Cochrane Editorial and Methods
Screening for breast cancer with mammography
---Manuscript Draft---

<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>COCHRANEEMD-2023-01113R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>Screening for breast cancer with mammography</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Update: Intervention Review</td>
</tr>
<tr>
<td>Section/Category:</td>
<td>Central Editorial Service</td>
</tr>
<tr>
<td>Corresponding Author:</td>
<td>Peter C Gøtzsche</td>
</tr>
<tr>
<td></td>
<td>Rigshospitalet</td>
</tr>
<tr>
<td></td>
<td>Hørhsholm, DENMARK</td>
</tr>
<tr>
<td>Order of Authors:</td>
<td>Peter C Gøtzsche</td>
</tr>
<tr>
<td></td>
<td>Karsten Jørgensen</td>
</tr>
</tbody>
</table>

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation
Screening for breast cancer with mammography

Table of contents

Abstract
Plain language summary
Summary of findings
Background
 Description of the condition
 Description of the intervention
 How the intervention might work
 Why it is important to do this review
Objectives
Methods
 Criteria for considering studies for this review
 Search methods for identification of studies
 Data collection and analysis
Results
 Description of studies
 Risk of bias in included studies
 Effects of interventions
Discussion
 Summary of main results
 Overall completeness and applicability of evidence
 Quality of the evidence
 Potential biases in the review process
 Agreements and disagreements with other studies or reviews
Authors’ conclusions
Acknowledgements
Data and analyses
What’s new
History
Contributions of authors
Declarations of interest
Sources of support
 Internal sources
 External sources
Differences between protocol and review
Characteristics of studies
 Characteristics of included studies [ordered by study ID]
 Characteristics of excluded studies [ordered by study ID]
 Characteristics of studies awaiting classification [ordered by study ID]
Appendices
 Appendix 1. PubMed search strategy
 Appendix 2. CENTRAL Search Strategy
 Appendix 3. World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) Search Strategy
 Appendix 4. Clinicaltrials.gov Search Strategy
References
 References to studies included in this review
 References to studies excluded from this review
 References to studies awaiting assessment
 Additional references
 References to other published versions of this review
Additional tables

Editors: Cochrane Breast Cancer Group

Contact Person: Peter C Gøtzsche (pcg@scientificfreedom.dk)
Institute for Scientific Freedom, Hørsholm, Denmark

Abstract

Background

A variety of estimates of the benefits and harms of mammographic screening for breast cancer have been published and national policies vary. This is an update of a review previously updated 2013 and originally published 2001.

Objectives

To assess the effect of screening for breast cancer with mammography on mortality and morbidity.

Search methods

For this 2023 update, we searched PubMed, CENTRAL, the Cochrane Breast Cancer Group Specialised Register, the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) and ClinicalTrials.gov up to 28 February 2023.

Selection criteria

Randomised clinical trials (RCTs) comparing mammographic screening with no mammographic screening.

Data collection and analysis

Two authors independently extracted data. Study authors were contacted for additional information. Our main outcomes of interest were deaths due to breast cancer, any cancer, and due to any cause, and harms measured as overdiagnosis, number of mastectomies, lumpectomies, use of radiotherapy and of chemotherapy. Certainty of evidence was assessed with GRADE.

Main results

Eight eligible trials from Europe and North America that compared women offered screening mammography with women not offered screening were included. We excluded a trial because the randomisation failed to produce comparable groups. The eligible trials included 600,000 women in the age range 39 to 74 years.

The trials with adequate randomisation did not show a benefit in terms of a reduction in breast cancer mortality at 13 years (risk ratio (RR) 0.90, 95% confidence interval (CI) 0.79 to 1.02; 33 vs 30 deaths from breast cancer per 10,000 women; 3 RCTs; 292,153 participants). The findings at 24 years were similar to those at 13 years. Our certainty in both estimates was downgraded 1 level to ‘low’ due to changes in technology and treatment (indirectness) and due to imprecision. The trials with suboptimal randomisation showed a reduction in breast cancer mortality at 13 years with an RR of 0.75 (95% CI 0.67 to 0.83; 4 RCTs; 306,937 participants; very low certainty evidence).

In women below age 50 years, the results from adequately randomised trials did not show a reduction in breast cancer mortality at 13 years of follow-up (RR 0.87, CI 0.67 to 1.03; 28 vs 24 deaths from breast cancer per 10,000 women; 3 RCTs; 218,697 participants, low certainty evidence), nor for women at least 50 years (RR 0.94, CI 0.77 to 1.15; 53 vs 50 deaths from breast cancer per 10,000 women; 2 RCTs; 74,261 participants, low certainty evidence). Only one trial included women aged 70 years and above and could not provide a reliable effect estimate.
We found that breast cancer mortality was an unreliable outcome that was biased in favour of screening, mainly because of the risk of differential misclassification of cause of death. The trials without adequate randomisation did not find an effect of screening (RR 1.00, 95% CI 0.96 to 1.04; 286 vs 288 cancer deaths per 10,000 women; 3 RCTs; 292,954 participants; moderate certainty evidence; the follow-up was 10.5 years for Canada, 9 years for Malmö and 23 years for the UK age trial). All-cause mortality was not reduced (RR 0.98, 95% CI 0.94 to 1.03 after 7 years; RR 0.99, 95% CI 0.95 to 1.03 after 13 years; 324 vs 328 deaths per 10,000 women; and RR 1.01, 95% CI 0.99 to 1.04 after 24 years; 773 vs 765 deaths per 10,000 women; 2 RCTs; 250,671 participants; moderate certainty evidence) in the adequately randomised trials.

There were more lumpectomies and mastectomies combined in the screened groups, likely reflecting overtreatment (RR 1.31, 95% CI 1.22 to 1.42; 164 vs 214 operations per 10,000 women; 2 RCTs; 132,321 participants; moderate certainty evidence), as were the number of mastectomies alone (RR 1.20, 95% CI 1.08 to 1.32; 122 vs 102 per 10,000 women; 2 RCTs; 132,321; moderate certainty evidence). The use of radiotherapy was similarly increased whereas there was no difference in the use of chemotherapy (data for each outcome available from only one adequately randomised trial; low certainty evidence). Breast screening increased the number of breast cancer diagnoses (overdiagnosis) (RR 1.25, CI 1.18 to 1.34, 142 vs 113 diagnoses at 7 to 9 years of follow-up; 3 RCTs, 292,979 participants; moderate certainty evidence) in trials that did not screen the control group after the intervention phase.

Authors' conclusions

Because of substantial changes in screening technology, treatment, and breast cancer awareness since the trials were done, the estimates from the trials are uncertain in today's setting. As breast cancer mortality is an unreliable outcome that is biased in favour of screening, it is noteworthy that screening did not reduce total cancer mortality or total mortality. Breast screening does not meet the criteria that population screening should be based on rigorously performed randomised trials that show that the benefits outweigh the harms. No studies have been completed in low income countries and one small study from Colombia has yet to provide data on long term outcomes. Women, clinicians and policy makers should consider the trade-offs and the uncertainties carefully when they decide whether or not to attend or support breast screening programmes.

Plain language summary

What are the benefits and harms of screening for breast cancer with mammography?

Key messages

1. The most reliable studies did not show that breast screening with mammography reduces your risk of dying from breast cancer. While other studies did show this, they are less reliable.

2. Breast screening detects cancers that would never have caused death or disease in the absence of screening (overdiagnosis). This increases your risk of having a breast or a lump in your breast removed needlessly (overtreatment). Breast screening also causes false positive results, which is when the mammogram raises a suspicion of breast cancer that is later put to rest. False positive tests are common and can negatively affect quality of life also after a serious diagnosis is ruled out.

3. Substantial changes in technology, treatment, and greater public awareness of breast cancer since the studies were done means that the effects of breast screening are uncertain and that any benefit is likely smaller today.

What is breast cancer?

Breast cancer is a common cancer in women. The risk increases with age. It is a highly variable disease, with some cases developing rapidly and aggressively while others grow slowly or not at all. This complicates screening, which is more likely to detect slow-growing than fast growing cancers.

How does breast screening work?

Screening with mammography uses X-ray imaging to find breast cancer before a lump is felt. Screening is therefore intended for women in whom breast cancer is not suspected. The idea is to detect cancer earlier, when a cure is more likely. However, as some cancers have spread before screen detection is possible, one cannot assume that earlier detection is beneficial.

What did we want to find out?

