Acceptability and feasibility of maternal screening for Group B Streptococcus: a rapid review.

Georgina Constantinou (PhD); Rebecca Webb (PhD); Susan Ayers (PhD, Prof); Eleanor J Mitchell (PhD); Jane Daniels (PhD, Prof)

1 Centre for Maternal and Child Health Research, School of Health and Psychological Sciences, City, University of London, EC1V 0HB, United Kingdom
2 Faculty of Medicine & Health Sciences, Nottingham Clinical Trials Unit, University of Nottingham, Building 42, University Park, Nottingham NG7 2RD

*Corresponding Author: Rebecca Webb, Centre for Maternal and Child Health Research, School of Health and Psychological Sciences, City, University of London, EC1V 0HB, United Kingdom; rebecca.webb.2@city.ac.uk; (+44) 020 7040 4718

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Acceptability and feasibility of Group B Strep Screening

Abstract

Background: The risks and benefits of maternal screening for GBS during pregnancy or the intrapartum period are widely debated, since screen positive results trigger prophylactic antibiotic use. There is little known about women’s and health professional’s views regarding GBS screening.

Objectives: To conduct a rapid review to synthesise evidence on women and health professionals’:
(1) knowledge and awareness of; (2) preferences for; and (3) acceptability of GBS screening programmes, and (4) how feasible they are to implement.

Method: Literature searches were conducted using online databases from their inception to 2023. Papers were included if they reported primary research from the perspectives of health professionals and women, about their knowledge and awareness, preferences, acceptability and feasibility of different types of GBS screening programmes. Data were assessed for confidence using GRADE-CERQual and analysed using a convergent synthesis approach.

Findings: 42 papers were eligible for inclusion. A total of 16,306 women and professionals were included. Women generally did not have extensive knowledge about GBS. Health professionals had a higher level of knowledge than women. Women were generally (but not universally) positive about GBS testing procedures. Some women were concerned about the impact on their place of birth.

Discussion and Conclusion: Where GBS screening programmes are available, parents must be provided with high quality information about them. Health professionals and service managers need to weigh up the benefits and risks of screening for GBS with local feasibility and treatment options, and with women’s individual values and birth plans.

Keywords: Group B streptococcus, GBS, screening, acceptability, values, feasibility, equity, systematic review, women, health professionals
Acceptability and feasibility of Group B Strep Screening

Statement of significance

Problem: Maternal GBS colonisation at birth can lead to invasive GBS disease. The risks and benefits of screening for GBS during pregnancy is widely debated.

What is already known: Different countries use different GBS screening strategies, such as the universal screening strategy vs risk based.

What this paper adds: The World Health Organization reviewed their GBS policy guidelines in 2024. Results from this paper were used to ensure women and health professional’s views were considered. This paper found that women are generally (but not universally) positive about GBS testing procedures with some concerned about the impact on their birth choices.
Acceptability and feasibility of Group B Strep Screening

Introduction

Group B Streptococcus (GBS) is a bacteria that is typically harmless with no symptoms, although if passed to the baby during birth it can result in infection which can be fatal for the infant if untreated. Globally it is estimated that around 1 in 5 pregnant women are carriers of GBS bacteria. Estimates show that there were 319,000 cases of invasive GBS disease globally; 205,000 were early onset GBS (EOGBS) and 114,000 cases of late onset GBS (LOGBS), with an estimation of 90,000 infants deaths worldwide.

In many high-income maternity care settings, if maternal GBS colonisation is suspected or detected, maternal intrapartum antibiotic prophylaxis (IAP) is given during labour to reduce transmission to the baby in an effort to prevent EOGBS disease. However it is unclear if women should be targeted based on the presence of clinical risk factors or by screening for GBS colonisation during pregnancy, therefore internationally, detection strategies vary. Some countries deploy universal GBS screening approaches whereby all pregnant women are offered GBS testing in pregnancy such as the USA. Whereas other countries identify women with certain clinical risk factors (e.g., GBS bacteria in current or previous pregnancy, women with risk of pre-term birth, women with a temperature of 38°C or higher) and then prescribe IAP such as the Netherlands and UK. There is also combination strategies, whereby all women are screened, but only those with positive GBS results and a risk factor are offered IAP. Variation in approach is partly because women who screen positive during testing do not necessarily result in GBS being present at the time of birth, and vice versa. Missing potential GBS colonisation, and therefore failing to prevent neonatal illness or death, or widespread use of antibiotics for many women and neonates who are in fact GBS negative are debated concerns. Therefore, the ideal prevention strategy remains unclear and with rapid testing for GBS now available, this adds an additional element to these debates.

No randomised controlled trials have previously looked at universal screening vs other types of screening programmes. However, the GBS2 randomised trial tested the accuracy of the intrapartum test in diagnosing maternal GBS colonisation, compared to treatment as usual and found that the accuracy of the rapid test was acceptable. Furthermore, the efficacy of implementing routine universal screening as opposed to a risk-factor based approach is currently being investigated in a large multi-centre clinical trial in the UK: the GBS3 trial.

It is likely that results from these trials will be used to inform policy guidelines. For example, the World Health Organization reviewed their GBS policy guidelines in 2024, having last done so in 2015. It is important that women and healthcare professionals views are taken into account, as
Acceptability and feasibility of Group B Strep Screening

these are the people who will be impacted by changes to GBS policy and practice. This rapid review will therefore collate and synthesise the available evidence on women and healthcare professionals views on GBS screening strategies and provide a critical appraisal and overview of the evidence-base. These findings will be used to help inform the World Health Organizations development of GBS policy guidelines and can be used to help inform other organisations/services GBS policy and practice.

Methods

Aims

To conduct a rapid review to synthesise evidence on women and health professionals’ (1) knowledge and awareness of; (2) preferences for; and (3) acceptability of GBS screening programmes, and (4) how feasible they are to implement.

Eligibility criteria

Studies were included if they reported primary research including perspectives of health professionals and women, knowledge and awareness of, preferences for, and acceptability of GBS screening programmes, as well as how feasible they are to implement. These variables were chosen as they are in line with the World Health Organization’s guidelines for developing guidelines. Both qualitative and quantitative studies were included. If quantitative they must have reported information on, knowledge, awareness, preferences, acceptability, feasibility/adherence of GBS screening to participants. Studies were excluded if they: (1) did not discuss GBS screening during pregnancy or birth; (2) were non-empirical papers; (3) were reviews.

Information sources

The following online databases were searched from their inception to 2023: Academic Search Ultimate; Cumulative Index to Nursing and Allied Health Literature (CINAHL); EMBASE; Global Index Medicus; MEDLINE; PsychARTICLES; PsycINFO; PubMed; Scopus; Web of Science. The date of the last search was 12th September 2023. Forward and backward searches of included studies were completed by the 5th October 2023.

