A comprehensive bioinformatics analysis to identify potential prognostic biomarkers among TNFSF superfamily in breast cancer

Abolfazl Moradi¹*, Farinaz Vafadar Esfahani ²¶, Ali Mohammadian ³

1. Member of R&D Group, Behyaar Sanaat Sepahan Company, Isfahan, Iran. ORCID: 0000-0002-7352-7546. Mail: moradiabolfazl1993@gmail.com

2. Nour Danesh Institute of Higher Education, Meymeh, Isfahan, Iran. ORCID: 0000-0003-2045-2808. Mail: fz21654@gmail.com

3. Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, 49767, Iran. Mail: mohammadian02@gmail.com

* Corresponding author
moradiabolfazl1993@gmail.com

¶ These authors contributed equally to this work.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Breast cancer (BC) is one of most important mortality factors among women therefore to find important genes in BC can help early diagnosis, treatment or prevention. TNFSF or tumor necrosis factor Superfamily have an important role in various cancers. In BC, some of studies have found dual roles for these genes. In this research, we conducted a comprehensive and detailed bioinformatics study on this family. UALCAN, TNMplot, UCSC Xena, GEPIA, The Human Protein Atlas, Kaplan–Meier plotter, bc-GenExMiner, cBioPortal, STRING, GeneMANIA, Enrichr, TIMER and shinyDepMap were used for analysis. We found that these genes play their role through the immune system and the high expression of eight FASLG, LTB, TNF, TNFSF8, TNFSF10, TNFSF11, TNFSF12, TNFSF13 genes were positively associated with OS and RFS. Overall, our data showed that these genes can be considered as prognostic biomarkers. Further, our results suggest that this family has anti-tumor activity.

1. Introduction

Globally, Breast cancer (BC) is the most commonly diagnosed cancer with approximately 2.3 million new cases in 2020, accounting for 11.7% of all cancer cases(1). BC is an uncontrolled proliferation of breast cells, beginning in different areas of the breast and leading to malignancy(2). Based on receptor status and the gene expression pattern, BC is divided into four molecular subtypes including, Luminal A, Luminal B, human epidermal growth factor 2 (HER2), and Triple-negative breast cancer (TNBC).

Immunotherapy is one of the most exciting treatment strategies for breast cancer(3). To date, the US Food and Drug Administration has approved several immune-targeted therapies(4,5). Immune checkpoint inhibitors (ICIs), including inhibitors of cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), programmed death-1 (PD1), and programmed death ligand-1 (PD-L1) have demonstrated a positive effect in the treatment of some cancers(6).

Although the methods of treatment and early detection of breast cancer have progressed, the prognosis of some patients remains poor due to metastasis and resistance to chemotherapy. Therefore, better therapeutic and prognostic biomarkers should be identified in breast cancer(7,8).

Tumor necrosis factor superfamily (TNFSF) has 19 members. The members of this family are expressed by immune cells and regulate the immune response and inflammation, proliferation, differentiation and apoptosis(9,10). During tumor development, inflammation in the tumor microenvironment (TME) causes tumor initiation, promotion, and progression(11).
In 1975 Carols discovered that TNF can inhibit cancer (12). Also, members of the TNFSF superfamily show pro-inflammatory activities by activating the NF-κB signaling pathway. Apart from these, it has been seen that they can activate apoptosis pathways and cause cell death. For example, some studies show that TNFSFs are tumor suppressor but others demonstrate they promote cancer (13).

APRIL (TNFSF13) has been found to be expressed in breast cancer cells, and Silencing experiments decreased cell proliferation, suggesting that APRIL is a critical factor for breast tumor growth (14). However TNFSF10, TNFSF14 and TNFSF15 directly play a role in apoptosis (15). Some members of this family have been identified in lung cancer and kidney cancer (16, 17).

According to different studies, this family have variety of roles (13). Therefore, we decided to investigate the role and activity of TNFSF family members comprehensively and more precisely in breast cancer.

2. Results

2.1 The mRNA expression analysis of TNFSF family in BC patients.

The mRNA expression levels of TNFSF between primary tumor and normal tissues in BC patients were assessed using UALCAN on TCGA data. The mRNA expression levels of, FASLG, LTA, LTB, TNF, TNFSF4, TNFSF8, TNFSF13B, TNFSF13 were found to be elevated in primary tumors compared to normal specimens, while EDA, TNFSF12 were significantly downregulated in tumor samples (Fig 1). Also, the results showed that TNFSF10 has the highest level of expression in breast cancer (Fig 2).

2.2 Differential gene expression analysis in Tumor, and Metastatic tissue.

Using the TNMplot site, the expression level of TNFSF superfamily genes was obtained, which genes EDA, CD40LG, LTA, CD70, LTB, TNFSF4, TNFSF10, TNFSF11, TNFSF12, TNFSF13B, TNFSF14, TNFSF15 had a significant expression difference (P.value < 0.05). The analysis of FASLG, TNF, TNFSF8, TNFSF9, TNFSF13, TNFSF18 genes did not show significant expression differences (P.value > 0.05), (fig 3).
2.3 TNFSFs Protein expression pattern analysis
In this study, we analyzed the expression pattern of proteins with the HPA database. FASLG, CD40LG, LTB proteins are not expressed in either normal or cancer tissues. Also, the expression of LTA, TNF, TNFSF4 and TNFSF12 proteins were not observed in normal tissue, but they were detected by antibodies in cancer tissue. Although TNFSF10, TNFSF13 and TNFSF13B proteins were detected in normal tissue, they were present at higher levels in cancer tissue, and TNFSF11, TNFSF15 proteins in both normal tissue and cancer tissue did not show difference in expression (fig 4).

