Tame: An R package for identifying clusters of medication use based on dose, timing and type of medication

Anna Laksafoss¹*, Jan Wohlfahrt², Anders Hviid¹,³

¹Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.
²Danish Cancer Institute, Cancer Epidemiology and Surveillance, Strandboulevarden 49, 2100 Copenhagen, Denmark
³Pharmacovigilance Research Center, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark

*Corresponding Author: Anna Laksafoss

Figures: 2

Supplementary Materials: 8 supplementary sections, including 7 tables and 2 figures

Word Count – Abstract: 270 words

Word Count – Main: 3502 words

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Objective

Simplified exposure classifications such as *ever exposed* versus *never exposed* are commonly used in pharmacoepidemiology. However, this simplification may hide complex use patterns of relevance to researchers. Here we introduce *tame*, an R package for classifying medication use patterns, capturing complexities such as timing, dose, and concurrent medication use in real-world data.

Methods

tame identifies complex clusters of medication use based on similarities in the Anatomical Therapeutic Chemical (ATC) Classification System, medication timing, and medication dose. Agglomerative hierarchical clustering is performed with a novel distance measure, which can be customized to context and research questions. The package provides methods for clustering medication data, analysing and illustrating the clusters, and employing these clusters to new data in a similar format.

Results

In a national Danish cohort study, *tame* was utilized to investigate complex trends of antidepressant use before- and during pregnancy, showcasing its ability to identify nuanced medication patterns.

tame is available on the Comprehensive R Archive Network at [https://CRAN.R-project.org/package=tame] under an MIT license. A development version of the package is public on GitHub at [https://github.com/Laksafoss/tame].

Conclusion

tame provides a comprehensive approach to medication use classification. Its application extends beyond individual medication analysis, enabling the detection of complex medication interactions and enhancing our understanding of medication usage outside clinical trial settings. Clustering real-
world medication data offers an automated method for detecting potential safety signals or adverse
drug interactions, and can enhancing our understanding of diverse medication usage outside clinical
trial settings. In addition, these patterns can be leveraged for stratification of treatment effect
estimates in epidemiological studies.

Key Words

Polypharmacy, medication trajectories, unsupervised machine learning, clustering, R package, epidemiology
INTRODUCTION

Developments in the field of machine learning, improvements in computing power, and the increasing richness of data now make it feasible to conduct more nuanced analyses of medication patterns. A number of recent studies have explored data-driven approaches to exposure classification. For example, methods such as longitudinal k-means and latent class analysis have been applied to longitudinal medication data to classify exposure trajectories (1,2,3,4), and these methods have been implemented in software such as the R-packages kml (5,6) and lcmm (7). However, these methods focus exclusively on drug exposure timing and are thus not suitable to explore the detailed, complex interactions between multiple medications or medication classes. Few developments have been made to approaches which learn from both exposure timing and the chemical and therapeutic characteristics of the medication(s) used (8), which are very important for studying drug safety. To the authors’ knowledge, no publicly available software that learns from this combined information to identify real-world prescription drug use patterns exists.

In this paper, we present a Hierarchical Cluster Analysis (HCA) method that utilises exposure timing, dose intensity, and type of medication to classify medication use. HCA is a general and highly adaptable approach to cluster analysis that allows for the clustering of any data, provided that the user can specify the distance between any pair of observations. We developed a distance measure specifically designed for the clustering of patterns of medication use by Anatomical Therapeutic Clustering (ATC) code, timing, and dose. The distance measure allows for flexible specification of the component parts – ATC code, timing and dose – and their relative importance. The method avoids unwanted data reduction or oversimplification of information by defining the distance measure on the person- and medication-specific level. Here, we apply the method to a Danish nationwide cohort of pregnancies with at least one antidepressant used 0-24 weeks prior to pregnancy onset in order to map Danish mothers’ use of antidepressants leading up to- and during pregnancy.
IMPLEMENTATION