Search

Searches were carried out using search terms that were combined with Boolean operators “OR” and “AND”. Search terms included, but were not limited to, women OR mother OR parent* AND pregnant* OR *natal OR *partum AND GBS OR Group B Strep OR GBS Bacteria AND test* OR screen* OR swab* AND value OR view OR experience (See supplementary material A for full search syntax).

Review selection
Acceptability and feasibility of Group B Strep Screening

Search results were imported into Eppi-Reviewer 4 and duplicates were removed by GC. The remaining papers were screened by title and abstract by GC. As per Cochrane Rapid Review guidelines,15 20% (n = 257) of the title and abstracts were double screened by RW. Decisions to include or exclude were concordant in 69.6% of cases. Full text screening was carried out by RW, and as per Cochrane Rapid Review guidelines,15 10 full texts were double screened by GC and RW. Decisions to include or exclude were concordant for 81.8% of cases. Furthermore, all excluded texts were assessed by GC to ensure they were not eligible for inclusion.

Data collection process and data items

Each paper was read in full, and relevant parts of the text inputted into a Microsoft Excel spreadsheet by GC. The data that were extracted included the following: authors; year of publication; country; study design; sample size; participant characteristics; type of GBS testing; outcomes (knowledge, awareness, preferences, acceptability, feasibility/adherence); strengths and limitations. The researchers obtained or confirmed missing or ambiguous data by contacting authors.

Critical appraisal of included studies

The quality of the included studies was assessed using: the questionnaire critical appraisal checklist16 for quantitative questionnaire papers; the Joanna Briggs Cross-Sectional Studies tool for other quantitative papers17; the Walsh and Downe18 tool for qualitative studies and; the Mixed Methods Appraisal Tool19 for mixed method papers. Although there is a move towards a domain based approach to critical appraisal20, the studies included used a variety of methodologies so domains for each critical appraisal tool would have been difficult to compare. It has been argued there is no evidence a checklist or domains-based approach is better than the other21, and that appraisal should be logically incorporated into the overall analysis.22 Therefore a score-based method was used allowing for comparisons across each study. Furthermore, no papers were excluded based on their methodological appraisal score, and in addition to using methodological appraisal ratings to determine confidence in individual papers, we also used the GRADE-CERQual approach23 to look at confidence in statement of findings identified from the review (see below). The use of multiple factors in determining the confidence of findings is recommended when rating the overall quality of a body of evidence24.

Therefore, each critical appraisal question for each paper was assigned a score of: 1 = Yes if the paper fully met the criteria; 0.5 = if the paper only partially met the criteria; and 0 = if the paper did not meet the criteria. A percentage was calculated by dividing the achieved score from the total possible score and multiplying by 100.

Synthesis of results
Acceptability and feasibility of Group B Strep Screening

Findings relevant to the study aims were extracted and recorded in Excel and summarised to show each of the included studies relevant findings. A convergent synthesis\(^\text{25}\) which allows for the mapping of the findings of studies from divergent methodological traditions and epistemological foundations into themes in relation to the aims of the review was used. For quantitative data means and standard deviations were calculated using Excel. There were not enough quantitative data to run analyses to account for the impact of location, national income level, screening programme, and health insurance/free health care on the outcomes in question. Themes were then refined further into statement of findings (see supplementary material B) and presented narratively.

Assessment of confidence in the findings

The methodologies of papers 1-7 of the GRADE-CERQual series were used to evaluate confidence in the findings. Given the vast number of papers, and the different methodologies and aims used, certain rules were applied to allow for conclusions about confidence to be drawn (see Table 1). These rules are consistent with those used in a previous evidence synthesis regarding perinatal mental health care\(^\text{26}\). The group of papers underpinning each statement of findings was assessed on their methodological limitations\(^\text{27}\); coherence\(^\text{28}\), adequacy of data\(^\text{29}\), and relevance of data\(^\text{30}\) (see supplementary materials C-F). As per GRADE-CERQual the confidence of each of these four aspects was rated as: high confidence, moderate confidence, low confidence and very low confidence. A final evidence profile was developed (see supplementary materials B).

Results

Study selection

Searches identified 2,096 papers and an additional 6 were identified by forward and backward searching. After 818 duplicates were removed, title and abstract screening excluded a further 1,205 papers. 74 full-text papers were screened by full text, as five were conference abstracts so did not have full texts. Of the 74 papers screened by full-text, 30 were excluded (see Figure 1). The reasons for exclusion included: the papers were not about GBS (n = 2); perinatal and non-perinatal women’s views could not be separated (n = 1); outcomes not relevant to the review (n = 22); protocol, editorial, review or letter (n = 5).

Study characteristics

The review included 42 papers reporting findings from 41 studies (see Table 2). The majority of papers were quantitative (n = 33), followed by qualitative (n = 5) and mixed methods (n = 4). Studies were conducted between 1995 – 2023 (Mean (M) = 2010; Median (Mdn) = 2013; Inter Quartile Range (IQR) = 2002-2018). The sample size varied from 6 to 2,809, with a total of 16,306 participants (M = 398; Mdn = 251; IQR = 163-431). Papers recruited health professionals (n = 12),
Acceptability and feasibility of Group B Strep Screening

pregnant and postnatal women (n = 26) or both women and health professionals (n = 4). The studies were conducted in 18 countries, with most being high income countries (Australia: n = 4; Canada: n = 6; USA: n = 6). Only one study was carried out in a lower-middle income country (Mozambique) and five were carried out in upper-middle income countries (Brazil: n = 1; China: n = 3; South Africa: n = 1). Three papers were not published in English (Greek, Polish, and Spanish) and were translated using Google translate.

Risk of bias within studies

Fifty percent (n = 21) were rated as having medium confidence with the methodology; 8 were rated as high confidence; 9 were low confidence and 4 were rated as very low confidence with the methodology.

Synthesis of results

Results were grouped according to the aims of the review, which led to 4 categories (Knowledge and awareness, Preferences, Acceptability, Feasibility/Adherence). Thirty-nine statements of findings were generated (see Table 3). Only statements of findings with high and moderate confidence will be discussed here. The remaining statements of findings can be found in Table 3.

Knowledge/Awareness

Women’s views

Awareness of GBS is generally low (<40%) and varies across countries and populations (High confidence). In included studies, awareness of GBS ranged from 8-37% (n = 6; M = 24.78; SD = 9.77). Awareness of GBS screening programmes ranged from 9 – 67.1% (n = 3; M = 44.27; SD = 25.30). This variable knowledge about GBS was corroborated by the qualitative studies which reported most women did not have an extensive knowledge about GBS.

Women get information about GBS from a wide variety of sources (moderate confidence). These sources include: health professionals, social media/online, books or booklets, their work, family and friends, personal experience, and antenatal education.

Women generally want detailed information about GBS delivered face-to-face (Moderate confidence). Women reported that they would like a range of information about GBS/GBS screening programmes in the form of leaflets, websites, and face-to-face detailed explanations. Positive GBS screening results should be delivered face-to-face. Some women felt the information they were given was inconsistent, unclear, poorly explained or inconsistently delivered.

