A Systematic Review of Assessment Methods and Impact of Mechanical Tension on Bowel Anastomoses

Authors: Muhammad Usman Khalid¹, Jie Ying Wu², Aimal Khan³

¹University of Kentucky, ²Vanderbilt University

Abstract

Background: While tension on anastomoses is largely regarded as a key factor in anastomotic leaks and failure, the assessment of this tension is based on subjective surgeon estimation. There is currently no clinically available tool to objectively assess mechanical tension on an anastomosis. Some animal and human studies have previously assessed anastomotic tension, but no comprehensive review exists that discusses the different methods and types of tension measured.

Objectives: To summarize the current state of literature regarding measurement and impact of tension on bowel anastomoses.

Findings: Anastomotic leak and tension have been found to be strongly associated, with the presence of tension making leak up to 10 times more likely. While freedom from tension has traditionally been measured via the surrogate measure of adequate bowel mobilization, this remains a subjective and imprecise method. Literature describes several techniques to allow adequate mobilization such as splenic flexure mobilization or division of the omentum, but basing the estimate of tension on subjective assessment has some inherent drawbacks. Animal and cadaveric studies have been the frontier for objective measurement of wall tension, with the use of scaffolds, suture types, and prostheses to bolster the natural tolerance of the bowel. However, these tend to use tensiometers to measure tension, along with automated machines or pulley and ratcheting systems to increase tension in specified intervals. These are universally destructive due to their design of measuring maximal tensile load.

Conclusions: Objective measurement of bowel tension in live human subjects has not been studied in the current literature. Bowel mobilization is a common method to reduce tension, but it relies on subjective judgment and varies between surgeons. Given the recognized importance of tension, developing an objective, safe, intra-operative method to measure bowel wall tension would be a valuable surgical tool.

Keywords: Tension, bowel, anastomosis, measurement, surgery

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Introduction

Anastomotic leak is a serious complication of gastrointestinal surgery, resulting in significant morbidity, mortality and increased healthcare costs (PMID: 30734021, PMID: 32032201, PMID: 34943616, PMID: 25592468). The defining principles behind successful anastomoses have traditionally involved patient factors and three key technical elements: good technique, adequate blood supply, and avoidance of tension. Despite significant advances in understanding and mitigating the patient-related risk factors for anastomotic leaks, the role of technical factors, particularly anastomotic tension, in the development of leaks remains poorly understood.

In recent years significant advances have made in development of new techniques in assessing blood supply measurement techniques, however objective measurement of bowel measurement of bowel tension remains elusive.[1,2] Anastomotic tension is still largely measured in the same way as in the last 150 years when Halstead laid out his principles of surgery, through subjective surgeon estimation.[3] This reliance on subjective parameters hinders scientific progress in understanding the impact of tension on leaks. An objective measurement of bowel wall tension intra-operatively is needed to allow for scientific data-driven recommendations for tension in the bowel wall in human subjects and enable surgeons to follow these recommendations.

Although some in vivo studies do exist that have measured tissue tension in bowel wall, these approaches tend to be destructive in nature and animal based.[3,5,9] In this systematic review we summarize the current literature on the assessment of anastomotic tension and its impact on leaks, highlighting the current gaps in research on this important topic.

Methods

We designed a systematic review to collate and assess the current state of literature regarding the measurement and impact of tension on anastomotic outcomes. The study was designed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines as denoted in figure 1.

Literature Search and study selection:

An initial preliminary literature review was done to identify subject specific free-text and Medical Subject Headings (MeSH) terms. Subsequently, a bibliographic search was conducted across three electronic databases, MEDLINE (PUBMED), SCOPUS, and EMBASE, using MeSH and free text terms. All papers in the English language were considered and there was no restriction on time period. There were no restrictions on human, animal, in vivo, or ex vivo studies. References from published articles were also evaluated. Search terms included variations on the combinations of the terms “anastomoses” AND “tension” AND “bowel” with optional terms using the operators AND/OR “tissue tension”, “measurement”, “surgery”, “intestine(s)”, “small bowel”, “large bowel”, “esophagus”, “colorectal”, “colonic”, “mucosal tissue”, and “bowel wall”.

Articles were collated and underwent review in the Rayyan.ai study screening tool. After removing 62 duplicates and articles not in the English language, a preliminary title review was done to eliminate irrelevant articles. A further 107 articles were removed, followed by abstract review in which a further 149 articles were removed which did not mention anastomosis or tension. Full text study review was done in 52 studies on the basis of relevance, with the results or discussion section mentioning anastomosis in the gastrointestinal tracts. Studies discussing bursting tension were excluded from the study due to the inherent difference in the nature of the tension type. Furthermore, the article needed to discuss the
presence or importance of anastomotic rupture, leak, or dehiscence. Articles were divided into two categories, studies discussing the importance of tension in anastomosis in the bowel, and studies with experimental technique to investigate tension on anastomotic strength.