2.4 Association of TNFSFs mRNA levels with clinicopathological features in BC patients.
By examining the results obtained from bC-genexminer (SBR), we found that the expression of EDA, TNFSF10, TNFSF11, TNFSF12 and TNFSF13 decreased with tumor progression and the gene TNFSF18 remained unchanged, while other family members showed an increase in expression with tumor progression (P < 0.05) (fig 5). The relationship between the expression TNFSFs and age showed that in younger patients (age≤51), TNFSF11 and TNFSF15 had an increased expression, while in older patients (age>51) TNFSF10 and TNFSF13 an increase in expression was observed (P < 0.05). In positive lymph nodes, the expression level of ADE was higher, but in negative lymph nodes, the expression level of LTB, TNF, TNFSF14 was higher (P < 0.05). By comparing the results of ER+/ER- and PR+/PR-, in ER-/PR-the expression of CD70, FASLG, LTA, LTB, TNF, TNFSF9, TNFSF13B, TNFSF14, TNFSF15 and in PR+/ER+, TNFSF4, TNFSF10, TNFSF12, TNFSF13 were higher. Among common ER+/ER- and PR+/PR- genes, CD40LG showed lower expression in ER+, while higher expression was observed for this gene in PR+. TNFSF8 was also higher expressed only in PR+ group(P < 0.05). In HER2, only the expression of EDA, TNF, TNFSF12, TNFSF18, TNFSF4 and TNFSF10 were significant (P < 0.05). The results indicate that in HER2 the expression of EDA, TNF, TNFSF12, TNFSF18 are higher than HER2+, but the TNFSF4 and TNFSF10 are less expressed. Similar results were observed in TNBC and Basal-like subtypes. Both models have a significant association with higher expression CD40LG, CD70, FASLG, CD40LG, CD70, FASLG,
111 LTA, LTB, TNF, TNFSF9, TNFSF13B, TNFSF14, TNFSF15 and lower expression TNFSF4, TNFSF10, TNFSF12, TNFSF13 (P < 0.05). All the results are presented in the table 1.

113 Table 1: Association of TNFSFs mRNA levels with clinicopathological features in BC patients.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Age</th>
<th>Nodal status</th>
<th>ER(IHC)</th>
<th>PR(IHC)</th>
<th>HER2(IHC)</th>
<th>TNBC</th>
<th>Basal-like BC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤51</td>
<td>>51</td>
<td>(-)</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
<td>(-)</td>
</tr>
<tr>
<td>No.</td>
<td>267</td>
<td>476</td>
<td>332</td>
<td>35</td>
<td>8</td>
<td>187</td>
<td>530</td>
</tr>
<tr>
<td>CD40LG</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.064</td>
<td>0.99</td>
<td>0.0019</td>
<td>0.0455</td>
<td>0.244</td>
<td>2</td>
<td>0.0123</td>
</tr>
<tr>
<td>CD70</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.576</td>
<td>0.06</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.314</td>
<td>5</td>
<td>0.0001</td>
</tr>
<tr>
<td>EDA</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.839</td>
<td>0.04</td>
<td>0.1625</td>
<td>0.6614</td>
<td>0.000</td>
<td>1</td>
<td>0.4528</td>
</tr>
<tr>
<td>FASLG</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.825</td>
<td>0.21</td>
<td>0.0001</td>
<td>0.0137</td>
<td>0.738</td>
<td>0</td>
<td>0.0010</td>
</tr>
<tr>
<td>LTA</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.322</td>
<td>0.07</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.516</td>
<td>1</td>
<td>0.0001</td>
</tr>
<tr>
<td>LTB</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.139</td>
<td>0.04</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.103</td>
<td>4</td>
<td>0.0001</td>
</tr>
<tr>
<td>TNF</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.343</td>
<td>0.00</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.003</td>
<td>4</td>
<td>0.0001</td>
</tr>
<tr>
<td>TNFSF4</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.840</td>
<td>0.09</td>
<td>0.0011</td>
<td>0.0001</td>
<td>0.000</td>
<td>8</td>
<td>0.0006</td>
</tr>
<tr>
<td>TNFSF8</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.917</td>
<td>0.07</td>
<td>0.3911</td>
<td>0.0240</td>
<td>0.211</td>
<td>2</td>
<td>0.5226</td>
</tr>
<tr>
<td>TNFSF9</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.657</td>
<td>0.07</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.059</td>
<td>7</td>
<td>0.0003</td>
</tr>
<tr>
<td>TNFSF10</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.003</td>
<td>0.05</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.007</td>
<td>5</td>
<td>0.0007</td>
</tr>
<tr>
<td>TNFSF11</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.000</td>
<td>0.11</td>
<td>0.6868</td>
<td>0.1989</td>
<td>0.368</td>
<td>9</td>
<td>0.9446</td>
</tr>
<tr>
<td>TNFSF12</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0.256</td>
<td>0.17</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0003</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>TNFSF13</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.004</td>
<td>0.21</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.127</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>TNFSF13B</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.913</td>
<td>0.15</td>
<td>0.0001</td>
<td>0.0006</td>
<td>0.664</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>TNFSF14</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.460</td>
<td>0.02</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.209</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>TNFSF15</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.001</td>
<td>0.15</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.601</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>TNFSF18</td>
<td>mRNA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-value</td>
<td>0.077</td>
<td>0.50</td>
<td>0.1489</td>
<td>0.8882</td>
<td>0.035</td>
<td>0.4528</td>
<td>0.2337</td>
</tr>
</tbody>
</table>