We wanted to find out if mammography screening reduces the risk of dying from breast cancer; if it reduces the need for treatment; if it reduces the risk of dying overall; and to which extent it causes harms in terms of overdiagnosis and overtreatment of breast cancers not destined to cause death or symptoms in the lifetime of the women.

What did we do?
We searched for studies that compared screening with no screening.

We compared and summarized the results of the studies and rated our confidence in the evidence, based on factors such as study methods, study context, and size of studies.

What did we find?

We found eight trials that involved 600,000 women in the age range 39 to 74 years. The design of some studies was more reliable than others, mainly due to the way women were distributed between the screening group and the control group, but also for other reasons. The most reliable studies showed that screening likely did not reduce the risk of dying from breast cancer, regardless of age group. Due to the age of the trials, our certainty of this result was assessed as 'low'. While other trials found a benefit from screening, their less reliable designs mean that our certainty in these results is even lower ('very low').

Neither our analysis of the most or of the least reliable trials showed that screening reduced the risk of dying when all causes were considered.

The trials indicated with moderate certainty that the risk of being overdiagnosed happened to about 1 in 5 of those diagnosed with breast cancer during the period they were offered screening.

What are the limitations of the evidence?

There were important differences in the estimated benefit (reduced risk of death from breast cancer) between well and less well designed trials. The main design limitation was that some trial randomised groups of women rather than individuals, which meant that the two groups did not have a comparable risk of getting breast cancer.

There has been substantial changes in technology and treatment since the trials were done, and increased awareness of breast cancer and the importance of seeking care as soon as possible. This means that the possible benefit of breast screening today is likely quite different from that in the trials. It is uncertain if mammography screening delivers an important benefit today but we are certain it causes serious harms, overdiagnosis and overtreatment and false positive results. The included trials were performed in Europe and North America and did not consider effects in minorities.

How up to date is the evidence?

This review updates our previous review but did not identify new trials. The evidence is up to date to February 2023.

Summary of findings

<table>
<thead>
<tr>
<th>Summary of findings 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of findings table - Screening with mammography compared to no screening with mammography for women not suspected of breast cancer (all age groups)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects* (95% CI)</th>
<th>Risk with no screening with mammography</th>
<th>Risk with screening with mammography</th>
<th>Relative effect (95% CI)</th>
<th>Nº of participants (studies)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths ascribed to breast cancer, 13 years follow up - Adequately randomised trials</td>
<td>33 per 10,000 (26 to 34)</td>
<td>30 per 10,000 (26 to 34)</td>
<td>RR 0.90 (0.79 to 1.02)</td>
<td>292153 (3 RCTs)</td>
<td>☯☯☺☺ Low*ab</td>
<td>For all age groups combined, screening mammography may have little or no effect on breast cancer mortality. The age of the trials and a confidence interval that includes a benefit reduced our certainty in the estimated effect by 1 level for indirectness and 1 level for imprecision (low certainty). While suboptimally randomised trials showed a benefit (RR 0.75; CI 0.67 to 0.83), our confidence in this estimate was further lowered (to very low) due to important risks of bias and inconsistency.</td>
<td></td>
</tr>
<tr>
<td>Deaths ascribed to any cancer, all women, 9 to 23 years of follow-up - Adequately randomised trials</td>
<td>288 per 10,000 (277 to 300)</td>
<td>288 per 10,000 (277 to 300)</td>
<td>RR 1.00 (0.96 to 1.04)</td>
<td>292954 (3 RCTs)</td>
<td>☯☯☯ Moderate*</td>
<td>For all age groups combined, screening mammography likely results in little to no difference in mortality from any cancer. This finding was consistent with that in the suboptimally randomised trials (RR 0.99; CI 0.93 to 1.06). We downgraded...</td>
<td></td>
</tr>
<tr>
<td>Event</td>
<td>Number treated</td>
<td>Number of cancers</td>
<td>RR</td>
<td>CI</td>
<td>Level</td>
<td>Evidence</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----</td>
<td>------------------</td>
<td>-------</td>
<td>----------</td>
<td></td>
</tr>
</tbody>
</table>
| Number of mastectomies and lumpectomies, 7 to 9 years of follow-up - Adequately randomised trials | 164 per 10,000 | 214 per 10,000 (200 to 232) | RR 1.31 (1.22 to 1.42) | 132321 (2 RCTs) | Moderate | Screening mammography results in a large increase in the number of mastectomies and lumpectomies combined (overtreatment) for all age groups combined. This finding was consistent with the estimate of overdiagnosis (RR 1.25; CI 1.18 to 1.34) and with the estimate from the suboptimally randomised trials (RR 1.42; CI 1.26 to 1.61). We downgraded the certainty of evidence 1 level due to indirectness because of the age of the trials.
| Number of mastectomies, 7 to 9 years of follow-up - Adequately randomised trials | 102 per 10,000 | 122 per 10,000 (110 to 134) | RR 1.20 (1.08 to 1.32) | 132321 (2 RCTs) | Moderate | Screening mammography increases the number that receives a mastectomy (overtreatment) for all age groups combined. This finding was consistent with the estimate of overdiagnosis (RR 1.25; CI 1.18 to 1.34) and with the estimate from the suboptimally randomised trials (RR 1.21; CI 1.06 to 1.38). We downgraded the certainty of evidence 1 level due to indirectness because of the age of the trials.
| Number treated with radiotherapy, 9 years of follow-up - Adequately randomised trials | 98 per 10,000 | 122 per 10,000 (102 to 147) | RR 1.24 (1.04 to 1.49) | 42486 (1 RCT) | Low | Screening mammography may lead to an increase in the number that receive radiotherapy. However, this outcome was reported in only one adequately randomised trial. The finding was consistent with that in the one suboptimally randomised trial that reported the outcome (RR 1.42; CI 1.17 to 1.69). We downgraded the certainty of the evidence 1 level due to the age of the trials (indirectness) and 1 level due to imprecision as the outcome was only reported in one optimally randomised trial.
| Number treated with chemotherapy, 9 years of follow-up - Adequately randomised trials | 19 per 10,000 | 12 per 10,000 (8 to 20) | RR 0.63 (0.39 to 1.04) | 42486 (1 RCT) | Low | Screening mammography may result in little to no difference in the number that receives chemotherapy. However, only one adequately randomised trial reported this outcome. The finding is consistent with that from the one suboptimally randomised trial that reported this outcome (RR 1.06; CI 0.84 to 1.34). We downgraded the certainty of the evidence 1 level due to the age of the trials (indirectness) and 1 level due to imprecision as the outcome was only reported in one optimally randomised trial.
| Number of cancers (overdiagnosis) - Adequately randomised trials (after 7-9 years) | 113 per 10,000 | 142 per 10,000 (134 to 152) | RR 1.25 (1.18 to 1.34) | 292979 (3 RCTs) | Moderate | For all age groups combined, screening mammography results in a large increase in the number of cancers diagnosed (overdiagnosis). This increase was greater in the suboptimally randomised trials (RR 1.33; CI 1.24 to 1.44). We downgraded the certainty of the evidence 1 level due to age of the trials (imprecision).

The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: confidence interval; RR: risk ratio
Summary of findings table - Screening with mammography compared to no screening with mammography for women not suspected of breast cancer (ages below 50 years)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of participants (studies)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths ascribed to breast cancer, 13 years follow-up, women below 50 years of age - Adequately randomised trials</td>
<td>Risk with no screening with mammography: 28 per 10,000 (20 to 26)</td>
<td>Risk with screening with mammography: 24 per 10,000 (20 to 26)</td>
<td>RR: 0.87 (0.73 to 1.03)</td>
<td>218697 (3 RCTs)</td>
<td>★★★☆☆ Low<sup>a,b</sup></td>
</tr>
<tr>
<td>Overall mortality, 13 years follow-up, women below 50 years of age - Adequately randomised trials</td>
<td>Risk with no screening with mammography: 188 per 10,000 (173 to 195)</td>
<td>Risk with screening with mammography: 184 per 10,000 (173 to 195)</td>
<td>RR: 0.98 (0.92 to 1.04)</td>
<td>219324 (3 RCTs)</td>
<td>★★★☆☆ Moderate<sup>a</sup></td>
</tr>
</tbody>
</table>

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: confidence interval; RR: risk ratio.

GRADE Working Group grades of evidence

High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.

Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.

Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

See interactive version of this table: https://gdt.gradepro.org/presentations/#/isof/isof_question_revmam_web_442941409808163915.

^a Age of trials; substantial changes in technology and treatment.

^b Confidence interval includes a benefit.