tame is implemented in R (R Development Core Team 2022) as a package and requires the following R packages: `dplyr (≥1.1.0)`, `fuzzyjoin`, `magrittr`, `purrr`, `Rfast`, `rlang`, `stats`, `stringr`, `tibble`, `tidyr`, `tidyselect`, `Rcpp (≥ 1.0.8)`. A development version is also available on GitHub [https://github.com/Laksafoss/tame] and collaborators are welcome to fork or make pull requests. The tame package provides methods for clustering medication data by ATC codes, dose and timing, analysing and illustrating these clusters, and employing these learned clusters to new data in a similar format. These central functionalities are implemented in the functions `medic()`, `summary()`, and `employ()`, along with a few supporting functions. The package also includes a simulated dataset for demonstrating the code.

Hierarchical Clustering Analysis

Our medication clustering method, `medic()`, is an agglomerative hierarchical cluster analysis (HCA) with a bespoke distance measure. The distance measure specifies the distance between any pair of observations, and a linkage criterion specifies the distance between sets of observations. Our contribution lies in the development and implementation of a novel distance measure between two individual-level medication use information involving multiple types of medication information. This distance measure is a composite measure of a dose intensity, timing of medication and an ATC-based distance measure weighted together.

Difference in two individual-level medication profiles by dose intensity and timing of medication are measured by a dose trajectory distance measure. This distance measure compares the medication dose at each timepoint in the study and summarizes across time using the Minkowski distance. The mathematics behind the method are available in S1, and a mathematical glossary is available in S2.
The ATC distance measure compares two medications by considering the levels of the medications ATC code. The distance between two medications is found by identifying the deepest ATC code level that is shared between the two medications. For example, sertraline N06AB06 and clomipramine N06AA04 are both antidepressants (N06A) and are identical at ATC level 3, but sertraline N06AB06 and oxycodone N02AA05 are only identical at ATC level 1, where they share the nervous system main group (N). Thus, the distance between sertraline N06AB06 and clomipramine N06AA04 is smaller than the distance between sertraline N06AB06 and oxycodone N02AA05. Note that if two medications have the same ATC codes, their distance is 0, and they are considered to be the same medication under this distance measure.

A wide range of parameters allow for the tuning of the dose trajectory distance measure, the ATC distance measure, and their relative importance. This is an important issue, that can be complex, thus, detailed explanations and discussions of these tuning parameters and more can be found in S3.

This method, as many other clustering methods, is computationally intensive. For a technical discussion on these aspects of the implementation, see S4.

medic(): Identifying clusters

The medic() function is the central power house of the tame package. This function computes the distances between all pairs of individuals, runs the hierarchical clustering algorithm, and returns the clusters.

The function requires that the user provides a dataset where each row encodes personal medication patterns of each medication. Thus, a person exposed to 3 medications has 3 rows in the data. In S5 examples of how data might be structured can be found. Columns in this dataset naming the person identification variable, the medication ATC code variable, and, if available, one or more numerical variables encoding dose and/or exposure trajectory. The user specifies the desired number(s) of
clusters with the function input k. Moreover, a number of function parameters can be used to tune the distance. A full discussion of these tuning parameters can be found in S3.

summary() : Summarizing clusters

A wide range of cluster summarisation tools are implemented in the `summary()` function. The list of summarisation approaches is given in the code documentation (9), and the latest version at time of publication can be found in S7. As an example, Figure 1 has been made using these summary tools.