2.5 Genomic alterations and GO enrichment analysis of TNFSF members in BC patients.

The data extracted from cBioprotal database and 1180 cancer samples (TCGA, Firehose Legacy) showed that in breast cancer genes TNF (4%), LTA (4%), LTB (3%), TNFSF4 (12%), CD40LG (3%), FASLG (11%), CD70 (3%), TNFSF8 (3%), TNSF9 (3%), TNFSF10 (7%), TNFSF11 (4%), TNFSF12 (5%), TNFSF13 (1%), TNFSF13B (4%), TNFSF14 (3%), TNFSF15 (3%), TNFSF18 (11%), EDA (4%) were altered (fig 6A). In addition, by using the STRING, GeneMANIA database and Cytoscape software, the protein-protein interaction network and Interaction at the gene level of the TNFSF superfamily members and the top 50 frequently altered neighbor genes co-expressed genes were mapped (fig 6 D,F). Genomic alterations of the top 50 frequently co-altered genes with TNFSF Superfamily members in BC patients are presented in S 1 Table. In the next step, the function and pathway of the respiratory superfamily proteins and the altered neighbor genes were investigated. According to the results obtained from Enrichr, the most important function of members of this family with altered neighbor genes is tumor necrosis factor receptor superfamily binding (fig 6C). In KEGG pathway analysis, we found that TNFSFs and their neighbor genes were most commonly enriched in Cytokine-cytokine receptor interaction (Fig 6B).
2.6 Prediction of transcription factors (TFs) and miRNA related to TNFSF superfamily

Transcription factors and microarrays regulating TNFSF genes were identified using ChEA and miRTarBase databases, and the obtained results are reported in tables 2 and 3.

Table 2: transcription factors (TFs) related to TNFSF superfamily

<table>
<thead>
<tr>
<th>Term</th>
<th>P-value</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELA</td>
<td>7.35E-09</td>
<td>CD40LG, CD70, TNFSF15, TNFSF13, LTA, TNFSF10, FASLG, LTB, TNF, TNFSF13B</td>
</tr>
<tr>
<td>STAT4</td>
<td>1.30E-06</td>
<td>CD40LG, TNFSF14, LTA, TNFSF10, TNFSF11, TNFSF8, LTB, TNF</td>
</tr>
<tr>
<td>RELB</td>
<td>2.48E-04</td>
<td>TNFSF14, TNFSF9, TNF</td>
</tr>
<tr>
<td>POU5F1</td>
<td>6.85E-04</td>
<td>TNFSF12, TNFSF13, LTA, TNFSF11, LTB</td>
</tr>
<tr>
<td>STAT3</td>
<td>7.12E-04</td>
<td>CD40LG, TNFSF15, TNFSF4, LTA, TNFSF8</td>
</tr>
<tr>
<td>RUNX</td>
<td>9.27E-04</td>
<td>TNFSF18, CD40LG, FASLG, TNFSF8</td>
</tr>
<tr>
<td>TP63</td>
<td>0.002356405</td>
<td>TNFSF18, TNFSF14, CD70, TNFSF15, TNFSF10, TNFSF11, FASLG, TNFSF8</td>
</tr>
<tr>
<td>SOX11</td>
<td>0.004392584</td>
<td>TNFSF14, TNFSF12, TNFSF13, LTA</td>
</tr>
<tr>
<td>SRY</td>
<td>0.00710859</td>
<td>LTA, TNF</td>
</tr>
<tr>
<td>FOXA1</td>
<td>0.007718892</td>
<td>TNFSF18, TNFSF15, TNFSF10</td>
</tr>
</tbody>
</table>

Table 3: miRNA related to TNFSF superfamily

<table>
<thead>
<tr>
<th>Term</th>
<th>P-value</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsa-miR-34a-5p</td>
<td>3.80E-04</td>
<td>CD40LG, CD70, LTA, FASLG, TNF</td>
</tr>
<tr>
<td>hsa-miR-6510-5p</td>
<td>0.004722</td>
<td>TNFSF9, TNFSF8</td>
</tr>
<tr>
<td>hsa-miR-4480</td>
<td>0.005553</td>
<td>TNFSF14, TNFSF9</td>
</tr>
<tr>
<td>hsa-miR-3619-5p</td>
<td>0.007901</td>
<td>TNFSF15, TNFSF9</td>
</tr>
<tr>
<td>hsa-miR-761</td>
<td>0.008106</td>
<td>TNFSF15, TNFSF9</td>
</tr>
<tr>
<td>mmu-miR-296-3p</td>
<td>0.01075</td>
<td>TNF</td>
</tr>
<tr>
<td>hsa-miR-9500</td>
<td>0.013963</td>
<td>CD40LG, TNFSF8</td>
</tr>
<tr>
<td>hsa-miR-202-3p</td>
<td>0.014493</td>
<td>TNFSF9, TNFSF13B</td>
</tr>
<tr>
<td>hsa-miR-214-3p</td>
<td>0.014493</td>
<td>TNFSF15, TNFSF9</td>
</tr>
<tr>
<td>mmu-miR-212-3p</td>
<td>0.016083</td>
<td>TNFSF10</td>
</tr>
</tbody>
</table>
2.7 The prognostic value of TNFSF in patients with BC.

The Kaplan–Meier curves revealed that among TNFSFs, high mRNA expression of FASLG, LTB, TNF, TNFSF8, TNFSF10, TNFSF11, TNFSF12, TNFSF13 were significantly associated with better OS (P < 0.05) (fig 7).