Summary of findings 3

Summary of findings table - Screening with mammography compared to no screening with mammography for women not suspected of breast cancer (at least 50 years)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of participants (studies)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths ascribed to breast cancer, 13 years follow-up, women below 50 years of age - Adequately randomised trials</td>
<td>Risk with no screening with mammography: 188 per 10,000 (173 to 195)</td>
<td>Risk with screening with mammography: 184 per 10,000 (173 to 195)</td>
<td>RR: 0.98 (0.92 to 1.04)</td>
<td>219324 (3 RCTs)</td>
<td>★★★☆☆ Moderate<sup>a</sup></td>
</tr>
<tr>
<td>Overall mortality, 13 years follow-up, women below 50 years of age - Adequately randomised trials</td>
<td>Risk with no screening with mammography: 226 per 10,000 (199 to 253)</td>
<td>Risk with screening with mammography: 225 per 10,000 (199 to 253)</td>
<td>RR: 0.95 (0.91 to 1.00)</td>
<td>218697 (3 RCTs)</td>
<td>★★★☆☆ Moderate<sup>a</sup></td>
</tr>
</tbody>
</table>

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: confidence interval; RR: risk ratio.

GRADE Working Group grades of evidence

High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.

Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.

Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

See interactive version of this table: https://gdt.gradepro.org/presentations/#/isof/isof_question_revmam_web_442941409808163915.

^a Age of trials; substantial changes in technology and treatment.

^b Confidence interval includes a benefit.
Summary of findings table - Screening with mammography compared to no screening with mammography for women not suspected of breast cancer (at least 70 years)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Deaths ascribed to breast cancer, 13 years follow-up, women at least 50 years of age - Adequately randomised trials</th>
<th>Overall mortality, 13 years follow-up, women at least 50 years of age - Adequately randomised trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk with no screening with mammography</td>
<td>53 per 10,000 (41 to 61)</td>
<td></td>
</tr>
<tr>
<td>Risk with screening with mammography</td>
<td>50 per 10,000 (41 to 61)</td>
<td></td>
</tr>
<tr>
<td>Relative effect (95% CI)</td>
<td>RR 0.94 (0.77 to 1.15)</td>
<td></td>
</tr>
<tr>
<td>Nº of participants (studies)</td>
<td>74261 (2 RCTs)</td>
<td></td>
</tr>
<tr>
<td>Certainty of the evidence (GRADE)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Screening mammography may have little or no effect on breast cancer mortality in women at least 50 years. The age of the trials and a confidence interval that includes a benefit reduced our certainty in the estimate by 1 level for indirectness and 1 level for imprecision (low). While suboptimally randomised trials showed a benefit (RR 0.70; CI 0.62 to 0.80), our certainty in this estimate was lowered further (to very low) due to important risks of bias and inconsistency.

Summary of findings table - Screening with mammography compared to no screening with mammography for women not suspected of breast cancer (at least 70 years)

Patient or population: women not suspected of breast cancer (at least 70 years)

Setting: population screening

Intervention: screening with mammography

Comparison: no screening with mammography

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>Nº of participants (studies)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths ascribed to breast cancer, 13 years of follow-up</td>
<td>0 per 10,000 (0 to 0)</td>
<td>Not estimable (1 RCT)</td>
<td></td>
<td>Very low*</td>
<td>Only the Two-County trial (Kopparberg and Östergötland), which was suboptimally randomised, included women above age 70 years. We downgraded the certainty of the evidence due to the age of the trial (Indirectness); its high risk of bias; and due to the lack of data (Imprecision)(1 level per domain). The very large cluster-randomised UK Age Extension Trial (AgeX Trial; 6 million enrolment target) is expected to report results for this age group in 2026, as well as results for women below 50 years.</td>
</tr>
</tbody>
</table>

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).
Background

Breast cancer is an important cause of death among women worldwide with marked regional differences in disease burden (Arnold 2022). Early detection through screening with mammography has the potential to reduce mortality, but it also leads to overdiagnosis and overtreatment (IARC 2002). Since screening preferentially identifies slow-growing tumours (length bias) (Final reports 1977; Fox 1979), the harms of unnecessary treatment of overdiagnosed tumours could reduce or outweigh potential benefits.

The best way to reliably estimate the effectiveness of screening is with randomised trials at low risk of bias, as biases in the trials can easily erase or create the comparatively small effects of population based screening interventions (IARC 2002). Large trials, involving 650,000 women, have been carried out in North America and Europe (Canada 1980; Edinburgh 1978; Göteborg 1982; Malmö 1976; New York 1963; Stockholm 1981; Two-County 1977; UK age trial 1991). It should be noted that, as for most interventions, the trials do not assess effects in minority groups or subgroups with poor access to care or particular risk profiles.

The large number of reviews reflects the controversies surrounding mammography screening and the uncertainties of its effects in women of various ages. There is wide variation in screening policies between different countries, with some countries abstaining from introducing screening partly because of the lack of a documented reduction in all-cause mortality (Isacsson 1985; Skrabanek 1993; Swift 1993). One area of concern is the potential for radiotherapy treatment of low-risk women, such as those who have their cancers identified at screening, to increase all-cause mortality because of adverse cardiovascular effects (EBCTCG 1995; EBCTCG 2000). Harms from radiotherapy has likely diminished in today’s setting, but increased overdiagnosis with greater sensitivity of the screening test may mean more women are exposed. Overdiagnosis of breast cancer is considered as the most important harm of breast screening (Barratt 2015), although uncertainty around its magnitude remains, as it does for its main benefit (UK review 2012). Overdiagnosis is the detection of cancers that would never have appeared in the lifetime of the individual in the absence of screening and is perhaps best known from prostate cancer screening.

In addition, there is concern that cause of death has not been ascribed in an unbiased fashion in some of the trials due to lack of blinded outcome assessment. Finally, carcinoma in situ is much more likely to be detected with screening mammography and although less than half of the cases will progress to become invasive (Nielsen 1987; Welch 1997), only 18% after 20 years of follow-up in the Canadian trials (To 2014), these women are often treated with surgery, drugs, and radiotherapy.

Since the trials were performed, major advances in earlier diagnosis of clinical cancers with increased breast cancer awareness (Rostgaard 2010) and in breast cancer treatment (Riemsma 2010) have happened. This has resulted in reductions in breast cancer mortality of 30% or more, most pronounced in younger women, below the age range invited for breast screening (Autier 2011a). Collectively, this means that the relevance of the results of the original trials have diminished in today’s setting. This has led some prominent guideline groups to use modelling studies (Draft USPSTF recommendation 2023) as the basis for screening recommendations, which has raised concerns (Harris 2024; Woloshin 2023). As modelling studies come with substantial uncertainty, we do not include them in this update. We do not include observational studies either for the same reason, which is in agreement with other reviews (UK review 2012; European Commission Initiative 2020).

Meta-analyses of screening are often deficient (Walter 1999) and few of the meta-analyses listed above have taken account of the risk of bias in the individual trials or considered harms as well as benefits. We have identified important weaknesses in the trials (Gøtzsche 2000; Gøtzsche 2000a; Gøtzsche 2004; Gøtzsche 2011) and have now updated our Cochrane Review with additional data from two of the least biased trials, while no new trials contributed data. This update also include addition of Summary of Findings tables and a GRADE assessment of the certainty of the evidence for individual outcomes.

Background

Breast cancer is an important cause of death among women worldwide with marked regional differences in disease burden (Arnold 2022). Early detection through screening with mammography has the potential to reduce mortality, but it also leads to overdiagnosis and overtreatment (IARC 2002). Since screening preferentially identifies slow-growing tumours (length bias) (Final reports 1977; Fox 1979), the harms of unnecessary treatment of overdiagnosed tumours could reduce or outweigh potential benefits.

The best way to reliably estimate the effectiveness of screening is with randomised trials at low risk of bias, as biases in the trials can easily erase or create the comparatively small effects of population based screening interventions (IARC 2002). Large trials, involving 650,000 women, have been carried out in North America and Europe (Canada 1980; Edinburgh 1978; Göteborg 1982; Malmö 1976; New York 1963; Stockholm 1981; Two-County 1977; UK age trial 1991). It should be noted that, as for most interventions, the trials do not assess effects in minority groups or subgroups with poor access to care or particular risk profiles.