Quality Assessment:
The quality of studies included our review was judged using the Newcastle Ottawa Scale (Table 1). Each study was judged on three broad perspectives: 1. Selection of the study groups, 2. Comparability of the groups and 3. Ascertainment of either the exposure or outcome of interest for case-control or cohort studies respectively.

Findings
None of the studies conducted in humans to assess the impact of tension on bowel anastomosis, measured tension directly or in an objective manner. The method of tension measurement ranged from subjective assessment by surgeons intra-operatively to using surrogate markers like splenic flexure mobilization10,11. The endpoint of assessment of tension is generally clinically apparent discharge from the anastomotic site, in the form of gas, pus, or fecal matter, which causes irritation of the peritoneal lining. A radiologic approach is leakage of a hydrophilic compound on Computed Tomography (CT) scan but is not routine practice unless a symptomatic leak is suspected12.

Morse et al conducted a study to assess the risk factors associated with intestinal anastomotic leakage and found that the odds of leakage were as much as 10.1 (CI: 1.3-76.9) increasing the leakage rate from 0.5% in patients with no tension on the anastomosis to 5% (p=0.027)13 in patients with tension on the anastomosis. They defined an anastomotic leak as imaging, intra-operative extravasation of intra-luminal contents, and symptom-based findings. However, the method of assessment of anastomotic tension, though emphasized to be one of the biggest independent factors, was not defined in the study. A likely method was surgeon assessment on reoperation due to the leak13. Additionally, another drawback was the low sample size of five patients who had evidence of tension on the anastomosis. Similarly, Wu et al. conducted a study to assess the impact of tension on clinical outcome and quality of life in patient undergoing ileal pouch anal anastomosis10. They also found that patients with high amounts of tensions were more likely to suffer from anastomotic stricture and pouch failure. In their study, they did not measure tension on the bowel directly. Instead, they asked the surgeons to judge the tension based on the mesentery using a 10-point tension scale with “1 being flappy and 10 being ‘as tight as a guitar string’”.

Some studies have used mobilization of the colon as a surrogate for tension-free anastomoses. Splenic flexure mobilization is a routine part of anterior colorectal resection, but is done at the expense of increased operating time, splenic injury with a rate as high as 5.2%, or even a splenectomy14. Other studies seem to agree with the trade-off of increased time being worth it to achieve adequate mobilization of just the splenic flexure but other structures to achieve a ‘tension-free’ anastomosis, although they did not find a difference in complications with these measures15.

Other surrogates for tension may be found in site selection. Low rectal anastomoses are more difficult to achieve tension-free and have higher rates of dehiscence compared to other rectal anastomoses16,17. Generally there low rectal anastomoses are within 7 cm of the anal verge, or below the peritoneal reflection18. One way to counteract this issue is with a covering stoma as indicated in many studies18. Another region with higher tension anastomoses is the esophagus, having the highest failure rate of all intestinal anastomoses19. While factors such as delicate vasculature, and technique play a pivotal role, the main distinction is the higher anastomotic tension due to the anatomy, particularly post-surgery20. This theory has been somewhat proven by the improved leak rate in operations which include load-bearing
sutures to alleviate tension and provide support21,22. The esophageal anastomosis has also been shown to definitively be directly affected by tension, using a tensiometer to measure the tension at different intervals and time points, and demonstrating a linear increase of leak rates with tension on the anastomosis21,21.

Discussion:

The impact of tension on anastomotic leakage

Freedom from tension is achieved by adequate mobilization of the bowel, whether it be from the retroperitoneum, omentum, or other surrounding structures based on the approach and type of surgery24. Ileocolic anastomoses generally require mobilization of the colon off the retroperitoneum, and possibly division of the omentum off the transverse colon. The issue is exacerbated for left-sided anastomoses where full mobilization of the descending colon and splenic flexure is required. However, the procedure may come at the risk of the decreased bowel perfusion, and it may require a different approach to surgical correction. During a laparoscopic anterior resection mobilization of the splenic flexure is often considered a vital step in achieving tension free anastomoses. However, the procedure does increase intra-operative time in exchange for shorter length of stay and may not impact complications 11,15,25. Wu et al. in a landmark study investigated the correlation of the surgeon’s assessment of tension with clinical outcomes in restorative proctocolectomy26. Patients with high mesenteric tension were more likely to have anastomotic stricture and pouch failure and unfavorable anatomy such as a shorter anal transitional zone. In all these approaches the main assessment is based on surgeon feedback with need for mobilization being an indirect method to alleviate or prevent tension. However, it is both subjective and imprecise, based on surgical experience, comfort with the technique, and many other variables which can affect human judgement.