In addition, regarding RFS, BC patients with increased mRNA levels of CD40LG, EDA, FASLG, LTA, LTB, TNF, TNFDF8, TNFDF9, TNFDF10, TNFDF11, TNFDF12, TNFDF13, TNFDF14, TNFDF15, TNFDF18 were significantly correlated with favorable RFS (P < 0.05) (fig 8). On the other hand, elevated expression of TNFSF4, CD70, TNFSF13B were remarkably correlated with unfavorable RFS (P < 0.05). Curves of chemokines in which mRNA expression levels are significantly associated with OS and RFS (fig 8).

Considering that FASLG, LTB, TNF, TNFSF8, TNFSF10, TNFSF11, TNFSF12, TNFSF13 genes were correlated with favorable both OS and RFS, their correlation with OS in breast cancer subtypes (fig 9) and also in different grades (fig 10) was checked. The results showed that the high expression of TNFSF11 gene in luminal A has a favorable correlation with OS (P < 0.05), but patients with luminal B and lower expression of TNFSF11 had better survival. The results of TNFSF8 analysis in breast cancer subgroup showed a significant correlation with luminal A, luminal B and Basal-Like, and the group of patients with higher expression had better OS (P < 0.05). For TNFSF12, only one significant correlation was observed in breast cancer subgroups, and its high expression showed a favorable correlation with OS in patients with HER2 (P < 0.05). Patients with lower expression of LTB, TNFSF8, TNFSF10, TNFSF13, FASLG genes all had shorter survival.

Survival analysis based on different grades of breast cancer showed that LTB only in grade 3, TNFSF8 in grade 1 and TNF had a significant correlation with OS in all disease grade (P < 0.05).

Among these three genes, the lower expression of TNF in grade 1 had a favorable correlation with OS, but in grades 2 and 3 it is completely opposite.
2.8 The prognostic value of TNFSF in patients with metastases.

Survival analysis and data extracted from UCSC Xena (Breast Cancer (Vijver 2002) didn’t show any significant correlation between the expression of TNFSF (except TNFSF14) in metastatic tissue and survival of patients. TNFSF14 had a P value less than 0.05. (Fig 11).

2.9 Correlation between TNFSFs and immune cell infiltration in BC.

The results obtained from the TIMER database prove that apart from TNF with macrophage infiltration (P.value = 0.591), EDA with B cell infiltration (P.value = 0.079), TNFSF13 with CD8+ T cell infiltration (P.value = 0.0601) and TNFSF12 with B cell and CD8+ T cell infiltration (P.value = 0.208) the expression of the genes TNFSFs are positively correlated with the infiltration of immune cells (B cell, CD8+ T cell, CD4+ T cell, macrophage cells, neutrophil cells, and dendritic cells) (all with P<0.05) (S 2 and 3 Figs). Also, the table 4 shows the expression of TNFSFs was mostly correlated with high infiltration abundances of which of immune cells.

Table 4: Correlation between TNFSFs and immune cell infiltration in BC.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>B cell</th>
<th>CD8+ T cell</th>
<th>CD4+ T cell</th>
<th>Macrophage cells</th>
<th>Neutrophil cells</th>
<th>Dendritic cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.value</td>
<td>---</td>
<td>7.03e-14</td>
<td>1.6e-96</td>
<td>1.9e-45</td>
<td>2.9e-35</td>
<td>1.4e-127</td>
</tr>
<tr>
<td>P.cor</td>
<td>0.237</td>
<td>0.604</td>
<td>0.45</td>
<td>0.387</td>
<td>0.675</td>
<td></td>
</tr>
</tbody>
</table>
DepMap analysis confirmed none of TNFSFs weren’t essential for breast cancer, even these genes are not suitable targets for drugs. According to the obtained results and Fig 12, even the efficiency and selectivity factor have not reached the threshold of the software. Only in one case, TNFS10, more selectivity and efficiency were observed, but the analysis states that this gene is essential for kidney cancer than breast cancer.

3. Discussion

Considerable data have clearly shown that the TNFSF family can promote cancer development, while in some cases the opposite result has been obtained. In the current study, we applied a bioinformatic approach to elucidate the prognostic values of the whole TNFSF family in BC. At first, the We found that 10 genes (EDA, FASLG, LTA, LTB, TNF, TNFSF4, TNFSF8, TNFSF12, TNFSF13, TNFSF13B) are differently expressed in TCGA breast cancer data. The expression of five these 10 genes were also assessed in different SBR stages. Five genes (EDA, TNFSF10/11/12/13), were found to decrease with...
tumor progression. TNFSF18 expression was constant during tumor progression. The other genes showed increased expression. In addition, according to the obtained results from TNMplot, CD40LG, LTA, CD70, LTB, TNFSF4, TNFSF10, TNFSF11, TNFSF12, TNFSF13B, TNFSF14, TNFSF15 genes were down-regulated in metastatic tissue relative to tumor cells. The rest of the genes did not show significant difference. The most genetic alternation among TNFSF family members was amplification.

Survival analysis and Kaplan-meier plotter confirmed prognostic value of LTB, FASLG, TNF, TNFSF8/10/11/12/13. Higher expression of these genes was associated with both longer overall survival and recurrence-free survival. Although CD40LG, LTA, TNFSF9/14/15/18 genes had weak association with OS but high expression of those genes had favorable correlation with RFS. The prognostic value of the TNFSFs was significant just for TNFSF14 in metastatic tissue that patients with lower expression showed better survival.

