High feasibility of salivary therapeutic drug monitoring in linezolid, but less in tedizolid: A single-dose study in healthy subjects

Hitoshi Kawasuji,a Yasuhiro Tsuji,b Keiko Miyaki,b Takahiko Aoyama,b Fumihiro Kurosaki,b Masayoshi Ezaki,a Yuki Koshiyama,a Yusuke Takegoshi,a Makito Kaneda,a Yushi Murai,a Kou Kimoto,a Kentaro Nagaoka,a and Yoshihiro Yamamoto a*

a Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
b Laboratory of Clinical Pharmacometrics, School of Pharmacy, Nihon University, Funabashi, Chiba, Japan

*Corresponding author
Yoshihiro Yamamoto, MD, PhD
Department of Clinical Infectious Diseases
Graduate School of Medicine and Pharmaceutical Sciences
University of Toyama
2630 Sugitani, Toyama 930-0194 Japan
Phone: +81-76-434-7245
Fax: +81-76-434-5018
E-mail: yamamoto@med.u-toyama.ac.jp

Running title: Salivary therapeutic drug monitoring in linezolid and tedizolid

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background
Salivary therapeutic drug monitoring (TDM) offers the potential to reduce the risks, burden, time, and costs of blood-based TDM, but its feasibility in oxazolidinone antibiotics and the influence of food intake remain unknown.

Methods
A total of 12 healthy volunteers participated in this study. Linezolid and tedizolid were intravenously administered to 6 participants each. Saliva samples were taken at 15 time points and peripheral venous blood samples were also taken at 12 time points simultaneously with saliva. Total and unbound serum and saliva concentrations of linezolid and tedizolid were measured using high-performance liquid chromatography.

Results
Individual concentration–time curves in saliva versus serum (total and unbound) were similar in linezolid, but different in tedizolid. Saliva concentrations were significantly correlated with total and unbound serum concentrations in both agents. However, concentrations in each case and area under the concentration–time curve from 0 to 10 h (AUC0–10) in saliva were correlated with those in total or unbound serum for linezolid, but not for tedizolid. The mean saliva-to-serum (total and unbound) concentration and AUC0–10 ratios were 0.90 and 0.90 in total and 1.09 and 0.99 in unbound. Food intake did not influence these correlations in linezolid.

Conclusions
The analysis of linezolid in saliva is applicable for TDM as a promising alternative to conventional serum sampling without correlation factors, but application of tedizolid is less feasible. Easy sampling using a noninvasive technique may facilitate TDM even in underdeveloped countries with limited resources and specific patient categories.
Key words: linezolid; tedizolid; serum; saliva; therapeutic drug monitoring
INTRODUCTION

Linezolid has been widely used in methicillin-resistant Staphylococcus aureus (MRSA) (1, 2) and vancomycin-resistant Enterococcus faecium (VRE) infections (3), and has recently gained a greater role in treatment regimens for multidrug-resistant or extensively drug-resistant Mycobacterium tuberculosis, or Mycobacterium abscessus (4-6). Patients should be closely monitored due to time- and concentration-dependent serious adverse effects of linezolid, including myelosuppression and neuropathy (7). In spite of linezolid being a drug with a very narrow therapeutic window (8), linezolid shows large pharmacokinetic variability, and drug–drug interactions also contribute to the high inter-individual variability in linezolid pharmacokinetics (9).

Therapeutic drug monitoring (TDM) serves as an efficient patient management tool by contributing to assessment of treatment response, helping to reduce toxicity and minimizing antibiotic resistance while ensuring adequate drug exposure (10). Several findings have provided evidence for the proper application of TDM for linezolid as an effective tool to predict serious adverse events and prevent discontinuation in advance (11-14).

Conventional venipuncture, the sampling currently used in clinical practice for TDM, is an invasive procedure with several logistical restrictions, such as the requirement of trained phlebotomists and appropriate materials, immediate storage in a refrigerator or freezer after collection, and cold chain transport to maintain the biospecimen integrity (15). Blood sampling is undesirable for some patient groups because of limited blood supply (e.g., neonates), less accessible veins (e.g., elderly), or religious objections (15). Alternatives to regular blood sampling (e.g., saliva) are therefore being studied.