The large number of reviews reflects the controversies surrounding mammography screening and the uncertainties of its effects in women of various ages. There is wide variation in screening policies between different countries, with some countries abstaining from introducing screening partly because of the lack of a documented reduction in all-cause mortality (Isacsson 1985; Skrabanek 1993; Swift 1993). One area of concern is the potential for radiotherapy treatment of low-risk women, such as those who have their cancers identified at screening, to increase all-cause mortality because of adverse cardiovascular effects (EBCTCG 1995; EBCTCG 2000). Harms from radiotherapy has likely diminished in today’s setting, but increased overdiagnosis with greater sensitivity of the screening test may mean more women are exposed. Overdiagnosis of breast cancer is considered as the most important harm of breast screening (Barratt 2015), although uncertainty around its magnitude remains, as it does for its main benefit (UK review 2012). Overdiagnosis is the detection of cancers that would never have appeared in the lifetime of the individual in the absence of screening and is perhaps best known from prostate cancer screening.

In addition, there is concern that cause of death has not been ascribed in an unbiased fashion in some of the trials due to lack of blinded outcome assessment. Finally, carcinoma in situ is much more likely to be detected with screening mammography and although less than half of the cases will progress to become invasive (Nielsen 1987; Welch 1997), only 18% after 20 years of follow-up in the Canadian trials (To 2014), these women are often treated with surgery, drugs, and radiotherapy.

Since the trials were performed, major advances in earlier diagnosis of clinical cancers with increased breast cancer awareness (Rostgaard 2010) and in breast cancer treatment (Riemsma 2010) have happened. This has resulted in reductions in breast cancer mortality of 30% or more, most pronounced in younger women, below the age range invited for breast screening (Autier 2011a). Collectively, this means that the relevance of the results of the original trials have diminished in today’s setting. This has led some prominent guideline groups to use modelling studies (Draft USPSTF recommendation 2023) as the basis for screening recommendations, which has raised concerns (Harris 2024; Woloshin 2023). As modelling studies come with substantial uncertainty, we do not include them in this update. We do not include observational studies either for the same reason, which is in agreement with other reviews (UK review 2012; European Commission Initiative 2020).

Meta-analyses of screening are often deficient (Walter 1999) and few of the meta-analyses listed above have taken account of the risk of bias in the individual trials or considered harms as well as benefits. We have identified important weaknesses in the trials (Gøtzsche 2000; Gøtzsche 2000a; Gøtzsche 2004; Gøtzsche 2011) and have now updated our Cochrane Review with additional data from two of the least biased trials, while no new trials contributed data. This update also include addition of Summary of Findings tables and a GRADE assessment of the certainty of the evidence for individual outcomes.
Description of the condition

Breast cancer is one of the most common cancers among women worldwide (World Cancer Data 2023). It is a highly variable disease with some cases growing rapidly and aggressively, and some slowly or not at all. Like for most cancers, breast cancer incidence increases with age and the rapidity of growth slows. This has implications for the usefulness and the benefit to harm balance of screening. Breast cancer is also known to be able to return many years after treatment, sometimes after 20 years or more. This means it is difficult to say a breast cancer is ‘cured’, likely due to micro-metastases being present in the body after treatment. Breast cancer is thus regarded as a potentially systemic disease which affect treatment choices, although the exact time of metastasis is difficult to determine. Ideally, breast screening should detect cancers prior to metastasis to affect mortality and maximise chances of curative treatment.

Description of the intervention

Screening with mammography uses X-ray imaging to find breast cancer before symptoms are noticed. The X-ray screening test generally does not provide the diagnosis but may raise a suspicion. Those who are found to have suspicious lesions are subjected to further tests such as ultrasound, MRI scans, and biopsies. Those in which these follow-up tests have excluded a diagnosis of breast cancer are said to have experienced a false-positive screening mammogram. Screening mammography differs from diagnostic mammography in that those who receive screening mammograms do not have symptoms or a suspicion of breast cancer. Mammography screening programmes thus invite women without symptoms of breast cancer. While the screening test uses X-rays, the dose is quite low and presents a very small risk in itself (IARC 2002).

How the intervention might work

The idea with breast screening is to detect and treat breast cancer earlier, when a cure may be more likely and treatment possibly less aggressive. Breast screening is commonly offered annually, biennially, or triennially, varying between countries (IARC 2002). The most commonly screened age range is 50 to 69 years, but women in their 40s and 70s are sometimes targeted as well (IARC 2002). The interval between screening rounds means that rapidly growing cancers are less likely to be detected through screening and more likely to appear between screening rounds. This phenomenon is called 'length bias', as slower growing cancers has a greater length of time to allow screen detection (Welch 2004). Cancers detected between screening rounds are known as 'interval cancers'. Interval cancers are thus, on average, the more aggressive and fast growing ones (Welch 2004), and they cannot benefit from breast screening. The fact that breast screening is best at detecting cancers that grow slowly or not at all is the cause of its major harm: overdiagnosis. These women would have lived without symptoms from their cancer before they died from another cause. It means they unnecessarily experience the stress of a breast cancer diagnosis and the harms of breast cancer treatment (Barratt 2015). This is different from false positive results, where the suspicion of cancer is later dismissed through follow-up tests. False positive results affect far more women and result in important psychological harms (Brodersen 2013).

Earlier detection of breast cancer makes women live longer with the diagnosis, increasing the apparent survival time with the disease. However, survival time is a deceptive outcome, as earlier diagnosis invariably increases survival time, even if screening does not reduce mortality. This phenomenon is called 'lead time bias' (Welch 2004). Breast cancer mortality can also be a deceptive outcome, as cause of death is difficult to ascertain; as overdiagnosis leads to overtreatment, which increases deaths; and as a cancer diagnosis in itself increases cardiovascular mortality and risk of suicide (Fang 2012).

Why it is important to do this review

While earlier detection of cancer is well-documented to reduce incidence and mortality for some cancers, i.e. cervical (Raffl 2003) and colon cancer (Jodal 2019), this is not common. For example, large randomised trials of screening for ovarian cancer have shown that, although screening effectively brought the time of diagnosis forward and detected cancer at an earlier stage, this did not lead to reduced ovarian cancer mortality (Menon 2021; Prorok 2018). For other cancers, it is the balance between a possible reduction in disease-specific mortality and important harms that questions the rationale for screening, e.g. prostate cancer screening with the prostate specific antigen (PSA) test. The fact that we cannot be certain that screening reduces disease-specific mortality or that a benefit outweighs the harms, is the reason that guideline groups such as the UK National Screening Committee require evidence from high-quality randomised trials to recommend it (UKNSC Criteria).

Mammography screening is being offered to billions of women worldwide when they reach a certain age. It is resource intensive and the balance between its benefits and harms is contested. It is therefore important to know what the benefits and harms are. This is an update of a Cochrane review first published in 2001, and updated in 2009, 2011, and 2013. The previous versions questioned whether the data from the randomised trials supported the value of breast screening and identified important biases in key trials. Updated mortality results from two low risk of bias trials and new requirements for reporting in Cochrane reviews (GRADE assessments and Summary of Findings tables) necessitated this update.

Objectives
To study the effect of screening for breast cancer with mammography on mortality and morbidity.

Methods

Criteria for considering studies for this review

Types of studies
Randomised clinical trials. We did not limit our inclusion of trials based on location, setting, definition of condition, demographic factors, the setting of the screening intervention (hospitals, private clinics, mobile units, etc.), or method of diagnosis (i.e. digital or print mammograms).

Trials using suboptimal randomisation methods such as cluster randomisation, were included but evaluated in separate subgroup analyses. In cases where substantial heterogeneity between trial results could be explained by use of optimal versus suboptimal randomisation methods, we based our conclusions on trials with optimal randomisation methods and chose not to present summary estimates including all trials.

We have discussed recent observational studies in this review as they have provided important contextual knowledge, e.g. in relation to evidence of overdiagnosis and other harms of screening in today's setting. However, such studies were not formally included or analysed in this review.

Types of participants
Women without clinically suspected or previously diagnosed breast cancer.

Types of interventions
The intervention was screening mammography with X-ray imaging. We included trials whether they used film or digital mammograms and did not exclude trials if they used technology such as computer-assisted detection. We did not include trials of tomosynthesis, magnetic resonance imaging (MRI), or ultrasound. Breast screening using X-ray in combination with ultrasound is evaluated in another review (Glechner 2023). We did not exclude trials based on the number or frequency of screening tests or based on age groups included. The control was no offer of screening mammograms, but we accepted clinical and self-breast examination in the control group.

Types of outcome measures
We included trials whether they reported our pre-specified outcomes or not. All our outcome measures of effects were dichotomous (binary data) and differences are presented as risk ratios (RR) with 95% confidence intervals. Absolute differences are also presented using a denominator that allows direct comparisons between benefits and harms, i.e. in our Summary of Findings tables. We report outcomes at 7, 13 and, when possible, 25 years of follow-up. Overdiagnosis was measured as the difference in incidence between the screening and control arm at the latest time of follow-up in those trials that did not offer mammography screening to the control group at the end of the intervention phase. This is the same definition as used in another review (UK review 2012).