The results obtained from bc-GenExMiner v4.8 showed that TNF gene had a better correlation with nodal status', PR', ER', HER2', TNBC and Basal-like. In addition, higher expression of TNF was observed in TNBC, Basal-Like, nodal status', PR', ER', HER2'. Our results confirmed that the expression of this gene increases with progression of cancer. Immunohistochemistry also shows an increase in expression in cancer cells. Better OS by increasing the expression of this gene states that TNF plays an important role in suppressing cancer or tumor, although recent researches have envisioned a dual role for this gene. In 1975, it was shown that TNF is a necrosis factor and destructs tumor cells indirect (18,19). It has been found that administration of TNF may induce apoptosis in malignant cells(19,20). In addition, it has the ability to cause inflammation(21) and tumor growth(22–24) but in certain cases it induces apoptosis. TNF performs different activities depending on the specific cell. For example, this gene stimulates the proliferation of T47D(25,26) and it has apoptotic(27–29) and anti-mitogenic(30,31) roles for MCF7. For this reason, we tried to investigate the expression level of this gene in metastatic tissue compared to tumor tissue and the correlation the expression of TNF with patient survival in metastatic tissues that our data didn’t show any significant difference in expression compared to tumor tissue and metastasis. Also, the expression of this gene had no significant correlation with OS in metastatic tissues.

According to the results extracted from the SBR analysis, the expression of TNF increases with the progress of the tumor, therefore, survival analysis was conducted in different grades and subtypes of breast cancer to understand function of TNF. We found out the expression of TNF didn’t had any correlation with OS in none of subtype of breast cancer but there was a correlation with OS in grade 1 where the patients with lower expression had better OS while everything was opposite in other grads. It is good to know, the result of DepMap stats that TNF is not an essential gene for breast cancer and even It
has no medicinal value in different cancer so it seems that TNF exerts its effect on breast cancer through immune cells.

Tumor cells in the tumor microenvironment (TME) can directly invade the surrounding tissues or metastasize through blood and lymphatic vessels, and infiltrated cells can release cytokines, cytokine receptors, and other factors that directly or indirectly inhibit and promote tumor progression. Tumor cells progress, induce the immune response(32). In this study, we understood that TNF is related to the infiltration of immune cells into the tumor microenvironment, especially neutrophils (P.val = 2.9e-35, P.cor = 0.387). It has even been stated that this influence can contribute to the development of cancer and reduce survival of patients(33,34) so it should be studied how does cancer cells use immune cells because DepMap analysis introduces TNF as an unnecessary gene for breast cancer.

FASLG starts apoptosis by binding to their receptor (FAS) (35) as a result FASLG consider as tumor suppressor in different cancers by initiating and inducing apoptosis signaling(35–37). Although the increased expression of FASLG was not observed in the immunohistochemical data, these results are consistent with the data obtained from UALCAN and survival analysis. In addition, Clinical-pathological features and SBR results showed increased expression of FASLG and also, we found out it is correlated with TNBC, and survival of Basal-Like patients. Survival analysis confirmed the prognostic value of this gene and showed increased expression of FASLG are correlated with favorable OS and RFS. However, experiments have proven that this gene is involved in development of cancer. FASLG gene expression is increased in breast cancer. Also, this increasing causes apoptosis in T cells carrying Fas, which provides an advantage for cancer cells (38,39). Therefore, the survival analysis in different cancer grades and metastatic tissues was investigated. No correlation was found. Moreover, no significant expression difference was observed in metastatic tissues compared to tumor and normal tissues. We came to the conclusion that FASLG gene expression is related to infiltration of immune cells, especially dendritic cells (P.val = 3.5e-119, P.cor = 0.658). Dendritic cells infiltrating the tumor microenvironment have a good correlation with PFS and these cells initiate the immune response in breast cancer(40). Other studies confirm this result, for example, Coventry and Morton observed greater survival in breast cancer patients with a higher density of dendritic cells(41). It turns out this gene also plays its role in breast cancer through the immune system because DepMap does not consider this gene necessary for breast cancer.

TNFSF10, the other member of TNFSFs which is a Apoptosis inducer factor in cancer cells(42,43). TNFSF10 can destroy the cell components and cause the process of apoptosis by binding to its receptor and by recruiting the adapter molecule FADD and activating caspases. There are some evidence that show the anti-tumor role this gene in cancer cells and microenvironment in addition not only this gene regulate apoptosis but also it has on effect on proliferation of immune cells and It stimulates the growth of M2
There weren’t any significant changes in UALCANN data but increased expression of TNFSF10 was observed in obtained data from Human Protein Atlas database and survival analysis expresses that higher level of TNFSF10 mRNA has better correlation with survival of patients. We observed a significant correlation between expression of this gene and infiltration of immune cells, especially neutrophils (P.val = 5.9e13, P.cor = 0.231) in TIMER result. According to explanations for TNF, Neutrophils has a role in the progression of cancer in the tumor microenvironment and it seems TNFSF10 do its tasks in breast cancer through the immune system because DepMap does not consider this gene necessary for breast cancer. We found that as the tumor progresses, the expression of this gene decreases in cancer cells. Our results are the same as those obtained from the study on uveal melanoma. The expression of this gene decreases with the progression of metastasis and has been introduced as a tumor suppressor gene (45). These results are completely consistent with the data extracted from TNMplot. We observed that metastatic tissues have lower expression than tumor tissues in breast cancer. At the same time, its Kaplan-Meier diagram didn’t show a significant correlation in metastatic tissues and disease grades.