Saliva sampling could reduce the risks, burden, time, and costs of blood sampling (16). Self-sampling at home would be advantageous, especially in TB-endemic countries, and would enable multiple sample collection (17). Dried blood spot (DBS) sampling is another less invasive method (18). However, DBS sampling can be painful, is more complicated, and
has higher failure rates than saliva sampling (15). The drug concentrations in DBS are influenced by the hematocrit value, blood volume, sampling paper, and chromatographic effects (15, 18). In addition, unbound drug concentrations are not determinable in DBS; salivary concentrations are generally used to represent the unbound drug concentrations (15).

Serum contains unbound and bound drugs, whereas saliva generally contains only unbound drugs. Measuring the concentrations of unbound drugs may be important in pharmacokinetic studies, because only unbound drugs are pharmacologically active (19). This means that salivary concentrations of drugs may be more strongly associated with therapeutically active drug concentrations than total serum/plasma concentrations (19).

Previously, a few studies described linezolid concentrations in saliva and found that saliva is a suitable matrix for TDM in healthy individuals or MDR-TB patients (15, 17, 20-22). Salivary concentrations can be translated to plasma or serum concentrations with a correction factor of 1.0–1.2 (15, 20, 22). However, there has been no human study measuring unbound concentrations of linezolid and assessing the correlation between saliva and unbound serum/plasma concentrations. Only about 3–7 time points are generally used for linezolid measurement (15, 20, 21), and thus the data for linezolid pharmacokinetics in saliva and serum remain scarce.

Tedizolid is a second-generation oxazolidinone which has shown similar efficacy to linezolid in acute bacterial skin and soft tissue infections, with reduced adverse side effects (23, 24). Tedizolid has also shown high activity against *M. tuberculosis* including MDR strains (25) and species of nontuberculous mycobacteria (NTM) (26); thus, tedizolid is gaining recognition as an attractive alternative to linezolid for MDR-TB and NTM (27-29). Plasma protein binding differs between tedizolid and linezolid and is reported as 70–90% (29) and 18% (30) in humans; therefore the pharmacokinetics of these two drugs is considered to be different. However, there is scarce information regarding the
pharmacokinetics in clinical practice. Furthermore, while there has been one study measuring salivary concentrations of tedizolid in rats (31), there has been no such study in humans.

In addition, salivary properties are known to be influenced by food intake (16), but it is unclear whether diet may also affect salivary drug concentrations in linezolid or tedizolid. The aim of this study was to explore the feasibility of saliva-based TDM of linezolid and tedizolid in clinical settings, including the requirement for dietary control for saliva collection. To this end, we investigated the correlations of saliva and total and unbound serum concentrations in healthy volunteers, and assessed these correlations before and just after food intake.
Participants and Methods

This study was registered at UMIN (UMIN000046556) and approved by the ethical review board of the University of Toyama (approval nos. R2012133 and R2020147) and the Nihon University (approval nos. 20-005 and 23A-005). Written informed consent was obtained from all participants.

A total of 12 healthy volunteers participated in this study. Linezolid was administered to 6 participants and tedizolid to 6 participants. Linezolid (Zyvox® IV bag 600 mg / 300 mL) and tedizolid phosphate (Sivectro® 200mg vial) for infusion were purchased from Pfizer (Tokyo) and MSD (Tokyo), respectively. Linezolid 600 mg/300 mL bag and tedizolid phosphate reconstituted with 4 mL of sterile water and further dissolved with 250 mL of 0.9% sterile saline were infused intravenously for 1 h.

Saliva samples were taken at 15 time points according to a preset schedule (Table S1) consisting of a sample before and at 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, and 10 h after the start of the infusion. To collect saliva samples, participants were asked to drink 50 mL of distilled water to promote saliva secretion before saliva collection. Subsequently, the saliva samples were collected by chewing on a cotton roll and processed using Salivette (Sarstedt, Nümbrecht, Germany) in combination with centrifugation (3000×g for 2 min) according to the manufacturer’s instructions. Peripheral venous blood samples were also taken simultaneously with saliva, before and at 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, and 10 h after the start of the infusion, through a short venous catheter inserted in the forearm opposite the infusion site. The serum samples were centrifuged at 3000×g for 10 min. All samples were stored at -80°C until analysis. During the study, participants ate the same food at the specified times (linezolid, food consumption between 4 and 5 h (4–5 h) after the start of the infusion; tedizolid, at 3–4, 6–8, and 8–10 h after the start of the infusion) and drank only water, which was unrestricted, from the start to the end of sampling.