Measurement of tension and impact on leaks

The most common objective way to measure tension in literature is through the use of a tensiometer, a device that itself has variability in its application and method. A common method that is destructive and therefore commonly used post-houmously is the attachment of the anatomy to a fixed point and a movable point. The displacement of the movable point and the counterforce exerted by the anatomy is used as a measurement of tension, this is shown in figure 2. This principle follows the assumption that the anastomosis is the weakest point of the anatomy and therefore the point of maximal tension, and that leakage therefore would be present at the anastomotic site. However, only a few studies provide basis for these assumptions with any material inside the anatomical segment21,22. Additionally, most of these studies are focused on maximal tension bearing and rupture rather than a simple leak. Some models on tensiometer used are the Instron mini-44 tensiometer (Canton, MA, USA)21, Zwick material testing machine (Zwick GmbH & Co., Ulm, Germany)5, and other models of modified tensiometers. A lower cost model is visualized in figure 3 and utilized for middle-lower income socioeconomic testing facilities, however it does come at the cost of decreased sensitivity and higher number of variables to account for, such as the exact weights used and equipment weight/density. Mounting methods also differ, ranging from hollow cylinders paired with tapering nuts to pneumatic clamps, however these are not as commonly described in literature. Another variable is the rate of advance of the movable portion of the machine, which could affect the tension rate. Some studies have found that where tension is increased in increments with pauses, the breaking strength was higher5,21.

Suture tension and anastomotic type
Some articles correlate suture tension and variable such as suture length to investigate effects on anastomotic breaking strength. One study in rodents has investigated the use of different tensions and moderate tension sutures seem to give optimal results. One article investigated the maximum traction force tolerance in porcine esophagus in different suturing techniques and bite lengths with findings indicating that continuous suture with short bites were closest to native tissue in tolerance. Continuous sutures were also significantly better than all other modalities – simple interrupted sutures, barbed sutures, and stapled. The esophagus does however typically sustain higher traction forces than stomach or bowel which may skew the results. In other studies, similar postoperative complications have been noted in handsewn, stapled, and compression anastomotic techniques in meta analyses. Another article compared two common types of suture material, Vicryl and Polydioxanone, with a result of 179.9 N and 161.5 N shearing force respectively which was not statistically significant. Another study also investigated the tensile strength of the trachea based on suture type with polygalactin having a tensile strength of 236 N, and both polypropylene and polydioxanone having a strength of 232 N. One thing to note is that most of these tears were not at the site of the anastomoses but rather at a different site. Native strength was assessed at 178 N which conflicts slightly with other studies. Another study compared a new clipped intestinal non-perforating technique, however they did not specify the testing parameters. They found that clipped anastomoses were similar to healthy normal tissue in terms of maximal bowel wall tensile strength, whereas sutured anastomosis was significantly lower and ruptured at a lower maximal tension.

Similarly some studies have also investigated the effect of time on anastomotic strength, assessing the tensile breaking strength and location with the Zwick material testing machine. The highest tensile strength seemed to be at 4 weeks post-operatively at 273 N, with one-week post-op being the weakest at 177 N. At six months, the tensile strength was 247 N.

Anastomotic aid devices

Some studies investigate devices to reinforce the anastomosis, with one such study using a poly-ε-caprolactone (PCL) scaffold incorporated in the staple-line in 17 porcine bowels. On post operative day 5 the subjects were subjected to the tension stretch test and revealed a maximal tensile strength of 15.7 N, which was significantly higher than the control of 12.7 N (p=0.01). The scaffold seems to therefore provide a protective buffer to the anastomotic site, increasing the tensile strength. However, these values are a magnitude lower than values exhibited in other studies and may need further clarity on the methodology on tension testing. Similarly, another group investigated the use of a soluble intraluminal prosthesis on tensile strength, using clamps 5 mm apart, with positive results on durability of the anastomosis under tensile load. Additionally, no conclusive studies discuss suture tension and consequent rates of leakage or complications. A few different studies also compare the use of intraluminal prostheses for bowel support during sewing and stapling with consequently reduced suture tension and ischemia. However, leakage rates were not significantly improved with the tube and laparoscopic techniques made it largely defunct. Additionally, recent studies different techniques such as Deloyers, and retro-ileal techniques have also shown to have similar (20%) anastomotic leak rates contrasting with previous reports which show that the Deloyers procedure had a lower leak rate (3.4-10%) than reported.

