Geospatial analysis and mapping of malaria burden in Kagera region, northwestern Tanzania using routine health facility and community survey data

Daniel A. Petro¹, Nyimvua Shaban¹, Sijenunu Aaron², Frank Chacky², Samuel Lazaro², Maciej F. Boni³, Deus S. Ishengoma⁴,⁵.

¹Department of Mathematics, University of Dar es Salaam, Dar es Salaam, Tanzania.
²National Malaria Control Programme, Dodoma, Tanzania.
³Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, USA.
⁴National Institute for Medical Research, Dar es Salaam, Tanzania.
⁵Department of Biochemistry, Kampala International University in Tanzania, Dar es Salaam, Tanzania.

*Correspondence: petrodaniel945@gmail.com

Abstract

Background:
Malaria transmission in Tanzania has declined significantly over the last two decades due to the scaling-up of control interventions. However, the recent confirmation of artemisinin partial resistance (ART-R) in some parts of Kagera region in north-western Tanzania threatens the efforts to fight and eliminate malaria in the region and the whole country. This study sought to investigate the temporal trends and spatial patterns of malaria burden and identify areas at
most risk of malaria transmission before developing a response strategy for the reported ART-R in the region and the entire country.

Methods

This was a retrospective analysis that combined monthly data of suspected and rapid diagnostic tests (RDTs)-confirmed malaria cases from 330 out of 355 (93.0%) health facilities (HFs) in eight councils of Kagera region (with 192 wards), over a period of 84 months from 2017 to 2023. Additionally, we used data from parasitological surveys among pregnant women attending first antenatal care (ANC) clinics between 2017 and 2023 (N = 84 total prevalence points, aggregated by month) and school malaria parasitological surveys (SMPS) taken in 2015, 2017, and 2019. R and Python programming tools were used for data analysis, while Global Moran’s index was used for spatial autocorrelation (SA) analysis, and local Moran’s and Getis-Ord’s statistics were used for hotspot analysis at ward levels.

Results

At HFs, 8,124,363 patients were tested using RDTs and 2,983,717 (36.7%) had positive results. The test positivity rate (TPR) in under-fives was 33.1% (range: 0% to 79%) and 33.7% for those aged ≥5 years (range: 3% to 80%) with significant differences across wards and years (p<0.001). For pregnant women, 853,761 were tested from 2017 to 2023, and 84,999 (10.0%) were RDT-positive, with significant differences across wards and years (p<0.001; range: 0% to 40.5%). In school surveys, 9,740 children were tested and the average prevalence was 29.1% (ranged from 0% to 78.4%) with no significant differences across wards and years (p>0.05). The overall Global Moran’s index indicated the presence of significant positive SA (p<0.05) for prevalence (in pregnant women) and TPR, characterized as clustered and dispersed (in school children) spatial patterns of malaria burden in Kagera region. Hotspot
analysis involved 162 (84.4%) wards (n = 192) and 69 (42.6%) wards had consistently high burden in the region while 13 (8.0%) had consistently low burden (p<0.05).

Conclusion

There was a high malaria burden with temporal and spatial heterogeneity at district and ward levels in Kagera region. A high burden was consistently observed in 69 (42.6%) wards, school children, and patients aged ≥5 years with minor differences. These findings are critical for the National Malaria Control Programme (NMCP) and other stakeholders for planning and developing new strategies to respond to ART-R in Kagera region of northwest Tanzania.

Keywords: Malaria, malaria hotspots, artemisinin partial resistance, spatial autocorrelation, Kagera, Tanzania.

Introduction

Tanzania is one of the priority countries defined by the World Health Organization (WHO) as a high-burden high-impact country, accounting for 3.2% of all malaria cases and 4.4% of deaths reported worldwide in 2022 [1]. About 96% of all the cases reported in the country are caused by *Plasmodium falciparum*, and the remaining are due to other species (*P. malariae* and *P. ovale*) individually or in mixed infections [2-5]. The National Malaria Control Programme (NMCP) of Tanzania is at the forefront of the fight to reduce malaria cases in the country and progress to substantially control and eliminate through the implementation of different interventions. The main strategies include integrated malaria vector control (mainly with insecticide treated nets), case management, preventive therapies, and surveillance,
monitoring, and evaluation, together with other supportive strategies like social behavior change and advocacy, and resource mobilization [6]. However, progress to malaria elimination is under key biological threats such as the emergence and spread of insecticide [7] and antimalarial drug resistance [8], parasites with histidine-rich protein 2/3 (hrp2/3) gene deletions [9], and invasive vector species (Anopheles stephensi) in some malaria-endemic countries in Africa [1].

Malaria transmission in Tanzania is heterogeneous with 93% of the population living in areas where transmission occurs [6]. Most of the regions with very low and low transmission are located in the central, northeastern, and southwestern parts surrounded on both sides by moderate transmission regions and high malaria transmission in the northwestern, southern, and western parts [10]. Previous studies have shown that the transmission of malaria is influenced by various factors including the types of mosquito vectors, environmental conditions, and human-related factors like age, sex, immunity, and level of education [11-13].

Over the past four decades, malaria-endemic countries in sub-Saharan Africa have reported resistance of P. falciparum to all major antimalarial drugs, including chloroquine, sulfadoxine-pyrimethamine (SP) [8], [14,15], and artemisinin derivatives and their currently used partner drugs [15-17]. Nevertheless, artemisinin-based combination therapies (ACTs) are still highly effective against parasites of African origin [8]. However, artemisinin partial resistance (ART-R) has been confirmed in Rwanda [18,19], Uganda [20], Tanzania [21] and Eritrea [22], while the genotype which has only been detected in the horn of Africa has been widely reported in Ethiopia [23], Somalia [24] and Sudan [25,26]. In addition, the mutation that originated in Rwanda has been also reported in Kenya [27]. In Tanzania, little was known about ART-R until in 2021 when a country-wide survey through the project on Molecular Surveillance of Malaria
in Tanzania (MSMT) reported a focus in Kagera region only, with high genotype frequency of parasites with mutations in \textit{Kelch13} gene (K13) (genotype frequency of 0.077, and as high as 0.22 in Karagwe District Council (DC)) which are linked to ART-R in Africa [28]. Based on WHO’s criteria [8], a follow-up therapeutic efficacy study conducted in 2022 confirmed the presence of ART-R in the region although the tested drugs still had high efficacy exceeding 98% [21].