Figure 1. Characteristics of medication use clusters in a cohort of 33,655 Danish pregnant women with at least 1 antidepressant prescription within the six months before pregnancy. Columns display clusterwise characteristics. The first row illustrates the number of antidepressants used, the second row illustrates the 5 most prevalent antidepressant ATC codes, and the remaining 4 rows illustrate the average antidepressant exposure timing by anti-depressive type.

employ() : Applying Clusters to New Data

An important functionality of the package is the `employ()` function, which takes an existing constellation and a new dataset and uses this particular constellation on the new data. Each new individual is assigned to the closest existing cluster. This functionality enables the learning of the constellation on a sub-cohort such that this constellation can be applied to the entire cohort. This is especially advantageous for saving computational time by clustering on a representative sub-cohort and then generalizing, or when working with a distinct sub-cohort, which should guide the learning of medication features (e.g., persons with a specific diagnosis or persons exposed to a specific interest medication). Moreover, this functionality enables easy sharing of learned clusters across studies and countries.
Installation

The tame package is available on The Comprehensive R Archive Network (CRAN), and may be installed by running `install.packages("tame")` in R ≥4.2. Additionally, development versions may be available on github at https://github.com/Laksafoss/tame.

USE

To demonstrate the use and utility of `tame`, we apply the methodology to the medication use immediately before- and during pregnancy using a cohort of Danish women with a history of antidepressant use before pregnancy. We investigate how these medications are used in practice, and how use is related to redeeming psycholeptics in the first year after pregnancy. Please note that this study primarily serves as an example of how to use the package.

Characterizing Antidepressant Use Before and During Pregnancy

We identified all live-born singleton births with a gestational age of at least 36 weeks between 1997 and 2016 in the Danish Medical Birth Registry (10). Using the Danish National Prescription Registry, the cohort was restricted to women who redeemed at least one antidepressant within the six months before pregnancy. To conduct outcome analyses we also linked this cohort to a number of registers on demographic, socioeconomic and healthcare information; for more on these variables see S6. Data was accessed on December 12th 2023.

Assuming an exposure of WHO’s defined daily dose each day, we estimated the time varying antidepressant exposure of each individual from 24 weeks before pregnancy until gestational week 36 in the following medication groups: selective serotonin reuptake inhibitors (SSRI); ATC codes starting...
with N06AB), serotonin-norepinephrine reuptake inhibitors (SNRI; ATC codes starting with N06AX),
and others antidepressants (ATC codes starting with N06AA, N06AF or N06AG). For each individual and
each day, antidepressant use was classified as exposed or unexposed (0/1). A description and
discussion of the tuning parameters chosen for this example may be found in S3. Seven clusters were
used to describe the data.

Figure 1 characterizes the clustering of antidepressant medication patterns learned from the data
using medic() and then illustrated with summary(). In the first column, the characteristics of the
entire population are illustrated, and the following 7 columns display the characteristics of each
cluster, highlighting distinct patterns within the data. Each row illustrates a different characteristic:
number of antidepressants used per person in the cluster, frequency of use of the 5 most prevalent
antidepressant ATC codes in the cluster, average cluster timing of all antidepressant medications, SSRI
use, SNRI use, other antidepressant use, respectively.

For the entire study population (column 1), row 1 demonstrates that the majority (76%) of the mothers
take only one antidepressant in the study period, one-fifth are exposed to two antidepressants, and
even fewer (4%) are exposed to three or more antidepressants. In row 2, we see that four out of five
of the most used antidepressants are SSRIs. Rows 3 to 6 show the average medication exposure
trajectory among all medications (row 3), among SSRIs (row 4), among SNRIs (row 5), and among other
antidepressants (row 6). As we are considering a binary exposure in this example, the average
displayed may be interpreted at the percentage of pregnancies exposed at that particular timepoint.
The overall average (row 3) shows that at any given week before the conception, at least half of the
studied women are exposed to one or more antidepressants; then, during the 12 first weeks of
pregnancy, the antidepressant use drops. This pattern is consistent across all three groups of
antidepressants, but the level of use in any given week is different, with SSRI usage being consistently
more frequent than SNRI and other antidepressants (rows 3-6). We further describe clusters II, III, and
IV here, and all clusters in S8.
Cluster II – “Sustained use of one SSRI”: The second cluster, with 26% of pregnancies, is almost exclusively SSRI single drug users. The pregnancies in this cluster has a high level of sustained SSRI usage with at least 70% of pregnancies being exposed at any time point in the study period, and with more than 90% of pregnancies being exposed in the weeks 0 to 13.