Primary outcomes
Mortality from breast cancer
Mortality from any cancer
All-cause mortality
Use of surgical interventions
Use of adjuvant therapy
Harms of mammography

Secondary outcomes
None

Search methods for identification of studies

Electronic searches
For the 2023 update of our review, we searched the following databases up to 28 February 2023:

- PubMed (Appendix 1).
- The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2023, Issue 2) (Appendix 2).
- The Cochrane Breast Cancer Group’s Specialised Register. Details of the search strategies used by the CBCG for the identification of studies and the procedure used to code references are outlined in their
In the original version of the review, we used a very broad search strategy. We searched PubMed with (breast neoplasms[MeSH] OR "breast cancer" OR mammography[MeSH] OR mammograph*) AND (mass screening[MeSH] OR screen*). This search was supplemented with a search on author names in the author field (Alexander F*, Andersson I*, Baines C*, Bjurstam N*, Duffy S*, Fagerberg G*, Friis J*, Miller AB, Moss S*, Nystrom L*, Shapiro S, Tabar L*). The latest search was done on 22 November 2012 and 29,222 records were imported into ProCite. Until the 2009 review, these records were searched for author names, cities and eponyms for the trials; thereafter, all new records were browsed. This very broad search strategy, combined with browsing the titles and reading the abstracts when a paper might be relevant for mammography screening, enabled us to assemble also observational studies of the benefits and harms of screening.

We searched the World Health Organization’s International Clinical Trials Registry Platform (22 November 2012) with this strategy, for Recruitment Status ALL: (Condition: breast AND (cancer% OR carcinoma% OR neoplas% OR tumour% OR tumor%) AND Intervention: screen OR mass screen%) OR (Condition: breast AND (cancer% OR carcinoma% OR neoplas% OR tumour% OR tumor%) AND Intervention: mammograph%) OR (Condition: breast neoplasm AND Intervention: mammography).

Searching other resources

We scanned reference lists and included letters, abstracts, grey literature and unpublished data to retrieve as much relevant information as possible. There were no language restrictions.

Data collection and analysis

Selection of studies

In this updated review, we used Cochrane’s Screen4Me workflow to help assess the search results. Screen4Me comprises three components: known assessments – a service that matches records in the search results to records that have already been screened in Cochrane Crowd and been labelled as an RCT or as Not an RCT; the RCT classifier – a machine learning model that distinguishes RCTs from non-RCTs, and if appropriate, Cochrane Crowd - Cochrane’s citizen science platform where the Crowd help to identify and describe health evidence. For more information about Screen4Me and the evaluations that have been done, please go to the Screen4Me webpage on the Cochrane Information Specialist’s portal: https://community.cochrane.org/organizational-info/resources/resourcesgroups/information-specialists-portal. In addition, more detailed information regarding evaluations of the Screen4Me components can be found in the following publications: Noel-Storr 2020; Noel-Storr 2021; Marshall 2018; Thomas 2020.

Two authors independently decided which trials to include based on the prestated criteria using Covidence software. Disagreements were resolved by discussion (Figure 1).

Data extraction and management

Two authors independently extracted methodological and outcome data; disagreements were resolved by discussion. Extracted data included: number of women randomised; randomisation and blinding procedures; exclusions after randomisation; type of mammography; number of screenings and interval between screenings; attendance rate; introduction of screening in the control group; co-interventions; number of cancers identified; breast cancer mortality; cancer mortality; all-cause mortality; harms of mammography; and use of surgical interventions, chemotherapy, radiotherapy, tamoxifen and other adjuvant therapy.

Assessment of risk of bias in included studies

We assessed whether the randomisation was adequate and led to comparable groups, following standard criteria as closely as possible (Higgins 2008). These included sequence generation and allocation concealment. We also assessed blinding of outcome assessors; incomplete outcome data; selective reporting; and other biases. The risk of bias for each domain was assessed as ‘high’, ‘moderate ’ or ‘low’. As trials of population screening look for small differences in absolute terms, they are sensitive to bias and we payed particular attention to the randomisation method and possible baseline imbalances. We divided the trials into those with adequate randomisation (individual, centralised randomisation) and those with suboptimal randomisation (cluster randomisation, randomisation by date of birth, or randomisation in other ways that would raise concern about baseline imbalances). According to the Cochrane Handbook (Higgins 2008), the primary analysis in a systematic review should be based on studies at low risk of bias. We therefore did not combine results from adequately randomised studies with other studies.

Measures of treatment effect

Risk ratios and 95% confidence intervals. All included outcomes were binary.
Unit of analysis issues

We based our conclusions on the individually randomised trials with adequate randomisation methods. Results from cluster-randomised trials and trials with inadequately randomised were presented in separate subgroups analyses and did not form the basis of our conclusions. As the included trials were old, information required to adjust for clustering effects were not available. Given that we present the results from the cluster randomised trials for transparency and completeness, and as they did not influence our conclusions, an adjustment for clustering effects would not have changed them.

Dealing with missing data

This was assessed as part of our risk of bias assessment. We contacted the primary investigators to clarify uncertainties and to obtain additional data. We analysed available data only and did not impute missing data.

Assessment of heterogeneity

In case of indications of substantial statistical heterogeneity (non-overlapping confidence intervals or I^2 >70%) we explored possible causes in subgroup analyses. Possible methodological reasons for heterogeneity in terms of adequate versus suboptimal randomisation was also explored in subgroup analyses and using the Cochrane risk of bias tool. Any possible clinical heterogeneity was evaluated through the indirectness domain in our GRADE assessment.

Assessment of reporting biases

As trials of population screening tend to be very large, we consider it unlikely that trials were performed but not reported and we have not found indications that such trials exist. The size of the trials also means that small study effects are unlikely and we therefore did not use funnel plots to explore this. Incomplete data assessment and incomplete outcome reporting was considered as part of our risk of bias assessment.

Data synthesis

We performed intention-to-treat analyses, when possible, by including all randomised women. A fixed-effect model with the Mantel-Haenszel method was used, and 95% confidence intervals (CI) are presented. Absolute risk are calculated and presented in our Summary of Findings tables.

In the trials with suboptimal randomisation, we could not carry out a proper analysis for all-cause mortality as we did not have access to the necessary data to correct for baseline differences (see ‘Risk of bias in included studies’) but present the available data in the graphs for the sake of completeness. For breast cancer mortality, our estimates are not formally correct because we were unable to adjust for baseline differences since baseline characteristics were not reported for several of the suboptimally randomised trials. However, they turned out to be in close agreement with the estimates and CIs published by the trialists.

We report outcome data at approximately 7, 13, and 24 years, which were the most common follow-up periods in the trial reports and report effect estimates at multiple time points as not all trials presented data after very long follow-up and as some effects could be diluted over time. We present age groups under 50 years of age, 50 years and above; and 70 years and above, which is the age limits that has most often been used by the trialists and in screening programmes.

Subgroup analysis and investigation of heterogeneity

Apart from analyses by age groups and the division of the trials according to whether they were adequately or suboptimally randomised, we did not perform subgroup analyses.

Sensitivity analysis

We did not do any sensitivity analyses as we had already explored the possible impact of age and randomisation method on the robustness of results in subgroup analyses.

Summary of findings and assessment of the certainty of the evidence

We exported results of our meta-analyses to GRADEpro GDT, which presented these including absolute numbers for our calculated risk ratios. We selected effect measures from the least biassed trials to be presented in the Summary of Findings table and presented a table for all age groups combined; for women aged <50 years; aged >50 years; and 70 years and above. We present Summary of Findings tables for various age groups separately as an expansion of breast screening is currently considered in various countries. However, not all outcomes could be assessed for all age groups and the most complete outcome set is reported for the combined assessment of the intervention for all age groups. We prioritised to present results at longest time of follow up, but as not all trials reported results for total mortality at 25 years, we present this outcome at 13 years of follow-up in the table. In GRADEpro GDT, we performed the GRADE assessment of the certainty of the evidence for each outcome. We assessed the domains: risk of bias; inconsistency; indirectness; imprecision; and publication bias. Data for all our outcomes were available for only one comparison (breast screening in all age groups combined versus no screening). For other comparisons, outcomes for which no data were available are not shown to avoid large empty tables for some age groups.
Results

Our process of trial identification is depicted in Figure 1 and Figure 2. A description of the 8 included trials can be found here: Canada 1980; Canada 1980a; Canada 1980b; Edinburgh 1978; Göteborg 1982; Göteborg 1982a; Göteborg 1982b; Kopparberg 1977; Malmö 1976; Malmö II 1978; New York 1963; Östergötland 1978; Stockholm 1981; Two-County 1977; UK age trial 1991. A description of the 3 excluded trial can be found here: Berglund 2000; Dales 1979; Singapore 1994; and a description of the 2 trials awaiting classification can be found here: AgeX Trial; Murillo 2016.