Higher levels of education appears to be associated with more knowledge about GBS. Other factors may impact knowledge (moderate confidence). Five of seven quantitative studies
Acceptability and feasibility of Group B Strep Screening

found that the higher women’s education level, the more knowledge they had about GBS/GBS screening programmes. Three studies looked at the impact of wealth and found that those with higher income tended to be more knowledgeable. Data suggest that more time spent in the country women are residing in can impact knowledge, however this was only supported by two studies. No consistent relationship between knowledge and age; employment status; city vs village living; past exposure to GBS; or parity was found.

Health professional’s views

Health professionals generally have higher knowledge about GBS than women (moderate confidence). GBS screening knowledge is higher in health professionals with over 75% of health professionals sampled having good or excellent knowledge about GBS screening. Two studies looked at management strategies for identifying and treating GBS and found that at least 80% could identify a screening strategy.

Obstetricians may have more knowledge than other health professionals (moderate confidence). Three quantitative studies report obstetricians tend to have more knowledge about GBS screening, management strategies and risk factors than midwives and paediatricians. One study found that older obstetricians had more knowledge than younger ones, but more research is needed.

Most health professionals see screening as important and beneficial to women (moderate confidence). Three studies found that most health professionals (between 69-91.1% of those sampled) thought screening for GBS was important and two studies found most health professionals sampled (72-88.8%) believed screening to be beneficial for pregnant women.

Preferences

The review identified information about preferences in terms of women and health professional’s preference towards a specific GBS screening strategy, as well as women’s views in favour of screening, views against screening and preferences regarding swabbing itself.

Women’s views

Most women surveyed are in favour of universal screening (moderate confidence). Three studies looked at universal based screening, and the majority of women (61.8%-81%) preferred this strategy. On the other hand, Kolkman et al. (2017) found that 86% of women preferred the combination strategy.

Most women surveyed would accept GBS testing and believe it is a good way to protect their baby (moderate confidence). Two studies (one quantitative and one qualitative) found that most women asked would be happy to accept GBS testing. Most women believed that testing was beneficial because it was a good way to protect their baby. The fact EOGBS can be prevented
Acceptability and feasibility of Group B Strep Screening

through antibiotics was seen as a positive thing, but clear information about it should be
provided.8,40,42

Views against screening include embarrassment, fear of birth plans being altered,
overmedicalization of birth and implications for their baby (moderate confidence). Four studies
reported negative views around testing. A small proportion of women in De Mello et al.’s sample
reported feeling embarrassed or afraid after testing.39 Women were concerned about accepting
screening because of the risk of increased stress and anxiety,40 risk of over treatment8, risk of over
medicalising birth and ruining birth plans40,42, potential negative effects for the woman and her baby
are the safety of swabbing and antibiotic prophylaxis.40,42

Over half of women surveyed would accept swabbing, and the provision of clear
information is vital in mitigating anxiety (high confidence). Two studies found the majority of
women would accept vaginal swabbing8,34. However, Chow et al. (2013)34 found that women were
less likely to accept high vaginal swabbing (only 30% would accept) and anal swabbing (only 13%
would accept). Qualitative data found that most women saw the swabs as not particularly
intrusive40,42, but would want to be provided with high quality information about what it involved so
they could make an informed choice40. The qualitative data also indicated that a lot of the anxiety
surrounding testing and positive test results could be mitigated through clear explanations and
information provided by health professionals40,42.

Women generally find self-swabbing easy (Moderate confidence). Four studies explored
ease of self-swabbing, and all found that the majority of women found it to be easy.50–53

Preference for health professional swabbing is because some women are concerned
about doing it wrong (Moderate confidence). Eight studies reported reasons women gave for
preferring health professional swabbing. Reasons given were: fears of doing it incorrectly33,42,51,53–55;
women’s concerns about the accuracy of the swab;8,50 the belief that health professionals have more
knowledge of swabbing,50,51 physical difficulties performing the swab e.g., bump getting in the way;
50,51,53 women generally not liking the idea of self-swabbing, or touching their genitals to perform the
swab;50,53,54 and concern about hurting their baby if they self-swabbed.53

Acceptability

15 studies looked at acceptability of GBS screening programmes to women and health
professionals, anxiety around screening as well as facilitators and barriers to acceptability.

Women’s views

At least 80% of women find GBS testing acceptable (moderate confidence). Five studies
34,50,56–58 looked at the levels of acceptability for women in being screened for GBS, and how the
screening was performed, with acceptability ranging from 81-100% (M = 94; SD = 6.95).
Acceptability and feasibility of Group B Strept Screening

Generally vaginal swabbing is more acceptable than anal swabbing (moderate confidence). Three studies reported percentages related to the acceptability of vaginal vs rectal swabbing. Acceptability for vaginal swabbing ranged from 62-90% (M = 78.13; SD = 11.82). Acceptability for rectal swabbing ranged from 13-84% (M = 55.7; SD = 30.72).

Health Professionals views

Intrapartum screening is potentially acceptable (moderate confidence). Three studies looked at the acceptability of antenatal vs intrapartum screening and although most health professionals found antenatal screening more acceptable, the proportion of the health professionals saying they would use rapid testing if it became available, was clinically proven and effective varied across studies (5% and 47%). Furthermore, a qualitative study found that most midwives felt that rapid testing was acceptable and possible during labour. However, they prioritised safe labour and birth care, and stated that they would not take swabs if it was inappropriate. Practical issues were raised with rapid intrapartum testing in terms of the difficulty of multi-tasking on a busy labour ward, or the speed at which some women labour. These issues were linked to staff shortages and if rapid testing was to become part of routine practice midwives believed there should be a dedicated person to do it. On the other hand, some respondents said it may not be worth adding an additional task to be carried out during labour given the low levels of EOGBS.

Feasibility

Eight studies were identified that reported barriers and facilitators to screening programmes. Ten studies were also identified that looked at adherence to GBS screening protocols and can therefore be used as a proxy for feasibility, as low adherence is likely to reflect low feasibility.

Health Professional Views

Barriers to GBS screening programmes include organisational barriers, fear of the consequence (e.g., anxiety, overmedicalization of birth); lack of clarity around guidelines and lack of training (moderate confidence). The most commonly cited barrier was related to the organisation in which they worked including supervisors not supporting the use of the GBS protocol, or time constraints. Another common barrier was fear of the consequences of screening and providing antibiotics, including concerns over maternal discomfort and anxiety, the risk of over treatment, antibiotic resistance, over medicalisation of birth and a reduction of the choice for women to home birth. Other reasons given were lack of clarity around the guidelines, medico-legal/political reasons; and lack of training.