Cluster III – “Concomitant use of different types of antidepressants”: The third largest cluster with 13% of pregnancies studied, is characterized by concomitant drug use of a mix of all 3 classes of antidepressants. More than 88% of pregnancies are exposed to either SSRI or SNRI or both, while only 18% of pregnancies are exposed to other antidepressants. The SSRI use frequency remains fairly stable across the entire exposure period, as opposed to the SNRI use frequency which drops at the start of the pregnancy.

Cluster IV – “Multiple SSRIs used”: Cluster IV, which consists of 11% of pregnancies is characterized by multiple drug use, with less than 3% using only one drug, almost 88% using 2 antidepressants, and 10% using 3 or more antidepressants. Unlike cluster II, where pregnancies are exposed to a mix of different types of antidepressants, in this cluster, the exposure is multiple SSRIs.

Risk of redeeming psycholeptics within one year of birth according to medication cluster membership

To give an example of how to use these learned medication clusters in further analysis, we apply them in an analysis of the adjusted cumulative incidence of adverse psychiatric post-partum outcomes. In this example, redemption of psycholeptics (ATC group N05; anti-psychotics N05A, anxiolytics N05B, and hypnotics and sedatives N05C) in the first year following birth is considered as the outcome, as it serves as a concrete indicator of psychiatric distress and healthcare utilization, directly impacting maternal and child well-being.

We used stabilised inverse probability of treatment weighting. Weight were calculated as the inverse odds of being assigned medication cluster I, III, IV, V, VI or VII versus medication cluster II adjusted for
confounders (see S8 for the full list) in a multinomial regression model. Cluster II was chosen as the reference cluster as it is a large cluster (26% or pregnancies) with a simple interpretation (sustained use of one SSRI throughout the exposure period).

Risk ratios and risk differences were then calculated at the 365-day mark. The results of the adjusted cumulative incidence analysis are shown in Figure 2a, and the estimated risk ratio and risk difference by medication cluster are shown in Figure 2b.

Figure 2. Adjusted* risk of redeeming psycholeptics in the first year following birth according to medication cluster membership.

(A) Adjusted cumulative incidence of redeeming psycholeptics in the first year following birth according to medication cluster membership. (B) Adjusted risk ratio and risk difference per 100 pregnancies of redeeming psycholeptics one year after birth according to medication cluster membership.

* Both absolute (A) and relative (B) risks were adjusted for maternal age (<25, 25-29, 30-34, ≥35), parity (0, 1, 2, ≥3), BMI (<18.5, 18.5-25, 25-30, 30-35, >35), smoking status (non-smoker, stopped smoking or smoker), family structure (married, single, or living with partner), maternal employment status (employed, employed in a management position, self-employed, or unemployed and receiving public assistance), maternal level of education (primary, secondary, postsecondary, or vocational school), location of residence in Denmark (capital region, central region, northern region, Zealand, or southern region), disposable household income (quartile 1, 2, 3, or 4), and maternal country of origin (Denmark, Europe (without Denmark), or other), history of psychiatric hospitalizations, history of self-harm and Charlson comorbidity score ≥1.
From Figure 2b we see that three clusters have a significantly reduced risk of redeeming psycholeptic prescriptions within 1 year of birth as compared with cluster II, sustained exposure to one SSRI. These three clusters are cluster I (“discontinuation of SSRI’s”), cluster V (“discontinuation of SNRI’s”) and cluster VI (“single use of antidepressants in the other antidepressants group”). Conversely, cluster III (“multiple medication used across antidepressant groups”) is significantly associated with an increased risk of redeeming psycholeptics within 1 year of birth as compared with cluster II (“sustained use of on SSRI”).