There seems to be no objective, reproducible method to measure tension directly or indirectly in bowel anastomoses in live human subjects in existing literature. A reliable way to measure tension would provide a data driven scientific basis upon which to base surgical outcome correlations.

Limitations
The bowel is composed of different structural layers, each with different tensile properties, that are subject to normal anatomical variation. The serosa and subserosa play a minimal role in the tensile strength, while the muscular and submucosal layers are responsible for the majority of resistance of tension, both longitudinal and circumferential. Only a couple of studies recognize the distinction, and none investigate age, co-morbidity, and other factors that may influence the functioning and decline of these individual layers.

Conclusion

Anastomotic leak following gastrointestinal surgery is a serious complication with devastating morbidity and, mortality for the patient\(^2\). Significant progress has been made in understanding and mitigating the risk factors associated with anastomotic leaks. The factors impacting anastomotic leak can be broadly categorized into patient specific and technical factors. Over the past few decades, patient-specific characteristics have seen optimization with early nutritional support, gut microbiome supplementation, control of co-morbidities, and underlying conditions such as anemia. However, these recent advancements have not addressed technical factors, specifically anastomotic tension, to improve anastomotic success rate. Tension is widely recognized for its importance in success of bowel anastomoses but has remained subjective in its assessment. Cadaveric and animal studies have explored maximal tensile loads in a few different scenarios and using different materials and supports but remain destructive in nature. A safe reliable way to measure tension intra-operatively would be an invaluable tool in the surgical arsenal and provide a solid basis for future scientific study.
References

Table 1: Newcastle-Ottawa Scale for the studies included in this systematic review that met the study type qualifying criteria.