Most health professionals saw training as important for increasing adherence (moderate confidence). Training in GBS was seen as important to improve adherence to GBS screening programmes. In a qualitative study, health professionals stated that engagement with GBS
Acceptability and feasibility of Group B Strep Screening

protocols could be encouraged by receiving feedback regarding the wellbeing of a neonate that had been affected by GBS infection, as this could sensitise them to the issue. They also stated that campaigns and media information focused on GBS could be important in improving engagement.48

Discussion

The aim of this rapid review was to collate and synthesise the relevant evidence regarding GBS screening and provide a critical appraisal and overview of the evidence-base. The review looked at knowledge and awareness, preferences, acceptability and feasibility/adherence of GBS screening programmes for women and health professionals and identified a total of 4 categories and 39 statements of findings.

Main findings

One of the statement of findings that had high confidence in the evidence was women’s low knowledge about GBS screening programmes. This is likely due to many reasons, including a lack of public awareness of GBS. Hunt (2012) speculated that this poor knowledge may be influenced by screening programmes generally being risk-based, rather than universal, meaning many midwives are not fully informed about GBS themselves, making it difficult to advise women in their care.63 This suggestion is supported by this review which found that obstetricians tend to have higher knowledge of GBS and may be more likely to discuss, screen for, and follow policies related to GBS than nursing and midwifery professionals32,37,48,49,64.

The other statement of findings that had high confidence in the evidence was that women’s attitudes are mostly, but not universally, positive towards GBS testing procedures, and that women generally prefer the universal based screening strategy (moderate confidence)34,37,45. This finding is consistent with other research which has found that women tend to find GBS vaccinations acceptable.65 A previous systematic review found that women value maintaining a healthy pregnancy for themselves and their baby.66 This may make testing more acceptable, as it could mean women feel they are mitigating risk and ensuring a healthy baby.40

However, this review also highlighted the importance of considering issues with over medicalising labour and birth, and in some cases iatrogenic harm for some women and babies in the case of antibiotic prophylaxis. Some women wish to focus on more of a holistic model of pregnancy and birth, with a view to minimise medical procedures as much as possible.67 This is supported by the statement of findings that some women are against testing due to stress and anxiety it could cause to the mother and the baby, the risk of over-medicalising birth, preventing home birth and the safety of swabbing and antibiotic treatment for the mother and their baby.8,40,42

Strengths and limitations

Acceptability and feasibility of Group B Strep Screening

The strengths of this rapid review are that it synthesises a large amount of information from 42 papers and used the CERQual approach to grade confidence with the evidence. This information can therefore be used to identify recommendations for the design and delivery of care. In addition, no papers were excluded based on the language they were published in, meaning papers from 18 different countries were included. A limitation is that only papers published in academic journals were included. Relevant papers from health services, charities, third sector organisations and other grey literature may have been missed. Another limitation is that a score-based approach was used to categorise studies risk of bias into low, medium and high confidence, rather than a domain based approach. This was done to allow for comparisons across studies.

Interpretation

Women’s low knowledge about GBS suggests women need to be provided with high quality information regarding GBS, GBS screening procedures and antibiotic prophylaxis during antenatal care, or through antenatal education. Providing women with information about this will enable them to make informed decisions about their care. Health professionals may require more training on GBS screening to ensure they can provide the high quality information to women that they need. This is supported by two of the studies from the review which found that health professionals would like more training, and that a lack of training was seen as a barrier to implementing GBS screening procedures.

Women’s generally positive attitudes towards the GBS testing procedure suggest that most women would be happy to be swabbed for GBS. However, the review also identified concerns around a positive GBS result impacting women’s birth plans, and some concerns about the potential over-use of antibiotics. Given the importance of women’s birth plans being met in terms of increased birth satisfaction and reduced birth trauma and post-traumatic stress symptoms it is important for health professionals and service managers to weigh up the positives of screening for GBS, whilst also taking into account women’s individual values and birth plans.

Overall, half of the statement of findings were rated as having low confidence or very low confidence with the evidence (n = 21). This suggests more high-quality research is needed that examines women and health professionals’ views on knowledge, preferences, acceptability, and feasibility of GBS screening. There was no research on equity of delivering GBS screening. More research should therefore be carried out to identify what women and health professionals’ values surrounding GBS screening and treatment are, and what the key equity issues might be. Furthermore, the studies were carried out in 18 countries reflecting a very broad range of medical practice, social values, beliefs and medico-legal environments. It is likely that the heterogeneity may have impacted
Acceptability and feasibility of Group B Strep Screening

the results, therefore future research should focus on cross-cultural comparisons of knowledge, preferences, acceptability and adherence for GBS screening programmes.

Conclusion
The aim of this rapid review was to synthesise evidence on women and health professionals’: (1) knowledge and awareness of; (2) preferences for; and (3) acceptability of GBS screening programmes, and (4) how feasible they are to implement. This is the first review that has been carried out that looks at women and health professionals views related to GBS screening preferences. Overall, only two statements of findings were rated as having high quality with the evidence and these were women’s low knowledge of GBS and GBS screening programmes, and most women’s generally positive attitudes towards swabbing for GBS. The results from the review suggest that women should be provided with high quality information about GBS and GBS screening programmes in order to make informed decisions about their care. Health professional training may need to be increased in order to do this. Furthermore, it is important for health professionals and service managers to weigh up the positives of screening for GBS, whilst also taking into account women’s individual values and birth plans. More research is needed on this topic, specifically around the equity and feasibility of implementing GBS screening programmes.
Acceptability and feasibility of Group B Strep Screening

References

Acceptability and feasibility of Group B Strep Screening

66. Downe S, Finlayson K, Tunçalp ‡, Metin Gülmezoglu A. What matters to women: a systematic scoping review to identify the processes and outcomes of antenatal care provision that are
Acceptability and feasibility of Group B Strep Screening

Acceptability and feasibility of Group B Strep Screening

Manuscript Word Count: 4379

Availability of data, code and other materials: Available on request

Table/Figure Caption List

Figure 1. *Prisma Flow Diagram*

Table 1. GRADE-CERQUAL Rules

Table 2. Study characteristics

Table 3. Categories and statement of findings
PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and registers only

Identification of studies via databases

- Records identified from*:
 - Databases (n = 2,096)
 - Forward and backward searching (n = 6)

- Records removed before screening:
 - Duplicate records removed (n = 818)

- Records screened (n = 1,284)

- Records excluded** (n = 1,205)

- Records sought for retrieval (n = 79)

- Records not retrieved (conference abstracts) (n = 5)

- Records assessed for eligibility (n = 74)

- Records excluded (n = 32):
 - Not GBS (n = 2)
 - Can’t separate perinatal women’s views from non-perinatal women (n = 1)
 - Irrelevant outcomes (n = 24)
 - Protocol (n = 1)
 - Editorial (n = 1)
 - Review (n = 2)
 - Letter (n = 1)

- Papers included in review (n = 42)
- Number of studies (n = 41)

*Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total number across all databases/registers).

**If automation tools were used, indicate how many records were excluded by a human and how many were excluded by automation tools.