Included studies

We included eight trials (Canada 1980; Edinburgh 1978; Göteborg 1982; Malmö 1976; New York 1963; Stockholm 1981; Two-County 1977; UK age trial 1991), which comprised slightly different subtrials. The Canadian trial was actually two trials, one covering the age group 40 to 49 years (Canada 1980a) and the other 50 to 59 years (Canada 1980b). The Edinburgh and Malmö trials continued to include women as they passed the lower age limit for entry to the trial, and the Two-County trial had different randomisation ratios in the two counties (Kopparberg 1977; Östergötland 1978). Most trials covered the age range 45 to 64 years, but the UK Age trial invited women aged 39 to 41 years to participate. The Canadian trial was the only one in which the women were individually randomised after invitation and informed consent to participate; the others used a variety of procedures based on a prespecified segment of the female population that was randomised to invitation for screening or to a control group.

The number of screening invitations was in the range of four to nine for all trials except the Stockholm and Two-County trials, in which a large fraction were invited for only two or three screenings. In the Two-County trial, the mammographically screened women were encouraged to perform breast self-examinations once a month on a fixed date (Rapport 1982). This was Swedish policy generally but we do not know for certain whether this was also true for the Göteborg, Malmö and Stockholm trials. Clinical examinations of screened women were performed in New York and Edinburgh. In Canada, in the 40 to 49 year age group, screened women had an annual clinical breast examination whereas control women were examined at the first visit and were taught self-examination for use thereafter. In the 50 to 59 year age group, all women had their breasts clinically examined annually.

The women in the control group were not invited to screening at any point in time in the New York trial, whereas they were invited for screening after 10 to 13 years of follow up in the Edinburgh, Malmö and UK age trials. In the Canadian trial, most of the women in the control group were invited when the trial ended (Baines 2005). Some women were invited for screening while the trial was still ongoing in the Göteborg, Stockholm and Two-County trials (see ‘Risk of bias in included studies’).

In all trials, women in the control groups were offered usual care. This included mammography on indication, that is for suspected malignancy, with the probable exceptions of the New York trial and the first five years of the Two-County trial.

According to the information we identified, the technical quality of the mammograms and the observer variation were assessed only in the Canadian trial. There are data on diagnostic rates, however, that show that the sensitivity in the trials that followed the New York trial has not consistently improved (Fletcher 1993; IARC 2002). Various combinations of one- and two-view mammography were used, i.e. one view mammography was used in the Two-County trial whereas two-view mammography was used in the Canadian trial (see ‘Characteristics of included studies’).

An additional trial in the UK is ongoing (http://www.controlled-trials.com/ISRCTN33292440). This is an age extension, cluster randomised trial, recruiting women aged 47-49 or 71-73 years old, and aiming for a sample size of 3 million women. It started in 2010 and has not yet reported any results.
A small trial from Colombia where only two women died from breast cancer at the time of reporting is awaiting classification (Murillo 2016).

Excluded studies
We excluded two small trials of several interventions including mammography (Berglund 2000; Dales 1979) and a trial involving 166,600 women where the only intervention was a prevalence screen and where exclusions after randomisation occurred only in the screened group; previous cancer at any site was an exclusion criterion and more than 1500 women were excluded from the screened group, 468 because they had already died (Singapore 1994).

Risk of bias in included studies
The trials have been conducted and reported over a long period of time, during which standards for reporting trials have improved. The New York trial, for example, was first reported in 1966 but crucial details on the randomisation method, exclusions and blinding were not published until 20 years later (Aron 1986; Shapiro 1985; Shapiro 1988). Our risk of bias assessment is depicted in our risk of bias graph (Figure 3) and our risk of bias summary (Figure 4), as well as in our forest plots. Data on use of radiotherapy and chemotherapy in the Kopparberg trial were published 14 years after the main results (Tabar 1999). Below, we discuss the trial methodology in detail, which is essential reading to understand the controversies surrounding the effects of screening and the often conflicting information presented. The trials are described consecutively by start date.

The New York trial (New York 1963)

Population studied
The New York trial (also called the Health Insurance Plan (HIP) trial) invited women who were members of an insurance plan and aged 40 to 64 years from December 1963 to June 1966. It reported an individual randomisation within pairs matched by age, family size and employment group (Shapiro 1985). It is not clear whether the randomisation method was adequate; it was described as "alternation" by researchers who contacted one of the trial investigators (Freedman 2004). The entry date for a woman was the date she was scheduled for the examination (Shapiro 1966); the matched control was assigned the same date (Shapiro 1985). The matched pairs method should lead to intervention and control groups of exactly the same size. This is supported by the approximate numbers given in several publications, for example "The women were carefully chosen as 31,000 matched pairs" (Strax 1973). The largest published exact number of women invited is 31,092 (Fink 1972).

Comparability of groups
Posrandomisation exclusions of women with previous breast cancer occurred but this status "was most completely ascertained for screened women," whereas women in the control group "were identified through other sources as having had breast cancer diagnosed before their entry dates" (Shapiro 1988). Using information in the trial reports (Fink 1972; Shapiro 1985; Shapiro 1994), we calculated that 853 (31,092 minus 30,239) women were excluded from the screened group because of previous breast cancer compared with only 336 (31,092 minus 30,756) in the control group. Although it was reported that great care was taken to identify these women, the lead investigator noted that more than 20 years after the trial started some prior breast cancer cases among the controls were unknown to the investigators and those women should have been excluded (Shapiro 1985a). This creates a bias in favour of screening for all-cause mortality and likely also for breast cancer mortality though the authors have written, without providing data, that ascertainment of cases of previous breast cancer was "nearly perfect" in those women who died from breast cancer (Shapiro 1988).

It is difficult to evaluate whether there were other baseline differences between the groups. In one paper (Shapiro 1972) the text described all randomised women and referred to a table that showed baseline differences as percentages but did not provide the numbers upon which the percentages were based. Footnotes explained that some of the data were based on 10% and 20% samples. The table title referred to women entering the trial in 1964, and not all women as claimed in the text. Assuming that the table title is correct, the data presented in some cases were a 1964 subgroup of 10% and 20% samples. These resulting samples are therefore too small to study other possible baseline differences than those related to differential exclusion of women with previous breast cancer.

Assignment of cause of death
We found no data on the autopsy rate. Assignment of cause of death was unblinded for 72% of the women with breast cancer (Shapiro 1988). The differential exclusions and unblinded assessments make us question the reliability of the reported breast cancer mortality rates.

Likelihood of selection bias
We classified the trial as suboptimally randomised.

The Malmö trial (Malmö 1976)

Population studied
This trial recruited women aged 45 to 69 years. Randomisation was carried out by computer within each birth year cohort (Andersson 1981), dividing a randomly arranged list in the middle (Andersson 1999a). The first publication reported that 21,240 women were included to the screened group (Andersson 1980; Andersson 1981), 21,242 to the control group (Andersson 1980; Andersson 1981). The Malmö II trial has been published only in brief (Andersson 1997). We therefore cannot check whether there were differential postrandomisation exclusions. If the same procedure as in the Malmö trial had been followed, the sizes of the study and control group cohorts should not differ by more than one. However, the group size differed more for seven of the 13 birth year cohorts (Nyström 2002). The reported numbers in the individual cohorts do not add up to the reported totals, but to 28 fewer in the study group and 28 more in the control group. Because of an administrative error, the entire 1934 birth year cohort was invited for screening (Andersson 1999b). If this cohort is excluded, there is still a gross imbalance with 5724 women in the study group and only 5289 in the control group, for those aged 45 to 49 years (P = 0.00004, Poisson analysis). In total, there were 9581 and 8212 women in the analyses, respectively (Nyström 2002).