As per WHO’s strategy to respond to ART-R in Africa, when it is confirmed, new strategies to contain, prevent, and mitigate the spread and consequences of ART-R must be considered urgently [29]. As the first step towards the development of a mitigation and response strategy, WHO recommends mapping and providing a detailed profile of the disease burden and its spread in different areas [30]. Therefore, this study aimed to investigate the temporal trends and spatial patterns of malaria burden in Kagera region and identify areas at the highest or lowest risk of malaria transmission as an initial stage towards the development of a response strategy to ART-R in Tanzania. The findings from this study provide the government, especially NMCP and other stakeholders with evidence to support the designing, deployment, and implementation of interventions to monitor, prevent, and contain the spread of ART-R within the region and to other areas of Tanzania.

\textbf{Methods}

\textbf{Study design and site}

This study utilized aggregated secondary data collected retrospectively from health facilities (HFs) and communities in Kagera region of north-western Tanzania. The region consists of 8 councils, 192 wards, and 734 villages covering an area of approximately 35,868 square kilometers. The eight councils include Bukoba Municipal Council (MC) (with 14 wards), Bukoba
DC (29 wards), Biharamulo DC (17 wards), Karagwe DC (23 wards), Kyerwa DC (24 wards), Muleba DC (43 wards), Missenyi DC (20 wards), and Ngara DC (22 wards) [31,32]. The region is bordered by Uganda in the north, and Burundi, and Rwanda in the west, and the Tanzanian regions of Kigoma and Geita in the south. To the east, the region is bordered by Lake Victoria which separates Kagera from Mwanza and Mara regions [32]. In addition, the Kagera River forms the region’s border with Rwanda to the west and Uganda to the north, forming the biggest valley in Africa with high human movement and substantial socio-economic activities [28].

The Kagera region experiences a bi-modal pattern of rainfall (between March and June and from August/September to December) with an annual average ranging from 600 to 2000 millimeters [33,34]. The driest period is from mid-June to mid-August and the second short dry season extends from January to March with daily temperatures ranging from 12$^\circ$C to 34$^\circ$C (average of approximately 21$^\circ$C). About 28% of the region is covered by water that comes from lakes Victoria, Ikimba, and Burigi; and big rivers such as Ngono and Kagera as well as many small perennial rivers making the region have a large volume of free-flowing fresh water throughout the year [32]. This leads to the presence of favorable mosquito-breeding sites for Anopheles gambiae sensu stricto (s.s), Anopheles funestus s.s, and other Anopheline resulting in high malaria transmission in some parts of the region as recently reported [35]. The economy of the region depends on agriculture with coffee and bananas as the leading cash and food crops respectively, together with other activities like tourism, fishing, hunting, trading, and mining [32]. According to the 2022 national census, the region had an estimated population of 2,989,299 people, including 1,530,019 females and 1,459,280 males, with an
average household of 4.3 people, 2.0 population growth rate/annuma, and a sex ratio of 96 males per 100 females [31].

Figure 1: A map showing the 26 regions of Mainland Tanzania (white) and Kagera region (red), Lake Victoria (lightblue), and neighboring countries (gray)

Data collation, management and analysis

The data for this study were collated from the District Health Information System- version 2 (DHIS2), an open-source, web-based software platform for reporting, and disseminating health data. This (DHIS2) is part of the Health Management Information System (HMIS) of the
Ministry of Health (MoH) in Tanzania [6]. In the DHIS2 platform, the information is entered from both government and non-government HFs in the country and can be viewed by officials at all levels of healthcare delivery using registered credentials. HFs produce summary reports with data recorded directly into DHIS2, whose quality is maintained through collaboration between a focal member from NMCP and monitoring and evaluation technical working group from MoH through quality assurance supervision. The data used in this study included monthly malaria testing of pregnant women attending their first antenatal care (ANC) clinics (from 2017 to 2023), symptomatic malaria patients attending HFs categorized into under-fives and ≥5 age groups (from 2017 to 2023), and school malaria parasitological survey (SMPS) of 2015, 2017, and 2019 from the 35 selected wards in the eight councils of Kagera region.

Using Excel and R programming software version 4.3.2: The R Project for Statistical Computing (r-project.org) [36,37], data cleaning and preprocessing was done to ensure accuracy and consistency. This included selecting tests performed by rapid diagnostic tests (RDTs) only, as the majority of HFs providing laboratory testing for malaria in Tanzania use RDTs. Duplicates, blank reports, and HFs with no tests performed in any of the study periods were removed from the data. Missing values in facilities with complete reports were replaced by zeros, as DHIS2 cannot distinguish between zeros and missing values. All HFs with complete reports of 50% or more were included in the analysis, otherwise they were omitted. Monthly data of total malaria tests performed and positive tests (by RDTs) from all HFs in the region were aggregated to provide annualized estimates per council and ward for the study periods and to show monthly malaria reporting trends by council. In this study, test-positivity rate (TPR) was defined as the proportion of positive malaria tests among all malaria tests performed using RDTs in the two age groups (under-fives and patients aged ≥5 years) and
reported by the HFs in Kagera region. For school children, the average prevalence for each
council and ward was used. Using R software, the analysis of malaria data was done for all the
data (overall), for each year and study group, district-wise, and at ward level and the results
presented in tables, figures, or texts. Python plotting tools (pandas v2.2.0, matplotlib v3.8.2,
numpy v1.26.3) (Welcome to Python.org) were used to show temporal trends of positivity
rates, prevalence, and case reporting in councils.