For more information, visit: http://www.prisma-statement.org/
<table>
<thead>
<tr>
<th>Methodology</th>
<th>High confidence</th>
<th>Medium confidence</th>
<th>Low confidence</th>
<th>Very low confidence</th>
<th>Total score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scores 80% or</td>
<td>Scores between</td>
<td>Scores between</td>
<td>Scores below 40%</td>
<td>Where most studies were no methodological concerns = high confidence</td>
</tr>
<tr>
<td></td>
<td>more on</td>
<td>60-79%</td>
<td>40-59%</td>
<td></td>
<td>Where most had no or minor concerns = moderate confidence</td>
</tr>
<tr>
<td></td>
<td>methodological</td>
<td></td>
<td></td>
<td></td>
<td>Where most had low, or some methodological concerns = low</td>
</tr>
<tr>
<td></td>
<td>ratings</td>
<td></td>
<td></td>
<td></td>
<td>Where most studies had lots of methodological concerns – very low confidence</td>
</tr>
</tbody>
</table>

Coherence	All summaries	Over half of the	Summary contents	No consistency
---------------------	were consistent	summaries were	had a mix of two	across summary
	in their content	consistent in their	different themes	contents
		content		

Adequacy	12+ papers and	8-11 papers and/or	5-7 papers and/or	4 or less papers
---------------------	more than half of	less than half of	less than half of	and/or less than half
	the papers had	the papers had	the papers had	of the papers had
	thick data	thick data	thick data	thick data
	descriptions	descriptions	descriptions	descriptions
	(where	(where	(where	(where
	appropriate)	appropriate)	appropriate)	appropriate)

Relevance	Studies carried	Studies carried	Studies carried	Studies carried
---------------------	out in or after	out prior to 2002	out prior to 1996	out prior to 1996
Note. Methodological limitations were assessed based on the critical appraisal discussed above. For each theme, papers were placed under the relevant heading (e.g., a paper with high confidence would be placed under the high confidence column). This allowed us to understand how many high quality-low quality papers there were within a given theme. See supplementary materials C.

Coherence was assessed by looking at the evidence assigned to that theme and identifying any outliers or ambiguous elements in the data. The same process as described above was carried out for each theme. See supplementary materials D for more information.

Adequacy was assessed by looking at both the quantity and richness (‘thickness’ and ‘thinness’) of the data for each theme. In the case of this research, a ‘thin’ description was defined as a set of statements rather than a description which provides the context of experiences and circumstances. It is argued that the extent to which a text provides a thick description shows evidence of the authenticity of the results. The same process as described above was carried out for each theme. See supplementary materials E for more information.

According to GRADE-CERQUAL, relevance is the extent to which the data supporting a review finding is applicable to the context specified in the review question. Relevance was therefore assessed based on the time when the research was published. This is because the WHO guidelines are being updated in 2024, and they have not been updated since 2015. Therefore, any papers published between 2015-2024 were deemed as most relevant as they would not have been included in previous guidelines. Studies carried out prior to 1996 when the first GBS consensus guideline was introduced was rated as very low relevance as these studies are likely to have been included in previous guidelines. Studies that were carried out prior to 2002 (but after 1996), when revised consensus guidelines by the CDC were released, were rated as having low relevance. Studies carried out between 2002-2015 were rated as having moderate relevance, and studies carried out in or after 2015, following the release of the most recent WHO guidelines about GBS were rated as having high confidence. The same process as described above was carried out for each theme. See supplementary materials F for more information.
For the evidence profile, where a concept had an even split of ratings and the ratings were next to each other in quality (e.g., high, high, medium, medium) the lower rating was given. Where a concept had an even split of ratings, but the ratings were apart from each other in terms of quality (e.g., high, high, low, low), the rating in the middle of these was given (e.g., medium). A decision was made to not assign any higher than ‘low confidence’ to concepts where adequacy was given a ‘very low’ rating. This was to avoid putting too much emphasis on concepts where more research is needed. A decision was made to keep concepts that were rated as having ‘very low’ or ‘low’ confidence and these were highlighted for future research.
Table 2. Study characteristics

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Country</th>
<th>Language of publication</th>
<th>Design</th>
<th>Quality rating</th>
<th>Focus of the study</th>
<th>Sample N</th>
<th>Sample characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almari et al. (2021)</td>
<td>Saudi Arabia</td>
<td>English</td>
<td>Quantitative – Cross Sectional Survey</td>
<td>76.92 % High confidence</td>
<td>Knowledge, Attitudes and Awareness of screening Physicians N = 25 Women of reproductive age N = 720</td>
<td></td>
<td>Health professionals were: family medicine or obstetrics and gynecology physicians; their ages ranged from 20 to 50 years old, but they were mainly 41 to 50 years, which accounted for 44% of all participants. Saudi physicians completed the survey more often than did non-Saudi physicians, as the percentage of Saudi physicians enrolled in the study was significantly higher (84%). Most of the participants had a bachelor's degree (72%), followed by a master's degree (20%), and a Ph.D. (8%). The majority of physicians were employed; only 16% were unemployed. Their professional titles included staff physician (16.7%), resident (25%), and registrar or senior registrar (8.3%).
Women were aged 20-50 years old and Unmarried women were excluded from the study; 39.2% comprised the maximum age group, and 9.6% comprised the minority of non-Saudi participants. All but 11 participants were highly educated. Nearly all the women were married, and only 9.3% of them were pregnant. The reports of their gestational age (GA) were distributed equally before and after 30 weeks. The largest percentage of women planned to deliver vaginally (74.6%). 69% were less than 40 years old 50.6% were females formed 40.4% had less than 5 years of experience formed 40.4%, 27.0% had 5-9 years of experience 11.2% had 10-15 years of experience 21.3% had over 15 years of experience 61.8% were educated regionally. The professional title of these physicians were residents (37.1%), registrar/senior</td>
</tr>
<tr>
<td>Almohaimeed et al. (2019)</td>
<td>Saudi Arabia</td>
<td>English</td>
<td>Quantitative – Questionnaire</td>
<td>65% Medium confidence</td>
<td>Knowledge and barriers to screening Primary care physicians N = 89</td>
<td></td>
<td>69% were less than 40 years old 50.6% were females formed 40.4% had less than 5 years of experience formed 40.4%, 27.0% had 5-9 years of experience 11.2% had 10-15 years of experience 21.3% had over 15 years of experience 61.8% were educated regionally. The professional title of these physicians were residents (37.1%), registrar/senior</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Study Design</td>
<td>Confidence</td>
<td>Knowledge and Preference</td>
<td>Sample Size</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Alshengeti et al. (2020)</td>
<td>Saudi Arabia</td>
<td>Quantitative – Cross sectional survey</td>
<td>84.38% High confidence</td>
<td>Knowledge and preference for GBS screening strategies</td>
<td>Pregnant women N = 377</td>
<td>Majority unemployed (86.2%)</td>
<td></td>
</tr>
<tr>
<td>Arya et al. (2008)</td>
<td>Ireland</td>
<td>Quantitative – prospective cohort study</td>
<td>33.33% Very low confidence</td>
<td>Preference for HP vs self-collected swabs</td>
<td>Pregnant women N = 600</td>
<td>Majority completed postsecondary education (33.2%)</td>
<td></td>
</tr>
<tr>
<td>Bak et al. (2016)</td>
<td>Poland</td>
<td>Quantitative – survey</td>
<td>59.38% Low confidence</td>
<td>Knowledge of GBS</td>
<td>Pregnant women in early labour N = 164</td>
<td>Average age = 27.9 years, most women (43.3%) were aged from 26 to 30 years.</td>
<td></td>
</tr>
<tr>
<td>Berikopolou et al. (2021)</td>
<td>Greece</td>
<td>Quantitative – cross sectional survey</td>
<td>83.30% High confidence</td>
<td>Adherence</td>
<td>Pregnant women N = 604</td>
<td>Average age = 34.2</td>
<td></td>
</tr>
<tr>
<td>Chen et al. (2020)</td>
<td>China</td>
<td>Quantitative – cross sectional survey</td>
<td>60% Medium confidence</td>
<td>Preference for HP vs self-collected swabs</td>
<td>Pregnant women N = 522</td>
<td>Gestational age ranged from 35 to 40 weeks. 58.9% women were primipara.</td>
<td></td>
</tr>
<tr>
<td>Cheng et al. (2006)</td>
<td>Taiwan</td>
<td>Quantitative – survey</td>
<td>75% Medium confidence</td>
<td>Acceptability around GBS testing</td>
<td>Pregnant women N = 183</td>
<td>70.5% had public health insurance.</td>
<td></td>
</tr>
<tr>
<td>Chow et al. (2013)</td>
<td>China</td>
<td>Quantitative – survey</td>
<td>84.62% High confidence</td>
<td>Knowledge, attitudes towards screening</td>
<td>Pregnant women N = 213</td>
<td>55 participants were new immigrants and 6 were visitors from China.</td>
<td></td>
</tr>
<tr>
<td>Constantinou et al. (2023)</td>
<td>UK</td>
<td>Qualitative – semi structured interviews</td>
<td>91.67 High confidence</td>
<td>Women's knowledge of GBS testing and attitudes towards</td>
<td>Perinatal women N = 19</td>
<td>Pregnant (n = 5) and postnatal (n = 14) women.</td>
<td></td>
</tr>
</tbody>
</table>