TNFSF11, known as RANKL, is a ligand for the RANK receptor. This ligand plays an important role in the activation of factor-κB (RANK) pathway and breast growth, however, the results show that targeting this signal can prevent breast cancer (46). In general, mammary tumors are reduced by disrupting or inhibiting this pathway (47–49). TNFSF11 plays a very important role in the development of breast cancer by activating NF-κB and cyclin D1 cascades and downstream pathways (46,49) and studies have shown that increased expression of this gene has a positive correlation with development of breast cancer (50). The increased expression of TNFSF11 was not confirmed by Immunohistochemistry, but it was observed in the UALCANN results. We also found that the gene expression changes of TNFSF11 in TNBC and Basal-Like are not significant but its high expression in luminal A and its lower expression in luminal B have a better OS. In general, the high expression of this gene is correlated with better OS and RFS. These results are inconsistent with previous trials, and the clinical data extracted from the survival analysis contradict previous research. However, no study was found to show that TNFSF11 suppresses cancer cells in breast cancer. So, we were encouraged to investigate the expression level of this gene in metastatic tissues and compare its difference with tumor and healthy tissue. We found that the gene expression level in metastatic tissues was lower than in tumor tissue, and the SBR results also confirmed this. However, no significant was observed between gene expression and survival of patients in metastatic tissue even in grades of disease. Looking at the results of the TIMER database, we found that this gene has a significant correlation with the of immune cells, especially CD8+ (P.val = 3.8e-17, P.cor = 0.265). CD8+ can kill tumor cells in various types of cancers through several mechanisms (51) and it has been proven that the infiltration of this cell into the tumor environments in breast cancer is correlated with better OS.
Therefore, according to the results of DepMap, we can say that this gene exerts its effects on breast cancer through immune cells because it is not considered an essential gene for breast cancer.

TNFSF12 is another member of the superfamily of TNFSFs known as TWEAK or CD255. In our studies, it was found that the low expression of this gene has a weak correlation with the poor survival of patients. Therefore, the expression of this gene helps the survival of patients, which is similar to the results obtained by Dan Tao(53). As a tumor necrosis factor, TNFSF12 can induce multiple cell death pathways, including caspase-dependent apoptosis, cathepsin B-dependent necrosis, and TNF-alpha-mediated cell death(54,55). However, some studies have reported that TNFSF12 plays an angiogenic role and stimulates tumor growth(56–58). Therefore, its protective role in breast cancer has been confirmed and it has different functions in different cancers. Ying-Wei Zheng showed that TNFSF12 gene expression is higher in cancer cells than in normal cells(59), which is confirmed by the results obtained by immunohistochemical data in the present study. But UALCAN and clinical-pathological data show the complete opposite of this issue. So that the higher expression of TNFSF12 has a negative correlation with TNBC and Basal-Like. However, it has a higher expression in cancer cells that express estrogen and progesterone receptors and has a negative correlation with cancer cells that express HER2. While in the HER2 cancer subtype, patients with higher expression have shown better survival. In general, increased expression of this gene has a positive correlation with better OS. According to the SBR data, the gene expression decreases with the progress of the tumor, and this issue is confirmed by the data obtained from TNMplot because the gene expression in the metastatic tissue was lower than in the tumor tissue. TIMER data shows a significant correlation between the expression of this gene and the infiltration of immune cells, especially CD4+ (P.val = 1.5e-16, P.cor = 0.262). Research by Zhang shows that the presence of memory CD4+ in ER- patients is associated with increased DFS(60) and it destroys tumor the By promoting the growth of CD8+(61) and this gene seems to play its role through the immune system like the previous genes.

TNFSF13 or APRIL (a proliferation-inducing ligand), which is known by this name because of its ability to stimulate tumor cell proliferation in vitro(62–64). The expression of this gene and its receptors causes the autocrine proliferation of tumor cells, and it helps their proliferation by binding HSPG on tumor cells(65). After APRIL binds, it phosphorylates ERR1/2, JNK1/2, and P38, and increases the proliferation of cancer cells by activating them(66). In addition, breast cancer cells maintain their proliferation by expressing BCMA, TACA and APRIL and these genes are related to invasion, growth and metastasis of tumor cells(14) but survival analysis (OS & RFS), which is the output of clinical data, has completely opposite results. We found that increased expression of this gene has a better correlation with patients' survival, while these other studies don’t confirm this and all of them state that increased expression of
TNFSF13 leads to invasion and metastasis. It is true that UALCAN and immunohistochemical data show increased expression of TNFSF13 in cancer, and clinical-pathological data note the positive correlation between TNFSF13 expression in TNBC and Basal-Like. We even observed that increased expression of this gene in Basal-Like is related to better OS. But it seems that more research is needed to find the role of this gene in breast cancer because its expression decreases with tumor progression and no significant correlation was found with the nodal status of cancer cells, even TNMplot didn’t show a significant difference in gene expression. Also, TIMER data shows a significant correlation between the expression of this gene and the infiltration of immune cells, especially macrophages. Macrophages are divided into two categories based on their function: classic M1 and alternative M2, where M1 macrophages have antitumor properties and M2 have tumorigenic properties(67). The results obtained from the studies of Janak state that M0 macrophages reduce the OS rate of ER+ breast cancers and the increase of M0 macrophages can contribute to the progression of this disease in higher grades of breast cancer(68). However, the results regarding the infiltration of macrophages are very scattered. In some studies, it has been stated that the infiltration of macrophages in ER+ samples and TNBC patients have a lower survival rate(69,70) but another study shows the complete opposite of these results. There are even studies that consider macrophage infiltration unrelated to patient survival(71,72). In general, according to DepMape analysis, we can say that this gene exerts its effects through immune cells because TNFSF13 is not an essential gene for breast cancer.