Kruskal-Wallis tests were used to assess whether there were any significant differences in
malaria prevalence or TPR across districts, wards, and years. Furthermore, the data on
administrative boundaries of Tanzania’s regions indicating its councils and wards as well as its
neighboring countries were downloaded from various sources including DIVA-Geographical
Information System (GIS) and the National Bureau of Statistics (NBS). These were used to
create the study site, and region’s shapefile at district and ward levels which were later merged
with data on malaria burden for each study group and used for choropleth mapping, spatial
autocorrelation (SA) and hotspot analysis. The spatial distribution of malaria burden in the
region was mapped using R package ggplot2 (Figures 2, 5, and 6). In order to investigate the
spatial and temporal patterns of malaria burden in the region, SA analysis was done by
calculating the Global Moran’s Index for each group and years. The value of this index ranges
from -1 (negative SA) to +1 (positive SA) [38,39]. To detect hotspots and depict prevalence
rates in different geographical areas, local spatial statistical methods were applied through a
spatial dependency (spdep) package found in R software. The description of wards and HFs
included in the analysis is found in Additional file 1: Text S1 and Figure S1, while the cut-offs
applied in this study to characterize malaria prevalence were; <1% (very low), 1 - <5%(low), 5 -
<30% (moderate), and ≥30% (high). For malaria TPR, these included <5% (very low), 5-<15%
(low), 15–<30% (moderate), and ≥30% (high) as previously described [10] (Additional file 1: Text S2 and Table S1). The formulae and illustration of how SA and hotspot analysis were conducted can be found elsewhere [38,39] (Additional file 1: Text S3).

Results

Reported malaria cases to Health Facilities (HFs)

For the data collected during the seven years in HFs in Kagera region, 8,124,363 patients – presenting with malaria-like symptoms were tested for malaria using RDTs and 2,983,717 (36.7%) had positive results. The TPR in under-fives was 33.1% (ranging from 0% to 79%) and 33.7% (ranged from 3% to 80%) for those aged ≥5 years across wards, showing clear geographic and temporal variations (p<0.001). Among under-fives, there was a marked variability in the number of wards in each stratum, with high TPR (≥30%) in the wards from rural stratum while very low TPR (<5%) was observed in urban wards. In all years, 103/156 (66.0%) wards had higher TPR in 2017 but this decreased by 40% reaching 62/161 wards (38.5%) in 2022. The largest number of wards with very low TPR was observed in 2018, with 16/158 (10.1%) wards while fewer wards were recorded in 2017 and 2019 (n= 2, 1.3%) (Additional file 1; Table S2). Even though there were minor variations in the pattern of spatial distribution of TPR in under-fives across years, five district councils had over 10% of the wards with consistently high TPR (≥30%) throughout the years. These include 6/17 (35.3%) in Biharamulo DC, 12/43 (27.9%) wards in Muleba DC, 5/22 (22.7%) in Ngara DC, 4/23 (17.4%) in Karagwe DC, and 4/29 (13.8%) in Bukoba DC. In Kyerwa DC, 2/24 (8.3%) wards had consistently higher TPRs while only one ward (Kashai in Bukoba MC) recorded the lowest TPR (<5%) (Additional file 1: Table S3). Figure 2A shows the spatial distribution of malaria TPR in under-fives at the ward level for all years covered in this analysis.
Among patients aged ≥5 years, the pattern was similar to that of under-fives, with a large number of wards observed in the high stratum throughout the years. In 2017, 103/158 (66.0%) wards had a high burden while 2018 recorded the lowest number of wards (n = 65, 41.1%) in the same stratum. On the other hand, a large number of wards with very low TPR (n = 6, 3.8%) was recorded in 2018 while 2017 and 2023 recording no wards with very low burden (Additional file 1: Table S4). Figure 2B shows the pattern of spatial distribution of malaria TPR in patients aged ≥5 years in the region and this was similar to that of under-fives (refer to Figure 2A). Similar to under-fives, five councils had 10% of the wards with consistently high TPRs (≥30%) over the years and these included, 7/17 (41.2%) wards in Biharamulo DC, 7/23 (30.4%) in Karagwe DC, 11/43 (25.6%) in Muleba DC, 5/22 (22.7%) in Ngara DC, and 4/29 (13.8%) wards in Bukoba DC. Only 1/24 (4.2%) ward in Kyerwa DC had consistently higher TPR (≥30%) (Additional file 1: Table S3). The spatial distribution of malaria TPR in ≥5 years is shown in Figure 2B.
Figure 2: Spatial distribution of malaria TPR at ward level in Kagera region from 2017 to 2023 for under-fives (A) and patients aged ≥ 5 years (B).

Monthly variations of malaria TPR at HF level in Kagera region

Monthly TPR in patients aged ≥5 years was high (≥30%) for all years in Muleba DC reaching as high as 70% in 2018, followed by Ngara DC, Biharamulo DC, Bukoba DC, and Karagwe DC with minor variations. In all districts/councils (except in Bukoba MC), higher values of TPR were observed in patients aged ≥5 years than in under-fives, a pattern that was evident from mid-2019, especially in Bukoba DC and Ngara DC. Despite minor differences, TPRs were higher in patients aged ≥5 years than in under-fives and all councils except Bukoba MC and Missenyi DC, TPRs less than 20% were rarely observed. Furthermore, Bukoba MC recorded very low TPR (<5%) for most of the study period and in both age groups with low variability (Figure 3).
Figure 3: Monthly test positivity rates (TPRs) at health facility level in eight councils of Kagera region in under-fives (green) and patients aged ≥5 years (black) from 2017 to 2023.