Total and unbound serum concentrations of linezolid and tedizolid were measured.
using the improved methodology based on our previously published high-performance liquid chromatography (HPLC) methods (30, 32). Saliva samples were applied in the same manner as serum to measure saliva concentration.

Linezolid bulk powder (CAS No. 165800033) was purchased from Toronto Research Chemicals (North York, Canada), and tedizolid bulk powder (CAS No. 856867-55-5) was purchased from LKT Laboratories (Saint Paul, MN). Tedizolid was used as an internal standard (IS) for linezolid. L-tryptophan methyl ester hydrochloride was purchased from Tokyo Chemical Industry Co. (Tokyo) and used as an IS for tedizolid. All other reagents were of analytical grade and were commercially available. Linezolid and tedizolid concentrations were determined using an HPLC system (Shimadzu Corporation, Kyoto, Japan). High linearity was exhibited over a concentration range for linezolid and tedizolid ($R^2 > 0.999$). The lower limit of quantifications (LLOQ) of linezolid and tedizolid were 0.1 and 0.001 mg/L, respectively. All concentration levels met the pre-set criteria for accuracy and precision (bias and coefficient of variation [CV] < 15%; at LLOQ both < 20%).

Area under the concentration–time curve from 0 to 10 h (AUC_{0-10}) in serum and saliva was calculated using the trapezoidal rule. $AUC_{10-\infty}$ was determined using the equation $C_{10}/$elimination rate constant (ke). ke was determined by using log-linear regression of the concentrations in the terminal period. $AUC_{0-\infty}$ was calculated by adding AUC_{0-10} and $AUC_{10-\infty}$. Half-life ($t_{1/2}$) was calculated using the equation $0.693/ke$. C_{max} was defined as the highest observed concentration and T_{max} as the corresponding time of C_{max}.

PK analyses, including determination of the C_{max}, T_{max}, AUC_{0-10}, $AUC_{0-\infty}$, and $t_{1/2}$ of linezolid and tedizolid, were performed in R (v4.3.3) applying the ggplot2 package (v3.5.0) (22) in a tidyverse framework (v2.0.0).

Passing–Bablok regression and Bland–Altman plots were used to analyse results. Pearson’s correlation and the Wilcoxon signed-rank test were applied to other comparisons. Statistical significance between different groups was defined as $P < 0.05$. Statistical analysis
and figure construction were performed using JMP Pro version 17.0.0 software (SAS Institute, Cary, NC) and GraphPad Prism version 9.5.1 (GraphPad Software, San Diego, CA). Data are expressed as mean with standard deviation (SD) or median with interquartile range (IQR).
RESULTS

Participant demographics and the pharmacokinetic parameters (AUC_{0–10}, AUC_{0–∞}, C_{max}, T_{max}, t_{1/2}, protein binding rate) of linezolid are shown in Table 1. Individual linezolid concentration–time curves in saliva versus serum (total and unbound) were similarly shaped (Fig. 1A) and T_{max} in saliva was not delayed (Table 1), which suggested that penetration of linezolid into saliva is fast. The linezolid AUC_{0–10}, AUC_{0–∞}, and t_{1/2} in saliva were similar to those in unbound serum, but C_{max} in saliva was similar to that in total serum rather than that in unbound serum.

Pearson’s test revealed that the total and unbound serum concentrations were significantly correlated with saliva concentration in total (Fig. 2A and 2B) and in each individual (Fig. S1) for linezolid. Passing–Bablok analysis also showed that the linear regression line of linezolid saliva concentration = -0.38 + 0.95 × total serum concentration with 95%CI of intercept -0.99–0.11; 95%CI of slope 0.88–1.02; R = 0.75, and P < 0.001. A linear relationship between unbound serum and saliva concentrations of linezolid was also observed: saliva concentration = -0.55 + 1.15 × unbound serum concentration with 95%CI of intercept -1.34–0.10; 95%CI of slope 1.04–1.25; R = 0.66, and P < 0.001, respectively.

