and editing (equal). **MSK:** Methodology (supporting); Writing – review and editing (equal). **ADH:** Investigation (equal); methodology (equal); project administration (equal); software (equal); writing, review, and editing (supporting). **CT:** Investigation (equal); methodology (equal); writing, review, and editing (equal). **AC:** Investigation (equal); methodology (equal); writing – review and editing (equal). **MS:** Investigation (equal); methodology (equal); writing, review, and editing (equal). **JSB:** Methodology (supporting); Writing – review and editing (equal). **SAW:** Conceptualization (equal); investigation (equal);
methodology (equal); writing – review and editing (equal); writing – review and editing (equal). LMN:

Conceptualization (equal), formal analysis (equal), investigation (equal), methodology (lead), software (lead), visualization (equal), writing – review and editing (lead).

REFERENCES

4. Moser O, Riddell MC, Eckstein ML, et al. Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes; position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA). Pediatric diabetes. 2020;21(8):1375-1393.

33. Quirk H, Blake H, Tennyson R, Randell TL, Glazebrook C. Physical activity interventions in...