Malaria prevalence at first Antenatal Care Clinics (ANC)

Following the initiation of testing pregnant women at their first ANC visit in 2014 [40], 853,761 pregnant women attending ANC clinics from 2017 to 2023 in Kagera region were tested and
84,999 (10.0%) had positive results by RDT, with annual prevalence ranging from 0% to 40.5% and with significant differences among wards and across the years (p<0.001). Malaria prevalence in pregnant women was consistently higher in Biharamulo DC reaching as high as 28% in 2018, followed by Karagwe DC, Muleba DC, and Kyerwa DC (reaching as high as 22% in the same year) and low in Bukoba MC (<5%) throughout the years. Figure 4 shows the trend of malaria prevalence in ANC attendees in Kagera region for the years covered in this study. The prevalence of malaria in pregnant women was high in the southeast and central areas of the region compared to other parts (Figure 5). A larger number of wards 5/151 (3.3%) were located in the stratum with high prevalence (>30%) in 2017 followed by 3/152 (1.9%) in 2018 and 2019, while 2020 had 3/159 (1.8%), and 2022 had 1/159 (0.6%) ward in the same stratum. There was no ward observed in the stratum with high prevalence in 2021 and 2023. On the other hand, a large number of wards from areas with very low prevalence (n = 16, 10%) was recorded in 2023 with the moderate stratum recording the largest number of wards throughout the years (Additional file 1: Table S5). Despite these minor variations, only 3/8 (37.5%) councils had ≥5% of the wards with higher prevalence (≥30%) (including 3/17 (17.6%) wards in Biharamulo DC, 4/43 (9.3%) in Muleba DC, and 2/23 (8.7%) wards in Karagwe DC) while Kyerwa DC (n=1/24, 4.2%) and Bukoba DC (n=1/29, 3.4%) had <5% of the wards with high prevalence. The wards which consistently recorded the lowest prevalence were from Bukoba DC (n=2/29, 6.9%), Missenyi DC (n = 1/20, 5%), and Muleba DC (n=1/43, 2.3%) (Additional file 1: Table S6). Furthermore, the heterogeneity of malaria prevalence in pregnant women for each ward and year is shown in Figure 5:
Figure 4: Trends of malaria prevalence in pregnant women by council, in Kagera region from 2017 to 2023. The pink-shaded regions show the Clopper-Pearson 95% confidence bands.
Figure 5: Spatial distribution of malaria prevalence in ANC attendees at ward level in Kagera region from 2017 to 2023.

Malaria prevalence in school children

School malaria parasitological surveys (SMPS) were first conducted in 31 schools (2,799 children) across the eight councils in 2015 [41] and this was increased to 34 schools (3,516 children) in 2017 to accommodate the expansion of administrative boundaries in 2016 and in 2019, 33 schools (3,425 children) were selected. In total, 36 schools from 35 selected wards of Kagera region were sampled and 9,740 children were tested for malaria infections. Across all schools and surveys, 2,830 children (29.1%) had malaria parasites detected by RDTs. The prevalence in this group ranged from 0% to 78.4% with no significant differences across districts/wards and years. The average prevalence was high in the south, central, and northern parts of the region. Even though the prevalence was heterogeneous across years, two wards from Ngara DC, three in Biharamulo DC, one in Muleba DC, two in Bukoba DC, one in
Karagwe DC, one in Missenyi DC, and one ward in Kyerwa DC had persistently higher prevalence (≥30%) throughout the study period, while one ward in Bukoba MC recorded the lowest prevalence (< 3%) (Additional file 1; Table S7). The spatial distribution of the prevalence of malaria in school children in the region across years for the selected wards is shown in Figure 6. In addition, the estimates of malaria prevalence at each school included in the surveys (Figure 7) show substantial variation within individual councils and among years (Additional file 2; Text S1).

![Figure 6: Spatial distribution of malaria prevalence in school children at ward level in Kagera region for 2015, 2017 and 2019 surveys.](image-url)
In comparing malaria prevalence in pregnant women attending their first ANC clinics and school children, the prevalence was higher in school children than in pregnant women, a trend that was similar across years (Figure 8(b)). Furthermore, an overall declining annual trend of
malaria prevalence in both groups was observed, with pregnant women showing a high rate of declining prevalence. However, the prevalence of malaria in pregnant women increased by approximately 15% in 2023 (Additional file 2: Supplemental Table S1). Between under-fives and patients aged ≥5 years, a high TPR (40.8%) was observed in under-fives in 2017 which decreased to 28.2% in 2018. In the following year, there was an approximately 30% increase in the positivity rate in this group, which was reduced to 29.8% in 2022, but with an increase of 9.4% in 2023. In general, a declining trend of malaria TPR was observed in under-fives from mid-2019 and started to shift to older patients at the same time, with an increase in both groups in 2023 (Figure 8(a)).

![Comparison of malaria TPR in under-fives and ≥5 years](image1)

![Comparison of malaria prevalence in pregnant women and school children](image2)

Figure 8: Comparison of malaria burden in Kagera region from 2017 to 2023 based on the data from health facilities, pregnant women and school children.

Spatial patterns of malaria burden in Kagera region

The spatial patterns of malaria burden in the region were clustered (nearby councils/wards had similar values of malaria burden) in under-fives, patients aged ≥5 years and pregnant women. Councils/wards with high/low malaria burden were surrounded by other areas having high/low
values as well for all years, as indicated by the positive values of the Global Moran’s index (Tables 1 and 2). The p and z-values associated with Global Moran’s index for each year indicated that the observed patterns of malaria burden in the region were statistically significant (p <0.05) in all groups except school children, whose patterns were not significant as well as dispersed in 2019 (Table 2).