The study was conducted in several countries with different study designs and sample sizes. The confidence level for knowledge and preference varies across studies, with some studies reporting high confidence and others very low confidence. The sample sizes range from 19 to 604 participants. The descriptions of the studies include details about the population, age, employment status, education, and health insurance status.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>Methodology</th>
<th>Confidence</th>
<th>Outcome Measurements</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniels et al. (2009)</td>
<td>UK</td>
<td>Mixed - Quantitative questionnaire for mothers and free text comments; qualitative focus group for midwives.</td>
<td>81.25% High confidence</td>
<td>Acceptability of rapid screening</td>
<td>Pregnant women N = 1880 decliners N = 946 who completed the anxiety measure Midwives N = 12</td>
</tr>
<tr>
<td>Daniels et al. (2010)</td>
<td>UK</td>
<td>Quantitative questionnaire</td>
<td>40% Low confidence</td>
<td>Acceptability of rapid screening</td>
<td>Pregnant women in labour N = 1400</td>
</tr>
<tr>
<td>Darbyshire et al. (2003)</td>
<td>Australia</td>
<td>Qualitative – focus groups</td>
<td>70.83% Medium confidence</td>
<td>Knowledge about GBS</td>
<td>Pregnant women N = 35</td>
</tr>
<tr>
<td>Davies et al. (2001)</td>
<td>Canada</td>
<td>Quantitative – cross sectional survey</td>
<td>78.13% Medium confidence</td>
<td>Adherence Obstetric care providers N = 2809</td>
<td></td>
</tr>
<tr>
<td>De Mello et al. (2015)</td>
<td>Brazil</td>
<td>Quantitative – cross-sectional quantitative interview and a review of prenatal medical cards</td>
<td>37.50% Very low confidence</td>
<td>Adherence Pregnant women N = 391</td>
<td></td>
</tr>
<tr>
<td>Gigante et al. (1995)</td>
<td>USA</td>
<td>Quantitative – survey</td>
<td>80.76% High confidence</td>
<td>Attitudes towards universal screening Obstetricians N = 135</td>
<td></td>
</tr>
<tr>
<td>Giles et al. (2019)</td>
<td>Australia</td>
<td>Quantitative -</td>
<td>75%</td>
<td>Knowledge and Pregnant</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Language</td>
<td>Study Type</td>
<td>Confidence</td>
<td>Measure of Knowledge, Awareness, and Acceptability</td>
<td>Participants</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>New Zealand</td>
<td>English</td>
<td>Quantitative – Survey</td>
<td>High confidence</td>
<td>Knowledge, awareness and attitudes</td>
<td>237 women were born overseas and came from 48 different countries, the most common being India (69 women), Afghanistan (25 women), and China (22 women). 79.7% were females 60.7% were aged > 40 years, 51.2% had overseas training 61.9% had practiced antenatal care for < 10 years.</td>
</tr>
<tr>
<td>Greece</td>
<td>Greek</td>
<td>Quantitative – survey</td>
<td>Medium confidence</td>
<td>Knowledge and acceptability</td>
<td>The majority of participants had secondary or higher education with a low to average annual income (<20,000 euros). The majority of participants were of Greek nationality and had public heath insurance. 90% of women were pregnant for the first or second time.</td>
</tr>
<tr>
<td>Poland</td>
<td>Polish</td>
<td>Quantitative – survey</td>
<td>Low confidence</td>
<td>Knowledge and awareness</td>
<td>Median age was 30 years. The majority of women were married women, with higher education and in a good financial situation. Most already had one child and lived in a city with over 500,000 inhabitants.</td>
</tr>
<tr>
<td>China</td>
<td>English</td>
<td>Quantitative – questionnaire</td>
<td>Medium confidence</td>
<td>Preference for HP vs self-collected swabs</td>
<td>The mean age 32.1 Median gestational age = 35 weeks. Occupations: housewife 20.1%, manual worker 1.4%, Professional 15.3%, sedentary work 53.3%, Unemployed 8.8%, Other 1.1%. Education: Primary 1.6%, Secondary 39.7%, Tertiary 58.7%.</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>English</td>
<td>Qualitative – focus groups interviews</td>
<td>Medium Confidence</td>
<td>Barriers and facilitators to strategies</td>
<td>Pregnant women (n = 14) and care providers (n = 27). 50% of the pregnant women were Dutch. The other countries of origin were Hungary, Bosnia, Morocco, Suriname and Turkey. 50% had high education level One woman was not pregnant, but mother of a child with long term EOGBS complications. The median week of gestation of the pregnant women was 34 (range:26–38);</td>
</tr>
<tr>
<td>Study</td>
<td>Location</td>
<td>Data Collection</td>
<td>Confidence</td>
<td>Adherence/Screening</td>
<td>Participants</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----------------</td>
<td>------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Konrad et al. (2007)</td>
<td>Canada</td>
<td>Quantitative survey</td>
<td>Medium confidence</td>
<td>Adherence</td>
<td>Health professionals N = 85</td>
</tr>
<tr>
<td>Law et al. (2013)</td>
<td>Australia</td>
<td>Quantitative survey</td>
<td>Medium confidence</td>
<td>Acceptability of vaginal vs rectal swabbing</td>
<td>Pregnant women N = 267</td>
</tr>
<tr>
<td>Lynfield et al. (2000)</td>
<td>USA</td>
<td>Quantitative Survey</td>
<td>Low confidence</td>