We can also observe from Figure 2b that neither cluster IV (“multiple SSRI’s used”), nor cluster VII (“sustained use of SNRI or other-antidepressants”) where significantly associated with a higher risk of redeeming psycholeptics as compared with cluster II (“sustained use of on SSRI”). All statistical conclusions were supported on both the risk ratio and risk difference scale.

DISCUSSION

The tame package implements a novel data-driven learning method for understanding individual-level medication patterns through hierarchical clustering and provides tools for illustrating and characterising these clusters. The method utilises the anatomical, therapeutic and chemical classifications of the drug, the exposure timing, and dose intensity together to define similarities between personal medication patterns. In addition, the method allows for tuning to a range of contexts and research questions. Moreover, a method for applying existing medication clusters to new medication pattern data has been developed.

Here, we demonstrated how tame can help identify and narrow down complex trends of antidepressant use before- and during pregnancy, using a national Danish cohort. In general, clustering real-world medication data offers a valuable automated search method for detecting potential safety signals or adverse drug interactions that may not have been previously suspected. Unlike traditional approaches that rely on specific suspicions or hypotheses, clustering allows for an exploratory analysis.
of medication patterns. For example, through clustering, researchers may discover that a particular cluster, such as medications X and Y frequently taken together, is associated with an elevated risk of adverse outcomes. This automated identification of medications and medication combinations that pose potential risks can serve as an early warning system, prompting further investigation into these specific medication combinations and their effects.

Moreover, real-world medication patterns captured through clustering analysis reflect the diverse medication usage habits of individuals outside controlled clinical trial settings. This real-world complexity adds depth to our understanding of medication usage and its implications. Additionally, these patterns can be leveraged for statistical adjustment or stratification in epidemiological studies. By accounting for these real-world medication patterns, researchers can better control for confounding factors and obtain more accurate estimates of treatment effects in epidemiological studies and observational research.

When using this method, specifying tuning parameters provides great customizability but require decisions from the researcher. Thus, tuning the distance measure will still have to be done in accordance with the understanding of the studied medication and the clinical setting. However, methods for algorithmically optimizing the number of clusters and assisting in the choice of linkage according to measures of goodness of fit is currently underway.

Naturally, clustering personal medication usage according to ATC codes is limited by the ATC classification system itself. The ATC hierarchy classify according to main therapeutic use or mechanism of action of the main active ingredient, and as such, encode the main indication of the drug. Many medications are used for multiple indications but will only be assigned one ATC code according to the main indication. Moreover, an ATC group may be specified according to mechanism of action, resulting in groups where the medications have many different indications. In addition, a chemical substance may be given more than one ATC code if it is used for two different therapeutic purposes. For a detailed introduction to the construction of WHO’s ATC classification system see (11). Thus, as the ATC
classification system classifies both according to the therapeutic and the pharmacological aspects of a medication, so does the classification method presented in this paper. Methods for extending the ATC distance measure to allow for user defined exceptions or additions to the ATC classification system are in progress. This extension will allow the user to give all medications with identical active ingredients a smaller distance regardless of distance in the ATC hierarchy or make combination products more similar than the ATC hierarchy suggests.

In addition, a central feature of hierarchical clustering, and many other clustering methods, is that all observations are assigned a cluster. Thus, if the data contain many outliers, which in fact are not comparable with other observation in the data, these will still be placed in clusters. Moreover, the assignment to a cluster is done in a deterministic way, and the method does not provide uncertainty estimates for this assignment. These features of clustering lead to less robustness to changes to the study population. When using tame, the employ() function can be used to gain some insight into the extent of this problem in a given dataset through cross validation type strategies.