For AUCs, Pearson’s test also revealed that the total and unbound serum AUC_{0–10} and AUC_{0–∞} were correlated with saliva AUC_{0–10} and AUC_{0–∞}, except for unbound serum AUC_{0–∞} (Fig. 3A). Passing–Bablok regression also showed a good relationship between the saliva AUC_{0–10} and total serum AUC_{0–10} with a slope estimate of 0.86 (95%CI, -0.33–2.86) and an intercept estimate of 5.44 (95%CI, -154.0–98.5), and unbound serum AUC_{0–10} with a slope estimate of 1.48 (95%CI, 0.14–2.52) and an intercept estimate of -26.6 (95%CI, -109.4–75.3), respectively.

Bland–Altman assessment demonstrated good agreement between analyses of linezolid concentrations in saliva and serum (total and unbound). The mean saliva to total serum concentration, AUC_{0–10}, and AUC_{0–∞} ratios were 0.90 (95%CI 0.67–1.13), 0.90
(95%CI 0.80–1.00), and 0.76 (95%CI 0.60–0.93), respectively (Fig. 4A–C), and the mean saliva to unbound serum concentration, AUC\(_{0–10}\), and AUC\(_{0–\infty}\) ratios were 1.07 (95%CI 0.74–1.40), 1.09 (95%CI 0.94–1.23), and 0.99 (95%CI 0.63–1.35), respectively (Fig. 4D–F).

Regarding the influence of diet, at 5 h after administration after food intake, the total and unbound serum concentrations were significantly correlated with saliva concentration (Fig. S2) and the biases (ranges) of saliva to total and unbound serum concentration ratios were 0.86 (95%CI 0.64–1.10) and 1.05 (95%CI 0.75–1.35), respectively. These results suggested that the correlation between serum and saliva may not be affected by food intake.

Participant demographic and pharmacokinetic parameters of tedizolid are also shown in Table 1. Although the tedizolid AUC\(_{0–10}\), AUC\(_{0–\infty}\), C\(_{\text{max}}\), and t\(_{1/2}\) in saliva were more similar to those in unbound serum than in total serum, individual tedizolid concentration–time curves in saliva versus serum (total and unbound) were differently shaped (Fig. 1B). Pearson’s test revealed that the total and unbound serum concentrations of tedizolid were significantly correlated with total saliva concentration (Fig. 2C and 2D). However, in the individual evaluations, 3 out of 6 participants showed no correlation between saliva and total or unbound tedizolid concentration (Fig. S3 and S4), which was due to the inconsistent results for T\(_{\text{max}}\) in saliva and serum; in 5 out of 6 participants (all but participant 2), peaks of saliva concentration were not observed and T\(_{\text{max}}\) in saliva was different from T\(_{\text{max}}\) in serum (Fig. S3 and S4). These difference seemed not to be due to the diet because T\(_{\text{max}}\) values in serum or saliva were measured before food intake (at 3–4, 6–8, and 8–10 h after the start of the infusion).

Passing–Bablok analysis showed that the linear regression line of tedizolid saliva concentration = 0.0055 + 0.053 \times \text{total serum concentration} with 95%CI of intercept -0.0047–0.03208; 95%CI of slope 0.040–0.064; R = 0.54, and \(P < 0.001\). The unbound serum concentrations of tedizolid were also linearly correlated with saliva concentrations with equation saliva concentration = 0.0067 + 0.36 \times \text{unbound serum concentration} with
95% CI of intercept -0.005–0.021; 95% CI of slope 0.29–0.43; R = 0.50, and P < 0.001, respectively. However, for AUCs, Pearson’s test revealed that the total and unbound serum AUCs (AUC$_{0–10}$ and AUC$_{0–\infty}$) were all uncorrelated with saliva AUCs (Fig. S5), which does not favour saliva as a sampling matrix for TDM. The mean (range) saliva to total and unbound serum tedizolid concentration rates were 0.060 (0.012–0.108) and 0.39 (0.07–0.74), respectively.
DISCUSSION

This study is the first to investigate the relationship between saliva and unbound serum concentration with multiple time points and to measure saliva tedizolid concentrations in humans. We also investigated the influence of diet on the correlation between saliva and total or unbound serum concentrations, because while salivary properties are known to change according to food intake (16), the effect of diet on salivary drug concentrations has not been unclarified.