<td>Adherence to guidelines.</td>
<td>Health professionals N=431</td>
</tr>
<tr>
<td>Madrid et al. (2018)</td>
<td>Mozambique</td>
<td>Mixed – quantitative collection of GBS swabs and Qualitative semi-structured interviews</td>
<td>Very low confidence</td>
<td>Acceptability of screening</td>
<td>Pregnant and Postnatal women N = 20</td>
</tr>
<tr>
<td>Mahieu et al. (2000)</td>
<td>Belgium</td>
<td>Quantitative survey</td>
<td>Medium confidence</td>
<td>Adherence</td>
<td>Health professionals N = 310</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Study Design</td>
<td>Confidence</td>
<td>Endpoints</td>
<td>Population</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
<td>-------------------------</td>
<td>------------</td>
<td>------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>McLaughlin & Crowther (2000)</td>
<td>Australia</td>
<td>Quantitative survey</td>
<td>73.33%</td>
<td>Acceptability of Universal Screening</td>
<td>Obstetricians (n = 271) and neonatologists (n = 40). All Members and Fellows of the then Royal Australian College of Obstetricians and Gynaecologists (RACOG). In addition, neonatologists in Australia whose contact details were in the 1996/1997 Directory of Neonatal Intensive Care Units within Australia. Members and Fellows of the RACOG through the college.</td>
</tr>
<tr>
<td>Melin et al (2004)</td>
<td>Belgium</td>
<td>Mixed – Quantitative survey and consensus meeting</td>
<td>50%</td>
<td>Acceptability and preferences of screening</td>
<td>Obstetricians, neonatologists, microbiologists, infectious disease specialists. The majority of the participants (67%) practiced in the North of Belgium (the Fl community), whereas only 18 per cent came from the South (Fr community) and 15 per cent from Brussels. Non-university hospitals or clinics were represented by 48 per cent of the participants; 39 per cent practiced in university hospitals and 13 per cent practiced in private and non university hospitals or clinics.</td>
</tr>
<tr>
<td>Mercer et al. (1995)</td>
<td>USA</td>
<td>Quantitative</td>
<td>33.33%</td>
<td>Preference for HP vs self collected swabs</td>
<td>The mean age of participants was 23.9 (-+5.6) years. Median gravidity and parity were 2 and 1, respectively, with 33.1% of women being nulliparous. The mean gestational age at testing was 36.1 (+4.3) weeks. A total of 81.3% of women were black.</td>
</tr>
<tr>
<td>Molnar et al. (1997)</td>
<td>Canada</td>
<td>Quantitative survey & collection of GBS swab</td>
<td>50%</td>
<td>Preference for HP vs self collected swabs</td>
<td>Pregnant women N = 161 Age: 16-25 n=13, 26-35 n=119, >35 n=28. Parity: 0 46%, 1 36%, 2 13%, >2 5%. Education: High school 21%, College 27%, University 39%, Graduate studies 13%. Prior knowledge of GBS Yes n = 43 (26%), No/unsure n=117 (73%). Medical training: Yes n=30 (20%)</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Language</td>
<td>Study Design</td>
<td>Confidence</td>
<td>Preference</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Nabreda-Martin et al. (2022)</td>
<td>Spain</td>
<td>Spanish</td>
<td>Quantitative survey & collection of GBS swab</td>
<td>70.83% Medium confidence</td>
<td>Preference for HP vs self collected swabs</td>
</tr>
<tr>
<td>Peralta-Carcelen et al. (1997)</td>
<td>USA</td>
<td>English</td>
<td>Quantitative survey</td>
<td>80.77% High confidence</td>
<td>Acceptability of screening and knowledge</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Methodology</td>
<td>Percentage</td>
<td>Confidence</td>
<td>Preference</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Price et al. (2006)</td>
<td>Canada</td>
<td>Quantitative survey & collection of GBS swab</td>
<td>54.17%</td>
<td>Low</td>
<td>HP vs self-collected swabs</td>
</tr>
<tr>
<td>Price et al. (2018)</td>
<td>South Africa</td>
<td>Mixed - Quantitative questionnaire & Qualitative Focus Groups.</td>
<td>53.13%</td>
<td>Low</td>
<td>Acceptability of screening types and knowledge</td>
</tr>
<tr>
<td>Sharpe et al. (2015)</td>
<td>Canada</td>
<td>Qualitative - semi structured interviews</td>
<td>66.66%</td>
<td>Medium</td>
<td>Knowledge and experience of GBS testing</td>
</tr>
<tr>
<td>Taylor et al. (1997)</td>
<td>USA</td>
<td>Qualitative - closed questions</td>
<td>61.54%</td>
<td>Medium</td>
<td>Preference for HP vs self-collected swabs</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Methodology</td>
<td>Outcome measure</td>
<td>Confidence</td>
<td>N</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------</td>
<td>------------------------------------</td>
<td>--</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>Torok & Dunn (1997)</td>
<td>USA</td>
<td>Quantitative survey & collection of GBS swab</td>
<td>Preference for HP vs self collected swabs</td>
<td>70.83% Medium confidence</td>
<td>251</td>
</tr>
<tr>
<td>Yamaguchi & Ohashi (2018)</td>
<td>Japan</td>
<td>Quantitative - cross sectional survey.</td>
<td>Adherence</td>
<td>66.67% Medium confidence</td>
<td>204</td>
</tr>
<tr>
<td>Yamaguchi & Ohashi (2019)</td>
<td>Japan</td>
<td>Quantitative survey</td>
<td>Acceptability - screening types</td>
<td>66.67% Medium confidence</td>
<td>235</td>
</tr>
</tbody>
</table>