The date of entry into the trial was defined differently for the two groups. For the mammography group it was the date of invitation (Andersson 1988), and the midpoint of these dates for each birth year cohort defined the date of entry for women in the control group (Andersson 2000). Enrolment began in October 1976 (Andersson 2000) and ended in September 1978 (Andersson 1988). It is not clear whether screening of the control group began in December 1990 (Nyström 2000) or in October 1992 (Nyström 2002). Most women in the control group were never screened (Nyström 2002). We calculated the interval between when screening started in the study group and in the control group (the intervention contrast) to be 19 years (Nyström 2002). In the meta-analyses of the Swedish trials, breast cancer cases diagnosed before randomisation were explicitly excluded, further reducing the screened group by 393 and the control group by 412 (Nyström 1993); in total 86 more women were excluded compared to the screened group by 393 and the control group by 412 (Nyström 2002). In the intervention contrast to be 19 years (Nyström 2002). In the meta-analyses of the Swedish trials, breast cancer cases diagnosed before randomisation were explicitly excluded, further reducing the screened group by 393 and the control group by 412 (Nyström 1993); in total 86 more women were excluded compared to the screened group by 393 and the control group by 412 (Nyström 2002). Assignment of cause of death
The autopsy rate for breast cancer cases as presented in the main publication for this trial (Andersson 1988) was high at 76%, but it was halved from 1985 to 1997 (Andersson 2000). Cause-of-death assessments were blinded to the control group rate for eight trials, with data from younger women, the Malmö II trial is a clear outlier (Berry 1998).

Assignment of cause of death

Likelihood of selection bias

We classified the trial as adequately randomised.

The Malmö II trial (Malmö II 1978)

Population studied

This was an extension of the Malmö trial, called MMST II. Women who reached the age of 45 years were enrolled between September 1978 and November 1990; screening of the control group began in September 1991 (Nyström 2000). The long enrolment period gives an average estimated intervention contrast of eight years. Although the entry criterion for age was stated to be 45 years, the trialists included 6780 women aged 40 to 44 (Nyström 2002).

Comparability of groups

The MMST II trial has been published only in brief (Andersson 1997). We therefore cannot check whether there were differential postrandomisation exclusions. If the same procedure as in the Malmö trial had been followed, the sizes of the study and control group cohorts should not differ by more than one. However, the group size differed more for seven of the 13 birth year cohorts (Nyström 2002). The reported numbers in the individual cohorts do not add up to the reported totals, but to 28 fewer in the study group and 28 more in the control group. Because of an administrative error, the entire 1934 birth year cohort was invited for screening (Andersson 1999b). If this cohort is excluded, there is still a gross imbalance with 5724 women in the study group and only 5289 in the control group, for those aged 45 to 49 years (P = 0.00004, Poisson analysis). In total, there were 9581 and 8212 women in the analyses, respectively (Nyström 2002).

This trial was neither included nor mentioned in the 1993 meta-analysis of the Swedish trials (Nyström 1993). The lead investigator informed us that it was not conducted according to a formal protocol (Andersson 1999b), whereas the most recent meta-analysis reported that the trial was conducted with the same protocol as the older part of the trial (Nyström 2002). When the breast cancer mortality rate in the screening group is plotted against the control group rate for eight trials, with data from younger women, the Malmö II trial is a clear outlier (Berry 1998).

Assignment of cause of death

An official registry was used for cause-of-death assessments.

Likelihood of selection bias
We classified the trial as suboptimally randomised.

The Two-County trial (Kopparberg 1977; Two-County 1977; Östergötland 1978) which was not certified by peer review is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

This trial recruited women 40 years of age and over in Kopparberg and Östergötland; the two subtrials were age-matched and cluster randomised (21 and 24 clusters, respectively). The selection of clusters was stratified to ensure an even distribution between the two groups with respect to residency (urban or rural), socioeconomic factors and size (Kopparberg 1977; Tabar 1979; Östergötland 1978). The randomisation process and the definition of the date of entry have been inconsistently described; and some women were only 38 years of age, below the inclusion criterion (Nyström 2002). According to the first publications, random allocation of the women in each community block took place three to four weeks before screening started (Fagerberg 1985); all women from a given block entered the trial at the same time and this date was the date of randomisation (Tabar 1985). However, it has also been described that a public notary allocated the clusters in Östergötland by tossing a coin (Nyström 2000) while witnesses were present (Fagerberg, personal communication, 1999). We have been unable to find any detailed description of the randomisation in Kopparberg but found a recent description for the whole trial: "Randomisation was by traditional mechanical methods and took place under the supervision of the trial statistician" (Duffy 2003). Thus it is not clear whether the randomisation was carried out on one occasion or whether it took place over several years.

Women were invited to their first screening from October 1977 to January 1980 in Kopparberg (Tabar 1981). The cohorts in Östergötland were defined between May 1978 and March 1981. It is not clear how many women were randomised and reported numbers vary considerably, both for numbers randomised (Table 1) and for numbers of breast cancer deaths, despite similar follow up (Getzsche 2004). Documentation of baseline comparability was called for in 1988 (Andersson 1988a) but it appears not to have been published. Since the randomisation was stratified after socioeconomic factors (Tabar 1991), baseline data potentially affecting mortality should exist.

Comparability of groups

The randomisation procedure seems to have led to non-comparable groups. First, breast cancer mortality in the control group was almost twice as high in Kopparberg compared to Östergötland (0.0021 versus 0.0012, P = 0.02). This was not apparent from the tabulated data (Tabar 1985). The published graphs are also potentially misleading; although adjacent mortality curves look much the same the two y-axes are differently scaled (Tabar 1995). Second, in Kopparberg more women in the control group were diagnosed with breast cancer before entry to the trial than in the study group. How the diagnostic information was obtained was not described (Tabar 1989) and the number of women excluded for this reason was not stated, but can be calculated by comparing two tables (Tabar 1985; Tabar 1989). More women were excluded from the control group than from the study group (P = 0.03); most of the imbalance occurred in the age group 60 to 69 years (P = 0.007). In Östergötland, numbers of exclusions were very similar, 1.40% versus 1.39%. Third, age-matching was reported (Tabar 1979; Tabar 1981; Tabar 1985a) but study group women were on average five months older (Nixon 2000), which is a small bias against screening.

We were unable to ascertain when systematic screening of the control group started. The available information is conflicting and the range of the discrepancies amounts to three years for both counties (Arnesson 1995; Duffy 2003; Nyström 1993; Nyström 2000; Nyström 2002; Rapport 1982; Tabar 1979; Tabar 1985; Tabar 1992). It seems most likely that screening of the control group in Kopparberg started in 1982, in accordance with the trial protocol (Rapport 1982) and a doctoral thesis (Nyström 2000). In this case, the impression conveyed in the main publication for the trial that screening was offered to the control group after publication of the results in April 1985 is incorrect (Tabar 1985; Tabar 1992). In the protocol, a five-year intervention period was planned but with a stopping rule based on statistical significance testing every six months (Rapport 1982). The trial publications did not mention the repeated looks at the data (Tabar 1985). We estimated an intervention contrast of five years for Kopparberg and eight years for Östergötland. A valid comparison of benefits and harms of screening should be confined to the period prior to screening of the control group.

No information is available from the primary author of this trial (Atterstam 1999; Prorok 2000; Tabar 2000a). We have not received information from Nyström either on the missing account of the randomisation process in Kopparberg, or from the Swedish National Board of Health (Socialstyrelsen), which funded the trial.

Assignment of cause of death

The autopsy rate was 36% (Projektgruppen 1985). According to an investigator involved with the trial (Crewdson 2002), other Swedish trialists (Nyström 2002), and an IARC report (IARC 2002), cause-of-death assessments were not blind. This has been disputed by the lead investigator of the trial (Tabar 2002). In a meta-analysis of the Swedish trials, a blinded independent endpoint committee reassessed the death classifications (Nyström 1993).

Likelihood of selection bias

We classified the trial as suboptimally randomised and likely to be biased.

The Edinburgh trial (Edinburgh 1978)

Population studied

This trial used cluster randomisation with about 87 clusters (the number varies in different reports); the age group was 45 to 64 years. Coded general practices were stratified by size and allocated by manual application of random numbers. In one district, at least three of the 15 practices initially randomised to the screening group later
changed allocation status, and at least four others were added (Alexander 1989). Two of these practices were unintentionally told the wrong group, and three changed allocation group because of "statistical considerations" (Roberts 1984). One practice was included in the follow-up even though it was not a specified screening practice that did not participate in the randomisation (Roberts 1984). Two practices were mistakenly assigned to different arms of the trial. The trialists carried out analyses with these women removed (Alexander 2000) but as far as we know the data have not been published.