Saliva contains only the unbound fraction of drugs, since only the unbound fraction is able to infiltrate through the salivary tissues, including the capillary wall, the basement membrane, and the membrane of the salivary gland epithelial cells (33). Thus, salivary concentrations generally represent the unbound drug concentrations (15). Regarding linezolid, as we expected, the time-courses of linezolid saliva concentrations were similarly shaped with unbound concentrations in serum, and the mean saliva-to-serum concentration, AUC_{0–10}, and AUC_{0–∞} ratios were closer to 1 for those to unbound serum compared to those to total serum. The mean saliva to unbound serum concentration, AUC_{0–10}, and AUC_{0–∞} ratios were 1.07, 1.09, and 0.99, respectively (Fig. 4D–F).

To date, no human study has compared linezolid saliva and unbound concentrations in serum or plasma. Based on the previous studies conducted in TB patients, Bolhuis et al. reported the mean oral fluid/total serum concentration or AUC from 0 to 12 h (AUC_{0–12}) ratios were 1.03 and 0.97, respectively (20). Van den Elsen et al. also showed that the median saliva/total serum concentration and AUC_{0–24} ratios were 0.76 and 0.81, respectively (17). They also suggested a correlation factor of 1.2 when translated to serum AUC_{0–24} using saliva AUC_{0–24}, which may be due to the difference between the total and saliva concentrations, the latter of which represent the unbound concentrations, and it seemed that the values of saliva AUC_{0–24} and unbound serum AUC_{0–24} would be approximately the same. In the present study, the mean saliva-to-total serum concentration, AUC_{0–10}, and AUC_{0–∞}
ratios were 0.90, 0.90, and 0.76, respectively (Fig. 4A–C), and the mean saliva-to-serum concentration, \(\text{AUC}_{0-10} \), and \(\text{AUC}_{0-\infty} \) ratios were closer to 1 for unbound serum concentrations than for the total serum concentrations. Although there were slight differences in saliva-to-total serum concentrations or AUC ratios in these studies, which might be attributable to differences in sampling methods, processing or storage, salivary TDM of linezolid indeed might indeed be feasible with good reproducibility and is ready for validation in a clinical setting.

Salivary properties are known to change according to food intake (16). To improve the feasibility of salivary linezolid TDM, we investigated the effects of food intake on salivary linezolid concentrations and the correlation with total and unbound serum concentrations. In the present study, even after food intake, total and unbound serum concentrations were significantly correlated with saliva concentration (Fig. S2) and the biases (ranges) of saliva to total and unbound serum concentration ratios were 0.86 (0.64–1.10) and 1.05 (0.75–1.35), respectively. These results suggested that the correlation between serum and saliva linezolid concentrations may not be affected by diet, and dietary control may not be necessary when collecting saliva.

For tedizolid, the mean (range) tedizolid saliva-to-unbound serum concentration ratio was 0.39 (0.07–0.74), suggesting lower passage into the saliva than linezolid. As in previous studies (29, 32), the serum protein-binding rates were different between linezolid and tedizolid in the present study. The median (IQR) serum protein-binding rates are 18.2 (15.8–19.8) in linezolid and 60.3 (48.0–71.1) in tedizolid, respectively (Table 1). It is thought that the significant difference in serum-protein binding between linezolid and tedizolid affects drug passage into the saliva. In addition to serum-protein binding, pH and pKa, lipid solubility, charge, molecular weight and spatial configuration, dose and clearance of the drug, salivary flow rate and pH, and salivary-binding proteins and salivary enzymes capable of metabolizing the drug would also affect the results (16, 34). Based on these many variables,
the analysis of oxazolidinone concentrations in saliva and serum must be validated in humans, not animals. In fact, however, there has been only one study measuring salivary concentrations of tedizolid, and that study used a rat model; the results showed that the serum-protein binding and salivary pH values were different from those of humans (31). The study also demonstrated a strong correlation between saliva and plasma concentrations of tedizolid and suggested that saliva is a useful matrix for TDM of not only linezolid but also tedizolid (31). However, in the present study in humans, although correlations between saliva and total and unbound serum tedizolid concentrations were observed in participants overall, these correlations were not observed in 3 of the 6 participants (Fig. S3). A possible explanation for the observed nonlinear relationship might be the low tedizolid concentrations, higher interindividual variability, and the absence or delayed saliva concentration peak after infusion (Fig. S3 and S4). In addition, the total and unbound serum AUCs (AUC0–10 and AUC0–∞) were all uncorrelated with saliva AUCs in tedizolid (Fig. S5). Based on these results, saliva seems not to be useful in TDM for tedizolid.