English interview. confidence N = 251 were 2 and 1, respectively, with 33.1% of women being nulliparous. The mean gestational age at testing was 36.1 (+4.3) weeks. Mean height and weight were 64.2 inches and 187.2 lbs, respectively. The population of women was 81% African-American, 80% indigent, and ranged in age from 14 to 40, with a gestational age of 24 to 42 weeks. Previous research at this rite had established the rate of GBS colonization at 15-20%.

Pregnant women 35-37 weeks gestation. The patients were a diverse blend of Army soldiers and spouses of varying racial and ethnic backgrounds with high school and university educational levels. The study made no attempt to control for these characteristics.

Overall, maternity homes employed 1–14 midwives, and the most frequent number of midwives employed was 2, in 38.1% of maternity homes. Moreover, 22.8% of maternity homes employed 1 midwife and 16.3% employed 3 midwives. The number of deliveries in 2014 ranged 0–208, and the most frequent number of deliveries was 15, which was reported for 5.4% of maternity homes. The median number of deliveries was 16, and 20.9% of maternity homes reported managing fewer than 5 deliveries in a year.

Paediatricians. The mean duration (years) that the respondents had experienced in practice as paediatricians was 20.6 ± 7.6 years (N = 232). Of these, 94.9% and 74.9% had experience in treating neonates with GBS and receiving neonates transferred from maternity homes because of several abnormal conditions, respectively. The mean annual number of livebirths and neonatal transfers was 600.0 ± 341.7 (N = 227) and 89.3 ± 129.3 (N = 195), respectively.
Women who gave birth to a live infant at the IWK Health during a 7 week study period. The majority of participants were aged 25 to 34, had post-secondary education, and were primagravida. The majority of the participants (80.6%) had all their prenatal care in the Halifax Regional Municipality (HRM), and 93% of the study population had some of their care in the HRM. Information regarding GBS screening was available for 273 (97.8%) of the 279 study participants. A total of 24.5% (67/273) of study participants (95% CI 19.6-30.1) had GBS screening using culture of a vaginal-rectal swab at 35 to 37 weeks’ gestation (culture method). The remaining 75.5% of participants (95% CI 69.9-80.4) were assumed to have had risk factor analysis during labour for GBS colonization.

Screening by culture identified 19.4% (95% CI 10.8-30.9) of those tested as needing chemoprophylaxis (i.e., they had positive swab cultures), and 76.9% of these women (95% CI 46.2-95.0) were given chemoprophylaxis in labour. The risk factor approach identified 25.2% (95% CI 19.5-31.7) of those women assessed as needing chemoprophylaxis (i.e., they had risk factors), and 94.2% of these women (95% CI 84.1-98.8) were given chemoprophylaxis during labour.
<table>
<thead>
<tr>
<th>Review Category</th>
<th>Statement of findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge and awareness</td>
<td></td>
</tr>
</tbody>
</table>
| 1.1 Women’s views | 1.1.1 Awareness of GBS is generally low (<40%) and varies across countries and populations (High confidence)
1.1.2 Misconceptions about GBS include believing it is an STD and it is women’s fault (Low confidence)
1.1.3 Women get information about GBS from a wide variety of sources (health professionals, books, journals, family and friends, social media) (Moderate confidence)
1.1.4 Women generally want detailed information about GBS delivered face to face, provided early enough to make informed decisions (Moderate confidence)
1.1.5 Higher levels of education appear to be associated with more knowledge about GBS. Other factors may impact knowledge (Moderate confidence) |
| 1.2 Health professional’s views | 1.2.1 Health professionals generally have higher knowledge about GBS than women, but some may be less aware of risk factors (Moderate confidence)
1.2.2 Obstetricians may have more knowledge about GBS than other health professionals (midwives, nurses, pediatricians) (Moderate confidence)
1.2.3 Most health professionals see GBS as an important public health issue (Low confidence)
1.2.4 Most health professionals see GBS screening as important and beneficial to pregnant women (Moderate confidence) |
| **Preferences** | |
| 2.1 Women’s views | 2.1.1 Most women surveyed are in favour of universal screening (Moderate confidence)
2.1.2 Most women surveyed would accept GBS testing and believe it is a good way to protect their baby (Moderate confidence)
2.1.3 Views again screening include embarrassment, fear of birth plans being altered, overmedicalization of birth and implications for their baby (Moderate confidence)
2.1.4 Over half of women surveyed would accept swabbing, and the provision of clear information is vital in mitigating anxiety (High confidence)
2.1.5 Preferences for self-swabbing vs health professional swabbing varies across studies and countries (Low confidence) |
| 2.1.6 | Reasons for self-swabbing include: feeling in control, being more private and feeling more physically comfortable (Low confidence) |
| 2.1.7 | Women generally find self-swabbing easy and comfortable (Moderate confidence) |
| 2.1.8 | If women prefer health professional swabbing, they do so because they are concerned about doing it wrong (Moderate confidence) |
| 2.1.9 | It is not clear what demographic characteristics impact swabbing preference (Very low confidence) |

2.2. Health professionals’ views
2.2.1 It is not clear what screening method health professionals prefer. More research is needed (Low confidence)

Acceptability

3.1.1	At least 80% of women find GBS swabbing acceptable (Moderate confidence)
3.1.2	Generally vaginal swabbing is more acceptable than anal swabbing (Moderate confidence)
3.1.3	Screening may increase anxiety in women, particularly the combined strategy (Low confidence)
3.1.4	Multiple demographic factors may influence GBS testing acceptability (Very low confidence)
3.1.5	Ethnicity and age may be associated with lower levels of acceptability (Low confidence)

3.2 Health professional’s views
3.2.1 Intrapartum screening is potentially acceptable (Moderate confidence) |
3.2.2 It is not clear if health professionals find universal or risk-based screening more acceptable (Low confidence) |
3.2.3 Anal swabs are generally less acceptable than vaginal swabs (Low confidence) |
3.2.4 Midwives appear to be opposed to universal antibiotic use, but obstetricians may be more for its use (Very low confidence) |

Feasibility/Adherence

4.1 Women’s views
4.1.1 According to medical records, not all eligible women were swabbed, and 30.2-53% of swabs were carried out outside of recommended time points (Low confidence) |
4.1.2 Most women asked did not recall being offered or receiving GBS testing (Low confidence) |
4.1.3 Coherence between women’s recollection and medical records varies across studies (Very low confidence) |

4.2 Health professional’s views
4.2.1 Barriers to GBS screening programmes include organisational barriers, fear of the consequence (e.g., anxiety, overmedicalization of birth); lack of clarity around guidelines and lack of training (Moderate confidence) |
4.2.2 Facilitators to GBS screening programmes vary across studies (Very low confidence) |
4.2.3 Adherence to screening protocols varies across studies range from 21.3-100% for universal screening and 10-55% for screening under certain conditions (Low confidence)

4.2.4 Health professionals conduct testing at the recommended time 47.5-82% of the time (Low confidence)

4.2.5 There is not a clear pattern about whether health professionals adhere to vaginal vs rectal swabbing guidelines (Very low confidence)

4.2.6 Antibiotic use ranged: Positive test 50-87%; Positive test plus risk factor: 13-100%; Risk factor: 38-80% (Low confidence)

4.2.7 Obstetricians and gynaecologists may be more likely to follow policies than nurses/midwives and those who have worked in their role for less time may be more likely to follow policies (Low confidence)

4.2.8 Most health professionals saw training as important for increasing adherence (Moderate confidence)