Lastly, it should be noted that clustering methods can be very computationally time and RAM demanding. This means that we may still be limited in our applications of this method to large cohorts with wide medication use by our computational power. As discussed in S4, this central limitation has informed multiple design aspects of the code itself, and computationally intensive parts of the code are written in C++ or utilize code written in Fortran. This works to ensure a relatively respectable computational time for our example with just over 33,000 antidepressant exposed pregnancies of less than 10 minutes on a system with Intel(R) Xeon(R) Gold 6254 CPU @ 3.10GHz.

Conclusions

In summary, the tame package improves on classical approaches to understanding drug exposure by clustering complex, real-world use patterns which integrate information on timing, dose, and type of medication. Here, we described an application of how we have used this method to understand antidepressant use up to and during pregnancy, and then analyse how these learned clusters were
associated with the use of psycholeptics in the first year following birth. In the future, the method may be used to understand other patterns of prescription drug use and optimize drug safety surveillance through data driven learning.

ACKNOWLEDGMENT

Authors thank Kim Daniel Jakobsen for his invaluable assistance in the development of the methodology employed in this study. We would also like to thank Elisabeth O’Regan for her meticulous attention to detail in formatting and refining the English language of this manuscript.

AUTHOR CONTRIBUTIONS

FUNDING

This work was supported by a grant from the Independent Research Fund Denmark – “Exploring new ways of classifying medication use in pregnancy for better observational research” (9039-00055B)

CONFLICT OF INTEREST

We declare no conflicts of interest.
REFERENCES

1. Hurault-Delarue C, Chouquet C, Savy N, Lacroix I, Beau AB, Montastruc JL, et al. How to take into account exposure to drugs over time in pharmacoepidemiology studies of pregnant women?

 https://CRAN.R-project.org/package=kml.

<table>
<thead>
<tr>
<th>Population (n = 33655)</th>
<th>I (n = 11272)</th>
<th>II (n = 8586)</th>
<th>III (n = 4418)</th>
<th>IV (n = 3563)</th>
<th>V (n = 3241)</th>
<th>VI (n = 1324)</th>
<th>VII (n = 1251)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medication Amount</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATC Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATC codes</td>
</tr>
<tr>
<td>N06AB03</td>
</tr>
<tr>
<td>N06AB04</td>
</tr>
<tr>
<td>N06AB05</td>
</tr>
<tr>
<td>N06AB06</td>
</tr>
<tr>
<td>N06AB10</td>
</tr>
<tr>
<td>N06AX03</td>
</tr>
<tr>
<td>N06AX11</td>
</tr>
<tr>
<td>N06AX12</td>
</tr>
<tr>
<td>N06AX16</td>
</tr>
<tr>
<td>N06AX21</td>
</tr>
<tr>
<td>N06AA02</td>
</tr>
<tr>
<td>N06AA04</td>
</tr>
<tr>
<td>N06AA09</td>
</tr>
<tr>
<td>N06AA10</td>
</tr>
<tr>
<td>Remaining</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average Trajectory</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSRI</td>
</tr>
<tr>
<td>SNRI</td>
</tr>
<tr>
<td>Other Anti-depressants</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATC group specific trajectories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
</tr>
<tr>
<td>SSRI</td>
</tr>
<tr>
<td>Blue</td>
</tr>
<tr>
<td>SNRI</td>
</tr>
<tr>
<td>Orange</td>
</tr>
<tr>
<td>Other Anti-depressants</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weeks (24 weeks before pregnancy until week 36 of pregnancy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>27329 (81%)</td>
</tr>
</tbody>
</table>
Figure 2

A. Adjusted Cumulative Incidence

B. Table showing the number of pregnancies, risk ratio, and risk difference per 100 pregnancies for different clusters.

Cluster I: "Discontinuation of SSRI's"
Cluster II: "Sustained use of one SSRI"
Cluster III: "Multiple medication used across anti-depressant groups"
Cluster IV: "Multiple SSRI's used"
Cluster V: "Discontinuation of SNRI's"
Cluster VI: "Single use of antidepressants in the other anti-depressants group"
Cluster VII: "Sustained use of SNRI or other antidepressants"