<table>
<thead>
<tr>
<th>Author</th>
<th>Representativeness of the exposed cohort</th>
<th>Selection of the nonexposed cohort</th>
<th>Ascertainment of exposure</th>
<th>Demonstration that Outcome of Interest was Not Present at Start of Study</th>
<th>Comparability of Cohorts 1) Main Factor 2) Additional Factor</th>
<th>Assessment of Outcome</th>
<th>Sufficient Follow-Up</th>
<th>Adequacy of Follow-Up</th>
<th>Total 9/9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katory et al.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>6/9</td>
</tr>
<tr>
<td>Brennan et al.</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>5/9</td>
</tr>
<tr>
<td>Oetzmann et al.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>5/9</td>
</tr>
<tr>
<td>Egorov et al.</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>4/9</td>
</tr>
<tr>
<td>Schilt et al.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>8/9</td>
</tr>
<tr>
<td>Behrend et al.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>7/9</td>
</tr>
<tr>
<td>Larsen et al.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>6/9</td>
</tr>
<tr>
<td>Holland-Cunz et al.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>8/9</td>
</tr>
<tr>
<td>Buch et al.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>7/9</td>
</tr>
<tr>
<td>Waninger et al.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>6/9</td>
</tr>
<tr>
<td>Morse et al.</td>
<td>*</td>
<td></td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>7/9</td>
</tr>
</tbody>
</table>
Table 2: Summary of included studies, their year of publication, species studied, sample size, and significant findings.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Subject</th>
<th>Cohort size</th>
<th>Type of study</th>
<th>Method tension was assessed</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testini et al.</td>
<td>2000</td>
<td>Human</td>
<td>200</td>
<td>Cohort</td>
<td>Symptomatic anastomatic leaks, confirmed on radiology.</td>
<td>Anastomotic tension and level play a pivotal role in anastomotic success. The anastomotic level may be a surrogate for tension due to anatomical susceptibility and bowel length at different levels. There seems to be an inverse relationship between height of the suture from the anal verge and anastomotic leak rate in literature. HAR without splenic flexure mobilization is associated with similar rates of anastomotic leakage as with mobilization. The leak rate was 0.4% overall.</td>
</tr>
<tr>
<td>Slieker et al.</td>
<td>2013</td>
<td>Human, dogs, swine</td>
<td>117 studies</td>
<td>Systematic review</td>
<td>Tension on anastomosis not assessed.</td>
<td></td>
</tr>
<tr>
<td>Katory et al.</td>
<td>2008</td>
<td>Human</td>
<td>707</td>
<td>Case control</td>
<td>Mobilization of either the sigmoid colon or the splenic flexure or division of the proximal colon</td>
<td></td>
</tr>
<tr>
<td>Brennan et al.</td>
<td>2007</td>
<td>Human</td>
<td>100</td>
<td>Cohort</td>
<td>Cohorts of patients with and without splenic flexure mobilization.</td>
<td></td>
</tr>
<tr>
<td>Oetzmann et al.</td>
<td>2019</td>
<td>Swine</td>
<td>91</td>
<td>Cohort</td>
<td>Electronic tensiometer (PCE DFG-500)</td>
<td></td>
</tr>
<tr>
<td>Egorov et al.</td>
<td>2002</td>
<td>Cadaveric human</td>
<td>50</td>
<td>Cohort</td>
<td>Instron 1122 tensiometer with pneumatic clamps</td>
<td></td>
</tr>
<tr>
<td>Oliveira et al.</td>
<td>2023</td>
<td>Human</td>
<td>7259</td>
<td>Meta-analysis</td>
<td>Symptomatic anastomatic leak clinically and confirmed on radiation</td>
<td>There is no significant difference in rate of dehiscence between handsewn, stapled, and compression anastomoses. However, the handsewn technique has the highest reoperation rate, and compression the lowest. The mean anastomotic rupture point was 179.9±19.9 N for</td>
</tr>
<tr>
<td>Schilt et al.</td>
<td>2010</td>
<td>Cadaveric</td>
<td>12</td>
<td>Cohort</td>
<td>Pulley system with two equidistant weights.</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Species</td>
<td>Cohort</td>
<td>Study Details</td>
<td>Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
<td>--------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behrend et al.</td>
<td>Sheep</td>
<td>24</td>
<td>Vicryl and 161.5±22.1 N for PDS. Tracheal circumference was strongly linearly associated with anastomotic strength (P = 0.0004). Withing 2 weeks the tracheal anastomoses has a breaking strength similar to or greater than native tracheal tissue. The suturing technique holds little sway in this matter.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larsen et al.</td>
<td>Swine</td>
<td>17</td>
<td>LF Plus; Lloyds Instruments, Fareham, UK) equipped with an XLC 100 N loadcell (Lloyds Instruments, Fareham, UK).</td>
<td>Breaking strength was 15.1 N in piglets with anastomotic breakage, and 15.7 N in piglets overall. Five out of 17 piglets had extra-anastomotic breakage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holland-Cunz et al.</td>
<td>Rats</td>
<td>32</td>
<td>N/A although lengthening tension was limited to 500g.</td>
<td>The clipped group showed minimal difference in breaking strength versus healthy tissue, however the sutured anastomoses ruptured at lower tension forces.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buch et al.</td>
<td>Swine</td>
<td>16</td>
<td>Modified Alweltron TCT5, Lorenzen og Wettre AB, Stockholm, Sweden. Mounted between two clamps 7 mm apart and stretched at 100mm/minutes till breaking point.</td>
<td>The load deformation curves were plotted demonstrating no significant difference in the use of a intraluminal SBS tube than regular anastomosis. However, oxygen tissue tension was better in the group with the SBS tube.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waninger et al.</td>
<td>Rats</td>
<td>432</td>
<td>Spring balance</td>
<td>Moderate suture tension with small inter-suture distance seems to improve healing compared to low or high tension on the suture.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morse et al.</td>
<td>Human</td>
<td>682</td>
<td>Instronmini-44 Tension meter with 10 mm distraction</td>
<td>Tension was noted in 5 of 682 connections but increased the leak rate from 0.5% to 5%. This may be due to tissue ischemia secondary to microvasculature compromise at the anastomotic site.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cui et al.</td>
<td>Rats</td>
<td>80</td>
<td>Symptomatic anastomotic leaks</td>
<td>Breaking strength varies significantly between three-day blocks, being the lowest on day 3 and highest on day 14. Anastomotic leak rate increased linearly with increase in tension.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart

Records identified through database searching
(n = 350)

Additional records identified through other sources
Citations = 15
Text search = 5

Records after duplicates removed
(n = 201)

Records screened
(n = 201)

Records excluded
(n = 149)
Full-text articles excluded (n = 36)
Full text article not available in English (n = 10)
Assessed bursting tension but not shearing tension (n = 22)
Assessed tension in tissue other than the gastrointestinal tract (n = 4)

Full-text articles assessed for eligibility
(n = 52)

Studies included in systematic review
(n = 16)
Figure 2. Electronic tensiometer with a horizontal clamping device. Several key features are highlighted in figure 2B, C, and D to reflect the tensiometer resolution, control over displacement speed, and anastomosis displacement measurement respectively. 20
Figure 3. Low-cost pulley system as an alternative to tensiometers and mechanically operated displacement devices to increased and measure tension on the anastomosis".