Salivary TDM could be an attractive alternative method for traditional linezolid TDM using plasma or serum, and feasibility improvements will likely be a focus of future studies, including stability studies for transport at room temperature and cross-validation of existing analytical methods in saliva (17). However, with respect to tedizolid our data do not support saliva as a suitable matrix for TDM using the described method. As shown in a previous systematic review (15), saliva will likely not be a universal but only a selective matrix for TDM.

Saliva sampling is easy and noninvasive, and requires only a small sample volume (100 μL) for measurement, thus allows for the collection of multiple samples, while avoiding the risks associated with blood drawing. As with other drugs reported in previous studies (15, 35), the linezolid concentrations in saliva represent the unbound concentrations in the serum, and therefore salivary concentrations may be considered more closely related to
therapeutically active unbound concentrations at the site of action than total serum
concentrations. Saliva sampling might even reduce costs due to the higher level of training
of personnel needed for blood sampling and because less time is needed. Moreover, saliva
sampling might even take place at home. If collected saliva is stable for a certain period (e.g.,
a few weeks) even under low or high temperature, salivary TDM would allow children, elderly,
and people with disabilities the option to sample themselves at any location and afterward
bring their saliva samples to a local health post (15). To further improve feasibility of salivary
TDM in clinical settings, the applicability of saliva and/or collection devices other than the
Salivette (Sarstedt, Leicester, United Kingdom) for pharmacokinetic analysis and therapeutic
drug monitoring in patients should be clinically validated (20).

There were several limitations in the present study. First, salivary pH values which
could influence drug penetration into saliva were not measured. Second, we included only
healthy volunteers in the present study and did not investigate children or patients,
especially those with disease affecting the saliva composition. Third, we did not evaluate the
time-stability of saliva samples under room temperature conditions.

In conclusion, the analysis of linezolid (with no correction factor) in saliva is applicable
for TDM as a promising alternative to conventional serum sampling. Easy sampling using a
noninvasive technique may facilitate therapeutic drug monitoring for specific patient
categories.
Transparency declaration

Data availability

The data presented in this study are available upon request from the corresponding author.

Conflicts of interest

We have no conflicts of interest to declare.

Funding

This study was supported by research grants from the Japanese Society of Chemotherapy Foundation (the 8th Uehara Infectious Disease and Chemotherapy Research Award to H.K.) and the Japan Society for the Promotion of Science KAKENHI program (grant number JP22K08597 to Y.Y.). The funding bodies played no role in the study design, collection, analysis, or interpretation of data, and no role in writing the manuscript.

Acknowledgments

We thank Kai Kurihara, Risa Sakurai, and Rei Yasukochi for their assistance with the sample collections.

Figure legends:

Figure 1. Concentration–time curves for linezolid and tedizolid in total and unbound serum and saliva
(A) Concentration–time curves in total (red) and unbound serum (orange) and saliva (blue) for linezolid (n = 6). (B) Concentration–time curves in total (red) and unbound serum (orange) and saliva (blue) for tedizolid (n = 6). Data are presented as means and standard deviations.

Figure 2. Correlation between total or unbound serum and saliva concentrations of linezolid and tedizolid
The relationship between saliva concentrations and (A) total or (B) unbound serum concentrations of linezolid (n = 6). The relationship between saliva concentrations and (C) total or (D) unbound serum concentrations of tedizolid (n = 6). Each dot represents the concentration measured at one time point for one individual. The Pearson correlation was calculated, and the P value and r value and general linear regression lines are shown.

Figure 3. Correlation between saliva and total or unbound serum AUCs of linezolid
The relationship of area under the concentration–time curve from 0 to 10 h (AUC₀–₁₀) between in saliva and in (A) total or (C) unbound serum for linezolid (n = 6). The relationship of AUC extrapolated to infinity (AUC₀–∞) between in saliva and in (B) total or (D) unbound serum for linezolid (n = 6). Each dot represents an individual value. The Pearson correlation was calculated, and the P value and r value and general linear regression lines are shown.