Table 1: Spatial patterns of malaria TPR in under-fives and ≥ 5 years

<table>
<thead>
<tr>
<th>Group</th>
<th>Year</th>
<th>Global Moran’s Index</th>
<th>z-score</th>
<th>p-value</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under-fives</td>
<td>2017</td>
<td>0.7281</td>
<td>12.621</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>0.7522</td>
<td>13.263</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>0.7815</td>
<td>13.771</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>0.7391</td>
<td>13.528</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>0.6745</td>
<td>12.331</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>0.6724</td>
<td>12.084</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>0.5229</td>
<td>9.440</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td>≥ 5 years</td>
<td>2017</td>
<td>0.6561</td>
<td>11.392</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>0.6852</td>
<td>12.091</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>0.6806</td>
<td>11.995</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>0.6104</td>
<td>11.197</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>0.6324</td>
<td>11.572</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>0.5779</td>
<td>10.413</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>0.4784</td>
<td>8.709</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
</tbody>
</table>

*Statistically significant (p<0.05)
Table 2: Spatial patterns of malaria prevalence (ANC and SMPS)

<table>
<thead>
<tr>
<th>Group</th>
<th>Year</th>
<th>Global Moran’s Index</th>
<th>z-score</th>
<th>p-value</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANC</td>
<td>2017</td>
<td>0.3556</td>
<td>6.2041</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>0.5267</td>
<td>9.2397</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>0.5518</td>
<td>9.663</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>0.5383</td>
<td>9.990</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>0.5706</td>
<td>10.294</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>0.4961</td>
<td>9.275</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>0.3487</td>
<td>6.589</td>
<td><0.0001*</td>
<td>Clustered</td>
</tr>
<tr>
<td>SMPS</td>
<td>2015</td>
<td>0.1688</td>
<td>0.7905</td>
<td>0.4292</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>0.0465</td>
<td>0.4611</td>
<td>0.6448</td>
<td>Clustered</td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>-0.0445</td>
<td>0.1648</td>
<td>0.8691</td>
<td>Dispersed</td>
</tr>
</tbody>
</table>

Statistically significant (p<0.05)

ANC Antenatal care SMPS School malaria parasitological survey

Hotspot analysis of malaria burden in Kagera region

The year-by-year results of hotspot analysis at ward level showed that most malaria hotspots were concentrated in the southern, central, and northwestern parts (Figures 9 to 11). Four councils (Ngara DC, Biharamulo DC, Muleba DC, and Bukoba DC) had >17% of the wards classified as malaria hotspots in under-fives, patients aged ≥5 years, and pregnant women while Karagwe DC and Kyerwa DC had <17% of wards as malaria hotspots in the same groups with minor variability. The number of wards classified as hotspots of malaria in each group at 95% and 99% confidence levels (CLs) is presented in Table 3 (Additional file 2: Supplemental Tables S2):
<table>
<thead>
<tr>
<th>Group</th>
<th>Council</th>
<th>Hotspot wards at 95% CL (n/N, %)</th>
<th>Hotspot wards at 99% CL (n/N, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under-fives</td>
<td>Ngara DC</td>
<td>(19/22, 86.4)</td>
<td>(17/22, 77.3)</td>
</tr>
<tr>
<td></td>
<td>Biharamulo DC</td>
<td>(11/17, 64.7)</td>
<td>(8/17, 47.1)</td>
</tr>
<tr>
<td></td>
<td>Muleba DC</td>
<td>(15/43, 34.9)</td>
<td>(12/43, 27.9)</td>
</tr>
<tr>
<td></td>
<td>Bukoba DC</td>
<td>(9/29, 31.0)</td>
<td>(6/29, 20.7)</td>
</tr>
<tr>
<td></td>
<td>Karagwe DC</td>
<td>(2/23, 8.7)</td>
<td>(1/23, 4.3)</td>
</tr>
<tr>
<td></td>
<td>Kyerwa DC</td>
<td>(1/24, 4.2)</td>
<td>-</td>
</tr>
<tr>
<td>≥5 years</td>
<td>Ngara DC</td>
<td>(20/22, 90.9)</td>
<td>(16/22, 72.7)</td>
</tr>
<tr>
<td></td>
<td>Biharamulo DC</td>
<td>(9/17, 52.9)</td>
<td>(7/17, 41.2)</td>
</tr>
<tr>
<td></td>
<td>Muleba DC</td>
<td>(16/43, 37.2)</td>
<td>(13/43, 30.2)</td>
</tr>
<tr>
<td></td>
<td>Bukoba DC</td>
<td>(8/29, 27.6)</td>
<td>(5/29, 17.2)</td>
</tr>
<tr>
<td></td>
<td>Kyerwa DC</td>
<td>(3/24, 12.5)</td>
<td>(1/24, 4.2)</td>
</tr>
<tr>
<td></td>
<td>Karagwe DC</td>
<td>(1/23, 4.3)</td>
<td>(1/23, 4.3)</td>
</tr>
<tr>
<td>Pregnant women</td>
<td>Biharamulo DC</td>
<td>(13/17, 76.5)</td>
<td>(11/17, 64.7)</td>
</tr>
<tr>
<td></td>
<td>Ngara DC</td>
<td>(7/22, 31.8)</td>
<td>(4/22, 18.2)</td>
</tr>
<tr>
<td></td>
<td>Muleba DC</td>
<td>(13/43, 30.2)</td>
<td>(10/43, 23.3)</td>
</tr>
<tr>
<td></td>
<td>Bukoba DC</td>
<td>(7/29, 24.1)</td>
<td>(7/29, 24.1)</td>
</tr>
<tr>
<td></td>
<td>Karagwe DC</td>
<td>(4/23, 17.4)</td>
<td>(3/23, 13.0)</td>
</tr>
<tr>
<td></td>
<td>Kyerwa DC</td>
<td>(3/24, 12.5)</td>
<td>(1/24, 4.2)</td>
</tr>
<tr>
<td></td>
<td>Missenyi DC</td>
<td>(2/20, 10)</td>
<td>-</td>
</tr>
</tbody>
</table>