We examined the function of TNFSFs and the top 50 alternated genes using GO enrichment analysis and KEGG pathway enrichment analysis. The results showed that these genes have the most activity in Cytokine-cytokine receptor interaction, NF-kappa B signaling pathway. Inflammation is associated with activation of the NF-kappa B pathway(73). In general, inflammation and the NF-kappa B pathway can cause tumor suppression and destruction of altered cells(74) and on the other hand, help the development of cancer(73,74,74–79). NF-kappaB also regulates 500 genes involved in inflammation, proliferation, cell transformation, angiogenesis and metastasis(80,81) and NF-kappaB activation and abnormal expression of its subunits have been observed in breast cancer, which contributes to cancer progression and development(82–89).

Transcription factors and microRNAs regulating TNFSFs were identified by using ChEA and miRTarBase databases. It seems that two transcription factors RELA and STAT4 are among the most important and key regulatory factors. RELA phosphorylation plays a role in disease progression, especially inflammatory diseases and cancer by regulating NF-κB signaling(90). Meanwhile, in the absence of the RELA subunit of NF-κB, TNF transcription responses are weakened and the cell goes towards apoptosis or cell death(91–93). For example, it has been confirmed that FASLG gene expression is increased in breast cancer, and
increased expression of this gene causes apoptosis in T cells carrying Fas, which is an advantage for cancer cells(38,39). So RELA, as a FASLG gene transcription regulatory factor, can help tumor and breast cancer progress, but FASLG can lead cancer cells to apoptosis. STAT proteins are known as signal transducer and transcription activator molecules. These DNA binding proteins activate gene transcription in response to cytokines(94). STAT4 is one of the members of this family, which is very important for promoting immune responses by activating the Janus kinase (JAK)-STAT pathway(95). But according to the studies conducted by Rongquan He, the expression of STAT4 in breast cancer is much higher than in healthy tissue, and with the progress of cancer, the expression of STAT4 also increases, which indicates that this protein may play an important role in the development of breast cancer(96). In addition, it is possible to suppress the proliferation and invasion of cancer cells in colon cancer by silencing the STAT4 gene(97). We observed that STAT4 can affect TNFSF10, TNFSF11, TNFSF8, LTB, TNF, so it is possible to study the effects and role of TNFSFs in breast cancer better and more precisely by examining the introduced transcription factors more closely. Or in other words, by specifically targeting the discussed genes, the effects of their expression changes in breast cancer should be investigated, or even the introduced transcription factors were considered as drug candidates. Unfortunately, no research has been done on hsa-miR-34a-5p and its effects on TNFSFs, so considering that it is one of the important regulatory factors of TNFSFs, it is suggested to conduct studies on this microRNA.

4. Conclusion

The investigations carried out by us in some cases were consistent with the data and results of previous research, or in some cases the results were contrary to the results of previous experiments. In all the genes examined by us, it was shown that these genes are related to the survival of patients in breast cancer and play their role with the help of the immune system rather than directly causing the suppression or progression of the disease. Therefore, it is suggested to conduct more tests in this field to achieve more accurate and reliable results.

5. Materials and Method

5.1 UALCAN

UALCAN (http://ualcan.path.uab.edu/analysis.html), is an interactive web resource for analyzing cancer transcriptome data(98). It was used to analyze the transcriptional expression of TNFSF superfamily genes in healthy cells and BC cells. Student’s t test was used and a P value cutoff of 0.05 was used.
5.2 TNMplot

TNMplot (https://tnmplot.com/analysis), is a web-based tool which shows expression differences between normal, tumor and metastatic tissues. We used this database to understand gene expression levels of NFSFs and compare it to primary tumors(99). Student’s t test was used to generate a p value. The p value cutoff was 0.05.

5.3 UCSC Xena

UCSC Xena (https://xena.ucsc.edu), is an online discovery tool that stores more than 1,500 cancer datasets and 50 cancer types. One can visualize Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Genomics Data Collaborative (GDC) data using this tool(100). With the help of this database, survival analysis for the TNFSF family was performed in 101 metastatic breast cancer patients (Breast Cancer (Vijver 2002). Breast Cancer Student’s t test was used to generate a P value. The p value cutoff was 0.05.

5.4 GEPIA

GEPIA (http://gepia.cancer-pku.cn/), is an interactive web server for analyzing the RNA sequencing expression data of 9,736 tumors and 8,587 normal samples from the TCGA and the GTEx projects(101). Using this site, the difference in the expression of the superfamily was Quantitatively compared in breast cancer.

5.5 The Human Protein Atlas

The Human Protein Atlas (https://www.proteinatlas.org/) (HPA), is a program with the aim to map all the human proteins in cells, tissues, and organs using an integration of various omics technologies, including antibody-based imaging, mass spectrometry-based proteomics, transcriptomics, and systems biology(102). In this study, the expression of TNFSF family members was compared between normal and BC tissues was obtained from HPA.
5.6 bc-GenExMiner v4.8

The bc-GenExMiner v4.8 database (www.bcgenex.centregauducheau.fr/BCGEM/), Breast cancer gene-expression miner(103). It was used to find the association between the expression of TNFSF superfamily members and clinicopathological parameters of breast cancer including age, nodal status, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 2 (HER2), molecular subtype, and Scarff, Bloom & Richardson grade. (SBR) grade. The mRNA expression difference of TNFSFs in BC patients with various clinical and molecular parameters was evaluated using Welch’s tests and Dunnett-Tukey-Kramer’s tests, and p < 0.05 was considered as statistically significant.

5.7 cBioPortal

Using cBioPortal, a breast invasive carcinoma dataset (TCGA, Firehose legacy) containing data from 1108 samples was analyzed. Then, genetic alterations and co-expression were obtained. The P-value of<0.05 was considered as the cut-off

5.8 STRING

The STRING contains information from numerous sources, including experimental repositories, computational prediction methods and public text collections(104). The protein-protein interactions of the TNFSF superfamily members and the top 50 frequently co-expressed genes (obtained from cBioPortal) (105) were plotted by the STRING (https://string-db.org/) database and Cytoscape (version 3.8.2) software.