Figure 4. Bland-Altman plot of linezolid concentration, AUC₀–₁₀, and AUC₀–∞ ratios in saliva versus total or unbound serum
Bland-Altman plot of ratios of (A) concentrations, (B) AUC₀–₁₀, and (C) AUC₀–∞ between
saliva and total serum compared to the average of those in saliva and total serum.

Bland-Altman plot of ratios of (D) concentrations, (E) AUC\textsubscript{0–10}, and (F) AUC\textsubscript{0–∞} between in saliva and unbound serum compared to the average of those in saliva and unbound serum.

Solid line: the bias. Dashed lines: the 95% limits of agreement.

Figure S1. Correlation between total or unbound serum and saliva concentrations of linezolid in each individual

The relationship between saliva concentrations and total (red) or unbound serum concentrations (orange) of linezolid in participant 1 to 6. Each dot represents the concentration measured at each time point for each individual. The Pearson correlation was calculated, and the \(P\) value and \(r\) value and general linear regression lines are shown.

Figure S2. Correlation between total or unbound serum and saliva concentrations of linezolid before and after food intake

(A) The relationship between saliva concentrations and total (red) or unbound serum concentrations (orange) of linezolid until food intake (0–4 h after infusion). (B) The relationship between saliva concentrations and total (red) or unbound serum concentrations (orange) of linezolid after food intake (5–10 h after infusion). Each dot represents the concentration measured at one time point for one individual. The Pearson correlation was calculated, and the \(P\) value and \(r\) value and general linear regression lines are shown.

Figure S3. Concentration–time curves for tedizolid in total and unbound serum and saliva of each individual

Concentration–time curves in total (red) and unbound serum (orange) and saliva (blue) for tedizolid \((n = 6)\) in participants 1 to 6. Each dot represents the concentration measured at one time point for one individual.
Figure S4. Correlation between total or unbound serum and saliva concentrations of tedizolid in each individual

The relationship between saliva concentrations and total (red) or unbound serum concentrations (orange) of tedizolid in participants 1 to 6. Total and unbound serum concentrations at T_{max} (vertical dotted line) are shown for each individual. Each dot represents the concentration measured at one time point for one individual. The Pearson correlation was calculated, and the P value and r value and general linear regression lines are shown.

Figure S5. Correlation between saliva and total or unbound serum AUCs of tedizolid

The relationship of the area under the concentration–time curve from 0 to 10 h (AUC$_{0-10}$) between in saliva and in (A) total or (C) unbound serum for tedizolid ($n = 6$). The relationship of AUC extrapolated to infinity (AUC$_{0-\infty}$) between in saliva and in (B) total or (D) unbound serum for tedizolid ($n = 6$). Each dot represents an individual value. The Pearson correlation was calculated, and the P value and r value and general linear regression lines are shown.
Table 1. Pharmacokinetic parameters of linezolid and tedizolid in serum (total and unbound) and in saliva (n = 6)

<table>
<thead>
<tr>
<th>Drug and parameter</th>
<th>Median value (IQR) for sample type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Linezolid</td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td>6</td>
</tr>
<tr>
<td>Age (years)</td>
<td>31.0 (27.0–48.0)</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>67.0 (59.5–71.3)</td>
</tr>
<tr>
<td>AUC_{0–10} (mg · h/L)</td>
<td>86.8 (81.9–105.3)^b</td>
</tr>
<tr>
<td>AUC_{0–∞} (mg · h/L)</td>
<td>197.4 (173.5–250.6)^b</td>
</tr>
<tr>
<td>C_{max} (mg/L)</td>
<td>15.6 (13.3–17.0)^b</td>
</tr>
<tr>
<td>T_{max} (h)</td>
<td>1.0 (1.0–1.0)</td>
</tr>
<tr>
<td>t_{1/2} (h)</td>
<td>11.4 (10.1–12.1)^c</td>
</tr>
<tr>
<td>Protein-binding rate (%)</td>
<td>18.2 (15.8–19.8)</td>
</tr>
<tr>
<td>Tedizolid</td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td>6</td>
</tr>
<tr>
<td>Age (years)</td>
<td>29.0 (28.5–35.8)</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>72.0 (65.3–77.8)</td>
</tr>
<tr>
<td>AUC_{0–10} (mg · h/L)</td>
<td>16.3 (15.1–18.3)^c</td>
</tr>
<tr>
<td>AUC_{0–∞} (mg · h/L)</td>
<td>27.4 (25.0–31.6)^c</td>
</tr>
<tr>
<td>C_{max} (mg/L)</td>
<td>4.9 (3.7–6.0)^c</td>
</tr>
<tr>
<td>T_{max} (h)</td>
<td>1.0 (1.0–1.1)</td>
</tr>
<tr>
<td>t(_{1/2}) (h)</td>
<td>8.6 (7.7–9.1)</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Protein-binding rate (%)</td>
<td>60.3 (48.0–71.1)</td>
</tr>
</tbody>
</table>