On the other hand, most malaria coldspots were situated in the northeastern and few in the remaining parts of the region. Three councils (Bukoba MC, Missenyi DC, and Bukoba DC) had >20% of the wards classified as malaria coldspots in under-fives, patients aged ≥5 years, and pregnant women while Kyerwa DC and Muleba DC had <20% of wards as malaria coldspots in
the same groups with minor variations. The number of wards classified as coldspots of malaria in each group at 95% and 99% CLs is presented in Table 4 (Additional file 2: Supplemental Tables S2):

Table 4: Number of wards classified as malaria coldspots

<table>
<thead>
<tr>
<th>Group</th>
<th>Council</th>
<th>Coldspot wards at 95% CL (n/N, %)</th>
<th>Coldspot wards at 99% CL (n/N, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under-fives</td>
<td>Bukoba MC</td>
<td>(13/14, 92.9)</td>
<td>(12/14, 85.7)</td>
</tr>
<tr>
<td></td>
<td>Missenyi DC</td>
<td>(17/20, 85)</td>
<td>(14/20, 70)</td>
</tr>
<tr>
<td></td>
<td>Bukoba DC</td>
<td>(15/29, 51.7)</td>
<td>(12/29, 41.4)</td>
</tr>
<tr>
<td></td>
<td>Karagwe DC</td>
<td>(1/23, 4.3)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Kyerwa DC</td>
<td>(1/24, 4.2)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Muleba DC</td>
<td>(1/43, 2.3)</td>
<td>-</td>
</tr>
<tr>
<td>≥5 years</td>
<td>Bukoba MC</td>
<td>(12/14, 85.7)</td>
<td>(11/14, 78.6)</td>
</tr>
<tr>
<td></td>
<td>Missenyi DC</td>
<td>(17/20, 85)</td>
<td>(14/20, 70)</td>
</tr>
<tr>
<td></td>
<td>Bukoba DC</td>
<td>(14/29, 48.3)</td>
<td>(11/29, 37.9)</td>
</tr>
<tr>
<td></td>
<td>Kyerwa DC</td>
<td>(1/24, 4.2)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Muleba DC</td>
<td>(1/43, 2.3)</td>
<td>(1/43, 2.3)</td>
</tr>
<tr>
<td>Pregnant women</td>
<td>Bukoba MC</td>
<td>(10/14, 71.4)</td>
<td>(3/14, 21.4)</td>
</tr>
<tr>
<td></td>
<td>Bukoba DC</td>
<td>(11/29, 37.9)</td>
<td>(9/29 31.0)</td>
</tr>
<tr>
<td></td>
<td>Missenyi DC</td>
<td>(8/20, 40)</td>
<td>(2/20, 10)</td>
</tr>
<tr>
<td></td>
<td>Kyerwa DC</td>
<td>(4/24, 16.7)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ngara DC</td>
<td>(1/22, 4.5)</td>
<td>-</td>
</tr>
</tbody>
</table>

In school children, hotspot analysis was not conducted because the spatial autocorrelation patterns were not statistically significant (p>0.05) (refer to Table 2). Figures 9 to 11 show the
locations of the hotspots and coldspots at 95% and 99% CLs in under-fives, ≥5 years, and pregnant women respectively.

![Locations of hotspots and coldspots of malaria in under-fives at ward level in Kagera region from 2017 to 2023.](image)

Figure 9: Locations of hotspots and coldspots of malaria in under-fives at ward level in Kagera region from 2017 to 2023.
Figure 10: Locations of hotspots and coldspots of malaria in patients aged ≥5 years at ward level in Kagera region from 2017 to 2023.
Figure 11: Locations of hotspots and coldspots of malaria in pregnant women at ward level in Kagera region from 2017 to 2023.

Discussion

This study was conducted as an initial stage of WHO's strategy to respond to ART-R in Africa, which recommends undertaking an assessment to generate and provide evidence of the current burden of malaria in all areas experiencing ART-R to support prioritization as well as targeting of response/control interventions [29]. ART-R has been reported since 2008 in the Greater Mekong Subregion in Southeast Asia [8] and was recently confirmed in four countries in Africa including Rwanda [18,19], Uganda [20], Tanzania [21], and Eritrea [22]. As recommended by WHO, this study was conducted to assess the local burden of malaria in Kagera region where ART-R has been confirmed [21] and NMCP is currently developing a
response strategy. We utilized spatial statistical and disease mapping techniques which are widely used by different researchers to identify areas where the occurrences of malaria cases are unusually high and clustered [38,39] and therefore need to be targeted with burden reduction strategies as part of a response to ART-R. These techniques were applied to investigate the temporal trends and spatial patterns of malaria burden in Kagera region and identify potential malaria hotspots so that policy and decision-makers can recommend specific interventions based on the true burden of malaria in response to ART-R.

In Mainland Tanzania, rich datasets have been generated in the past 10 years using different sources. To obtain estimates of and track changes in malaria prevalence in asymptomatic school children (aged 5–16 years) who currently carry the highest burden of malaria [35], nation-wide SMPS targeting public primary schools have been conducted every two years since 2015 [41]. The surveys are done with RDTs and provide information on parasite prevalence at the council/ward levels and the data has been useful in different programmatic activities including stratification of the disease burden in the country [10,42]. Furthermore, for the past ten years, Tanzania has identified pregnant women as sentinel populations which can also be used to track the trends of malaria transmission and disease burden in communities located in areas of different endemicity [40,43,44]. Since then, malaria testing by RDTs among pregnant women attending their first visit at ANC clinics in all HFs has been implemented in Mainland Tanzania and integrated into the routine HMIS [6]. This study utilized aggregated secondary data from these two groups and from patients with malaria-like symptoms presenting for clinical care to HFs to conduct the first detailed analysis of malaria burden in Kagera region where ART-R has been confirmed. It was found that over 42% of all wards in
Kagera (n = 192) and identified these wards (see supplemental Table S2), mostly from rural areas, had a high burden of malaria, with clustered spatial patterns of the disease burden for most of the years. The study also showed that malaria infections were present throughout the year in most councils/wards of the region, similar to what has been reported by previous studies [45,46]. The higher TPR in patients aged ≥5 years than in under-fives reported in this study is also comparable to what has previously been reported in Tanzania [35,47]. The findings reported here provide important evidence to support the designing and implementation of mitigation and response strategies to recently confirmed ART-R in Kagera region and Tanzania in general.