5.9 GeneMANIA

GeneMANIA (http://www.genemania.org) is a flexibleweb interface for generating hypotheses about gene function, analyzing gene lists and prioritizing genes for functional assays. Given a query list, GeneMANIA extends the list with functionally similar genes that it identifies using available genomics
and proteomics data (106). This database shows interactions of the TNFSF superfamily members and the top 50 frequently altered genes.

5.10 Enrichr
This database (https://maayanlab.cloud/Enrichr) is a web-based tool for enrichment analysis. Enrichr was applied to perform gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, transcription factor analysis using Chip Enrichment Analysis (ChEA) database, and miRNA prediction using miRTarBase from the TNFSF superfamily. The results were visualized using ggplot2 R package. P-values less than 0.05 were considered significant.

5.11 Kaplan–Meier plotter
Kaplan–Meier plotter (www.kmplot.com) database, which contains gene expression profiles and survival information of cancer patients, in this database all genes were divided into high and low expression groups based on the median mRNA expression in order to analyze the overall survival (OS) and recurrence-free survival (RFS) (107). The prognostic values of TNFSF superfamily was evaluated by Kaplan–Meier plotter and log-rank P value of < 0.05 was considered significant.

5.12 Timer
In this study, Timer was used for systematic analysis of the infiltration of different immune cells and their impact on breast cancer. Timer’s “gene module” was used to evaluate the correlation between TNFSFs and infiltration of immune cell and the survival module was used to evaluate the correlation among clinical outcomes and the infiltration of immune cell and TNFSFs expression.

5.13 shinyDepMap
shinyDepMap (https://labsyspharm.shinyapps.io/depmap) combines CRISPR and shRNA data to determine, for each gene, the growth reduction caused by the knockout/knockdown and the selectivity of this effect among cell lines (108). We measured the efficiency, the efficacy and selectivity of drugs based on efficiency and selectivity data provided for TNFSF genes in this site.
6. References

14. (PDF) APRIL promotes breast tumor growth and metastasis and is associated with aggressive basal breast cancer [Internet]. [cited 2022 Sep 26]. Available from: https://www.researchgate.net/publication/273324004_APRIL_promotes_breast_tumor_growth_and_metastasis_and_is_associated_with_aggressive_basal_breast_cancer

100. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation | bioRxiv [Internet]. [cited 2023 Mar 4]. Available from: https://www.biorxiv.org/content/10.1101/326470v6

102. Antibodies for profiling the human proteome—The Human Protein Atlas as a resource for cancer research | Semantic Scholar [Internet]. [cited 2022 Sep 26]. Available from: https://www.semanticscholar.org/paper/Antibodies-for-profiling-the-human-proteome%E2%80%94The-Asplund-Edqvist/a7fe072fe7eb1fc3b63679ef2ef2b268d6d41f8c

105. A comprehensive bioinformatics analysis to identify potential prognostic biomarkers among CC and CXC chemokines in breast cancer | Scientific Reports [Internet]. [cited 2023 Sep 27]. Available from: https://www.nature.com/articles/s41598-022-14610-2

108. shinyDepMap, a tool to identify targetable cancer genes and their functional connections from Cancer Dependency Map data | eLife [Internet]. [cited 2023 Mar 5]. Available from: https://elifesciences.org/articles/57116
7. Supporting information

S1 Table. Genomic alterations of the top 50 frequently co-altered genes with TNFSF Superfamily members in BC patients.

S2 Fig. Correlation between the expression of TNFSFs genes and infiltration of immune cells.

S2 Fig. Correlation between the expression of TNFSFs genes and infiltration of immune cells.

Fig 1: The difference in expression of TNFSFs in cancer and normal cells.

Fig 2: The difference in expression of TNFSFs in breast cancer.

Fig 3: Differential gene expression analysis in Tumor, Normal, and Metastatic tissues.

Fig 4: The expression pattern of proteins with the HPA database.

Figure 5: Association of TNFSFs mRNA levels with clinicopathological features in BC patients,
**** = P < 0.0001, *** = P < 0.001, ** = P < 0.01, * = P < 0.05

Fig 6: Genomic alterations and GO enrichment analysis of TNFSF members in BC patients.

Fig 7: The prognostic value (OS) of TNFSF in patients with BC.

Fig 8: The prognostic value (RFS) of TNFSF in patients with BC.

Figure 9: The prognostic value (OS) of TNFSF in sub-type of BC.

Fig 10: The prognostic value (OS) of TNFSF in grade of BC.

Fig 11: The prognostic value of TNFSF in patients with metastases.

Fig 12: Gene essentiality of TNFSF family genes.
Fig 1: The difference in expression of TNFSFs in cancer and normal samples.
Fig 10: The prognostic value (OS) of TNFSF in grade of BC.
Fig 11: The prognostic value of TNFSF in patients with metastatic cancer.
Fig 12: Gene essentiality of TNFSF family genes
Fig 2: The difference in expression of TNFSFs in breast cancer (BRCA)
Fig 3: Differential gene expression analysis in Tumor, Normal, and Metastatic samples.
Fig 4: the expression pattern of proteins with the HPA database.
Figure 5: Association of TNFSFs mRNA levels with clinicopathological characteristics.
Fig 6: Genomic alterations and GO enrichment analysis.
Fig 7: The prognostic value (OS) of TNFSF in patients with BC.
Fig 8: The prognostic value (RFS) of TNFSF in patients with BC.
Figure 9: The prognostic value (OS) of different TNF family members by breast tumor subtype.