\(^a\), \(P < 0.05\) versus total, as determined by Fisher’s exact test.

\(^b\), \(P < 0.05\) versus unbound, as determined by Fisher’s exact test.

\(^c\), \(P < 0.05\) versus saliva, as determined by Fisher’s exact test.
<table>
<thead>
<tr>
<th>Time (h) after infusion</th>
<th>Infusion</th>
<th>Collection</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Linezolid (Zyvox® IV bag 600 mg / 300 mL) were infused intravenously for 1 h.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.25</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4–5</td>
<td></td>
<td>Food intake</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Saliva samples were taken at 15 time points (X) just before and after the start of the linezolid infusion. To collect saliva samples, participants were asked to drink 50 mL of distilled water to promote saliva secretion before saliva collection. Subsequently, the saliva samples were collected by chewing on a cotton roll and processed using Salivette (Sarstedt, Numbrecht, Germany). Peripheral venous blood samples were also taken simultaneously with saliva at 12 time points (X) just before and after the start of the infusion, through a short venous
catheter inserted in the forearm opposite the infusion site. During the study, participants ate
the same food between 4 and 5 h (4–5 h) after the start of the infusion and drank only water,
which was unrestricted, from the start to the end of sampling.
Table S2 Time schedule of tedizolid study

<table>
<thead>
<tr>
<th>Time (h) after infusion</th>
<th>Infusion</th>
<th>Collection</th>
<th>Serum</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Tedizolid phosphate (Sivectro® 200mg) were infused intravenously for 1 h.</td>
<td>X</td>
<td>X</td>
<td>Just before infusion</td>
</tr>
<tr>
<td>0.25</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td></td>
<td>At the end of infusion</td>
</tr>
<tr>
<td>1.25</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3–4</td>
<td>Food intake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6–8</td>
<td>Food intake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8–10</td>
<td>Food intake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Saliva samples were taken at 15 time points (X) just before and after the start of the tedizolid infusion. To collect saliva samples, participants were asked to drink 50 mL of distilled water to promote saliva secretion before saliva collection. Subsequently, the saliva samples were...
collected by chewing on a cotton roll and processed using Salivette (Sarstedt, Nuembrecht, Germany). Peripheral venous blood samples were also taken simultaneously with saliva at 12 time points (X) just before and after the start of the infusion, through a short venous catheter inserted in the forearm opposite the infusion site. During the study, participants ate the same food at 3–4, 6–8, and 8–10 h after the start of the infusion and drank only water, which was unrestricted, from the start to the end of sampling.
REFERENCES

33. Elmongy H, Abdel-Rehim M. 2016. Saliva as an alternative specimen to plasma for

Patsalos PN, Berry DJ. 2013. Therapeutic drug monitoring of antiepileptic drugs by use of saliva. Ther Drug Monit 35:4-29.
Figure 3

A. Total serum AUC$_{0-10}$ (mg·h/L) vs. Saliva AUC$_{0-10}$ (mg·h/L):
- $r = 0.92, P = 0.010$

B. Total serum AUC$_{0-\infty}$ (mg·h/L) vs. Saliva AUC$_{0-\infty}$ (mg·h/L):
- $r = 0.90, P = 0.016$

C. Unbound serum AUC$_{0-10}$ (mg·h/L) vs. Saliva AUC$_{0-10}$ (mg·h/L):
- $r = 0.86, P = 0.026$

D. Unbound serum AUC$_{0-\infty}$ (mg·h/L) vs. Saliva AUC$_{0-\infty}$ (mg·h/L):
- $r = 0.73, P = 0.101$
Figure 4