Consistent with previous studies [35], this study reported high temporal and spatial heterogeneities of malaria burden at council and ward levels within the region. Most of the wards especially those located in rural areas in most of the councils (Biharamulo DC, Ngara DC, Muleba DC, Karagwe DC, Bukoba DC, and Kyerwa DC) recorded high malaria burden for most of the years; while some wards mainly in urban and mixed/rural areas from Bukoba MC, Bukoba DC, and Missenyi DC recorded the lowest burden. This finding was consistent across years and study groups possibly due to presence of conditions which support malaria transmission in rural compared to urban areas as previously reported in studies conducted elsewhere [48-50]. Higher burden of malaria in rural areas is normally attributed to several factors including the presence of favorable conditions for malaria transmission in rural areas such as stagnant water bodies that tend to create desirable breeding sites for mosquito vectors [50]. In previous studies, it was highlighted that many rural areas are also characterized by lower socio-economic status which limits the capacity of the people to afford
malaria prevention, control and case management expenses [35]. Poor people mainly from rural areas also lack the knowledge of malaria, its prevention and control and tend to have beliefs and attitudes that have been shown to cause low utilization of malaria control/prevention and curative services [51]. It has also been shown that poor people who mainly reside in rural areas normally live in poorly constructed houses which support higher mosquito biting rates and transmission of malaria [35, 52-54]. In addition, the high burden in these areas could be a result of larger populations [31], which has been reported to increase the interaction between individuals and infected mosquitoes [55]. To reduce the high burden in these areas, various interventions such as distribution of insecticide-treated nets (ITNs), house improvement strategies, bio-larviciding in areas that are surrounded by water bodies, and behavioral change and communication strategies need to be implemented, as these have been reported to significantly reduce malaria transmission and the burden of disease [56-58]. On the other hand the low burden of malaria in urban areas observed in this study is consistent with previous studies in Tanzania and elsewhere [41,48-50]. Malaria transmission and disease burden have been reported to be low in urban areas because of the high socio-economic status of urban population, and availability and access to good healthcare services, the ability to afford the cost of malaria prevention, and higher access to malaria treatment and control measures when compared to rural areas [50,53].

A significant clustered spatial pattern of malaria burden reported in under-fives, patients aged ≥5 years and pregnant women within the region, aligns with other studies conducted elsewhere, indicating that nearby places tend to have similar malaria burden, either with high-high or low-low burden of the disease [38,39]. The reports of areas with persistently high
malaria burden in the southern, central, and north-western parts of the region as reported in this study may be attributed to the presence of similar risk factors such as environmental conditions (humidity, temperature, rainfall, topography), socio-economic status, housing conditions, healthcare infrastructures, and the presence of suitable mosquito breeding sites [11,12,35]. As a result, this tends to create foci of persistent malaria transmission around that area [38,39]. The current study also found that most areas with low malaria burden were located in the north-eastern part of the region, especially wards from Bukoba MC and Bukoba DC, consistent with previous studies that were conducted in Tanzania [10]. Hence, future interventions in the region to reduce the local disease burden need to be designed based on these results to target the areas which have been identified to have persistently high burden of malaria.

Malaria prevalence in the region was high in school children compared to pregnant women, reaching as high as 78.4% in some wards. This observation has consistently been reported in other studies that were conducted in different settings [41,59,60]. In previous studies, this observation was associated with the fact that school children spend most of their time in the evening playing outside, which tends to increase their chances of mosquito bites and hence increase the risk of malaria infections [61-63]. To reduce malaria transmission and accelerate elimination efforts in the country [64], various initiatives have been undertaken by NMCP and other stakeholders to protect this risky group; including the distribution of ITNs through different channels like school net program [6,65]. However, the prevalence of malaria infections in this asymptomatic group is still high [35,41]. Future studies are needed to explore more about this recurring observation in the region as well as the whole country and whether this will support the spread of the reported ART-R. On the other hand, in many malaria-
endemic countries like Tanzania, pregnant women are normally given two or more doses of antimalarial SP as well as ITNs during their first ANC visits in HFs, which might have significantly contributed to reducing the risk of malaria infections in this vulnerable group [2].

Malaria case reporting is critical for understanding the pattern of the disease's burden and distribution in areas where it is endemic. In addition, the completeness of these reports for all the suspected, confirmed, and treated malaria cases can aid in disease surveillance, and designing and implementing effective control measures [2]. In this study, about 88% of the HFs in Kagera region produced more than 90% of the expected reports of malaria-like cases for the years covered by the study. Using these reports from HFs in Kagera region, it was shown that the overall malaria TPR at ward level was high (≥30%) for both under-fives and ≥5 years with minor differences. These findings are comparable to what has been reported by previous studies in Tanzania and elsewhere [35,47,66]. In the current study, the TPR in both groups showed an increasing trend in 2023 with the rate being slightly higher in ≥5 years (>10%) than in under-fives (<10%). This change in epidemiological pattern may be attributed to previous efforts including scaled-up control interventions that have been undertaken by NMCP and directed towards vulnerable groups such as under-fives and pregnant women [2,47]. This study also showed an increasing trend of malaria prevalence in pregnant women attending first ANC clinics in the same year, the rate being higher than 14%. The increasing trend in both prevalence (pregnant women) and TPR (both under-fives and ≥5 years) reported in this study needs an in-depth analysis to uncover possible reasons for these changes in the region so that appropriate measures can be planned, now that ART-R has been confirmed.
It is well known that under-fives are the group that is most affected by malaria in areas where it is endemic [1],[49,52]. The high risk of malaria infections in under-fives is a result of their weaker immune systems due to lack of repeated exposure to mosquito bites, which tends to support the development of some level of partial immunity against malaria infections especially in high transmission areas [67]. Due to this fact, several malaria control measures including seasonal malaria chemoprevention, distribution of ITNs, and intermittent preventive therapies for infants (IPTi) have been designed and directed towards this risk group [1]. This has led to the shift of malaria infections to individuals aged ≥5 years, with the peak of malaria prevalence reported in children aged between 5 - 15 years [47]. The reasons for this could include various efforts that have been undertaken by the government through NMCP to implement effective malaria interventions in vulnerable groups like under-fives while these interventions may not have been widely considered in older age groups [2,47,66], resulting in high prevalence as reported in this study (Figures 3 and 8(a)). Therefore, it is recommended that for any future interventions that are to be planned and implemented in the region, they should target both age groups to reduce and eliminate malaria cases in the region and the entire country.

Malaria transmission in Kagera region was observed throughout the year with some of the months recording high values of TPR compared to others (Figure 3). This indicates that malaria transmission in the region was not seasonal; an observation that can signify the presence of other factors like population movements, changes in malaria control, or unexpected increases/decreases in breeding sites or mosquito populations [35,66,68]. Causal
effects for these factors are in general difficult to establish, future studies are needed to explore and uncover the key drivers of persistent malaria transmission in this malaria-endemic region in the country.

The findings presented here had some limitations that may be addressed in future studies. Since this study included HFs with a reporting rate of 50% or more, future studies may consider including all HFs during analysis and use different geostatistical methods to account for monthly missing data, differences in utilization of HFs, treatment-seeking behaviors, and distance to HFs. In addition, future studies may include population at risk and use incidence to track changes in the disease burden within the region.

The findings from this study showed that malaria infections were higher in most of the wards from rural areas compared to urban areas, among school children compared to pregnant women, and among patients aged ≥5 years than in under-fives. More studies are needed to further assess the observed heterogeneity of malaria burden especially in areas with high burden and identify key drivers of malaria transmission in the region at more granular levels (villages and households) and whether this will support the spread of the reported artemisinin-resistant parasites within the region and to other areas. Future studies also need to be conducted in some of the areas at the border with Uganda and Rwanda where artemisinin-resistant parasites are known to circulate [18-20]. These areas may be at risk of unstable transmission due to the importation of parasites which might be potentially caused by high levels of human movement and socio-economic activities [32]. Prioritization of Kagera region
for additional malaria control is specifically motivated by the currently circulating *P. falciparum* K13 561H genotypes in the region [21]. As early and preemptive action is preferred to late response [69], identifying specific resistance containment strategies [70] for 2024 and 2025 – in addition to general malaria control strategies – will be critical for slowing down the spread of artemisinin-resistant parasites from Kagera region to other parts of Tanzania.

Conclusion

There was a high malaria burden with temporal and spatial heterogeneity at district and ward levels in Kagera region. A high burden was consistently observed in 42.6% of the wards in the region, school-children, and patients aged ≥5 years with minor differences. These findings are critical for NMCP and other stakeholders as they plan appropriate mitigation and response strategies to contain and prevent the spread and consequences of ART-R within the region and the entire country.

Abbreviations:

- **ACTs**: Artemisinin-based combination therapies
- **ANC**: Antenatal Care
- **ART-R**: Artemisinin partial resistance
- **CL**: Confidence Level
- **CQ**: Chloroquine
- **DC**: District Council
- **DHIS2**: District Health Information System 2
Declarations

Ethics approval and consent to participate

No ethics approval was required as the study utilized secondary data.

Availability of data and materials

Data used in this study are not publicly available and were obtained with a request from MoH through NMCP. Restrictions apply to the availability of this data and permission can be
obtained with a reasonable request from the Permanent Secretary - Ministry of Health of Mainland Tanzania.

Supplementary information

Additional file 1.

Additional tables, texts, and figures

Additional file 2.

Supplemental tables and figures

Competing interests

Authors declare that they have no competing interests

Funding

The National Institute for Medical Research (NIMR) under the MSMT project provided partial financial support during this study.

Authors’ contributions

PAP and DSI designed the study, and DAP conducted initial analysis under the supervision of DSI and NS. DSI, NS, and MFB were involved in the interpretation of the results. DAP and MFB performed final analysis of the data under the guidance of DSI and DAP drafted the initial manuscript. All co-authors contributed to the revision of the initial draft and subsequent versions of the manuscript. All authors read and approved the final manuscript.

Acknowledgment

The authors would like to thank the MoH through NMCP, and all members of the Department of Mathematics, University of Dar es Salaam, and MSMT project team for their participation and invaluable support during the implementation of this study.
References

Malaria Infections among Schoolchildren, Tanzania1. *Emerging infectious diseases, 29*(6), 1143–1153. https://doi.org/10.3201/eid2906.221016

32. KAGERA. Kagera region profile [Internet]. 2022. Available from: https://kagera.go.tz/

34. Mgode GF, Japhary MM, Mhamphi GG, Kiwelu I, Athaide I, Machang’u RS. Leptospirosis in sugarcane plantation and fishing communities in Kagera northwestern

35. High prevalence and risk of malaria among asymptomatic individuals from villages with high rates of artemisinin partial resistance in Kyerwa district, North-western Tanzania, medRxiv, 2023-10 Available from: https://doi.org/10.1101/2023.10.05.23296564

37. Microsoft Excel 2013 (Microsoft Corporation, Seattle, USA) Office 2013 | Microsoft Office