Comparability of groups

Doubts about the randomisation process were raised by the trialists (Alexander 1989), supported by baseline differences: 26% of the women in the control group and 53% in the study group belonged to the highest socioeconomic level (Alexander 1994), and mammographic screening was associated with an unlikely 26% reduction in cardiovascular mortality (Alexander 1989). Entry dates were defined differently. In most practices the entry date was the date the invitation letter was issued; for women in hospital it was the date their names appeared on a list sent to their general practitioner. The entry date for five practices was not defined. In the control group, the entry date was the date the physician's practice was indexed. Before entry, the general practitioners in the screening practices had to decide whether each woman would be suitable for invitation to screening. Physicians in the control practice decided whether each woman would be eligible to receive a leaflet about breast self-examination (Roberts 1984). The eligibility criteria were thus broader for the control group and the entry dates seem to be earlier. Practices were enrolled one at a time over a period of 2.5 years, from 1979 to 1981 (Alexander 1989). Women turning 45 years of age and women moving into the city were enrolled on an ongoing basis (Roberts 1989). Recruitment of the control group began in the 10th year of follow up (Alexander 1994). The exclusion procedures were different in the study and control groups (Chamberlain 1981; Roberts 1984) and 338 versus 177 women were excluded because of prior breast cancer (Alexander 1994).

Likelihood of selection bias

This trial was not adequately randomised and was so biased that it cannot provide reliable data. We have therefore shown its results in a separate graph, for completeness only.

The Canadian trial (Canada 1980; Canada 1980a; Canada 1980b)

Population studied

Women aged 40 to 59 years were individually randomised after invitation and giving informed consent. Their names were entered successively on allocation lists, where the intervention was prespecified on each line. An independent review of ways in which the randomisation could have been subverted uncovered no evidence of this (Bailar 1997). Enrolment took place from January 1980 to March 1985 (Canada 1980a).

Comparability of groups

Fifty-nine women in the age group 40 to 49 years and 54 in the age group 50 to 59 years were excluded after randomisation (Miller 2000; Miller 2002); none were excluded because of previous breast cancer. The comparison groups were nearly identical in size (25,214 versus 25,216 aged 40 to 49 years; and 19,694 aged 50 to 59 years), and were similar at baseline for age and nine other factors of potential prognostic importance (Baines 1994; Canada 1980; Canada 1980a; Canada 1980b; Miller 2000; Miller 2002). There were more small node-positive cancers at baseline in the screened group than in the control group among women aged 40 to 49 years, but this is a post-hoc subgroup finding which is probably a result of the intervention (Baines 1995; Baines 1997; Canada 1980). Several women with positive nodes were probably unrecognised in the control group (Miller 1997a). This is supported by the fact that 47% of women with node-negative cancer in the usual care group died of breast cancer compared with 28% in the mammography group (Miller 1997). Exclusion of the deaths caused by these cancers did not change the result (Baines 1995; Baines 1997; Canada 1980).

Assignment of cause of death

The autopsy rate was low, 6% (Baines 2001). Cause-of-death assessments were blinded for women with diagnosed breast cancer and for other possible breast cancer deaths, for follow up after seven years. For follow up after 13 years, death certificates were used in a minority of cases as some hospitals refused to release clinical records (Miller 2000; Miller 2002).

Likelihood of selection bias

We classified the trial as adequately randomised.

The Stockholm trial (Stockholm 1981)

Population studied

In this trial, women were invited for screening if they were aged 40 to 64 years in 1981 (born 1917 to 1941) and were born on days 1 to 10 in a month, or if they were aged 40 to 64 years in 1982 (born 1918 to 1942) and were born on days 21 to 30 in a month (Frisell 1986). Similarly, there were two groups of controls but since they were all born on days 11 to 20 in a month, most women served as controls twice (those born in 1918 to 1941). Invitations were sent successively by ascending order of birth date (Frisell 1989). The date of entry was the date of invitation (Frisell 1991). Enrolment of the first cohort began in March 1981 and ended in April 1982; enrolment of the second cohort began in April 1982 and ended in May 1983 (Frisell 2000a).

Comparability of groups

The practices was not de fi

erently. In most practices the entry date was the date the invitation letter was issued; for women in hospital it was the date their names
Since the control women born in 1918 to 1941 served as controls for both subtrials (Frisell 1989a; Frisell 2000b) they should have two entry dates, approximately one year apart, but this was not described. According to the methodology, we should have had a starting number of 45,000 cases in the potential pool of 60,000 women, but we found an imbalance in the number of women in the subtrials. More women belonged to the screened group than to the control group (Frisell 1991). Furthermore, in the time period where 19,507 women born from 1918 to 1942 were invited to screening, only 929 women, all born in 1942, were included in the control group (Nyström 2002).

The reported numbers of women in the various subgroups are inconsistent, as are the numbers reported to us in personal communications (Frisell 2000a; Frisell 2000b). Because of the problems related to timing and the overlap of the two control groups, results from the two subtrials were not independent, and the estimates cannot be pooled without correction for dependence. It is not clear how these difficulties were handled in the trialists’ analysis (Frisell 1991) or in the Swedish meta-analyses (Nyström 1993; Nyström 2000; Nyström 2002).

The first trial report did not describe any women excluded after randomisation; only breast cancer cases identified during the intervention period were followed up to ascertain breast cancer deaths (Frisell 1991). Exclusions occurred in later publications but no numbers were given (Frisell 1997; Nyström 1993; Nyström 2000) and the numbers we have received in personal communications have been inconsistent (Frisell 2000a; Frisell 2000b).

Of those attending the first screening, 25% had had a mammogram in the two previous years (Frisell 1989a). Information on screening of the control group varied. A meta-analysis noted that a few women were screened after three years and most after four years (Nyström 1993), a doctoral thesis stated that the controls were invited for screening from October 1985 (Nyström 2000), and the trialists noted that they were invited during 1986 (Frisell 1989a; Frisell 1991). We estimated an intervention contrast of four years. A valid comparison of benefits and harms of screening should be restricted to this period (Frisell 1991).

Assignment of cause of death

It is not stated whether cause-of-death assessments were blinded for this initial period. The autopsy rate was 22% (Nyström 2000).

Likelihood of selection bias

We classified the trial as suboptimally randomised.

The Göteborg trial (Göteborg 1982)

Population studied

This trial included women aged 39 to 59 years. Birth year cohorts were randomised by the city municipality’s computer department with the ratio between study group and control group adjusted according to the capacity of the screening unit (Bjurstam 2000; Nyström 2002). The randomisation was by cluster based on date of birth in the 1923 to 1935 cohorts, and by individual birth date for the 1936 to 1944 cohorts (Bjurstam 1997).

Comparability of groups

We found baseline data only on age, and only for those aged 39 to 49 years. Since the allocation ratios were irregular due to limited screening capacity (Bjurstam 2016), we could not assess the comparability of groups and adequacy of randomisation, but the randomisation process is described as by day-of-birth-cluster up to November 1983, after which individual randomisation was used (Bjurstam 2016). The randomisation ratios were most extreme for the oldest and the youngest birth-year cohorts randomised in clusters; for 1923, there were 2.0 times as many women in the control group as in the study group, whereas for 1935 there were only 1.1 times as many. Since breast cancer mortality increases with age, this bias favoured screening and can be adjusted for by comparing the results within each birth-year cohort before they are pooled (Bjurstam 2003).

This was the only trial to show a difference in total mortality at 13 years of follow-up (RR 0.89, CI 0.83 to 0.95) (Analysis 1.10). As the trial was much underpowered to show such a difference, this result lends support to our assessment that the randomisation was suboptimal and led to baseline differences for prognostic factors important for survival. Furthermore, fewer breast cancers were identified in the screening arm than in the control arm when the control arm had been screened once at the end of the trial period (incidence rate ratio for women 39 to 59: 0.90). This can be calculated from data presented in a table in (Bjurstam 2016). For breast screening to reduce disease specific mortality, the requisite advancement of time of diagnosis means there must be more cancers detected in the screening arm than the control arm. The difference was driven by women aged 39 to 49 (incidence rate ratio: 0.82) whereas the incidence was similar between groups in women aged 50 to 59 years (incidence rate ratio: 0.99). As the disease specific mortality difference in the trial was driven by the younger age group as well (RR 0.60 vs 0.82 (ns))(Bjurstam 2016), the apparent benefit of breast screening in this trial could be explained by baseline differences.

Entry dates were not defined but the birth year cohorts were randomised one at a time, beginning with the 1923 cohort in December 1982 and ending in April 1984 with the 1944 cohort. A similar proportion of women were excluded from the study and control groups, 254 (1.2%) and 357 (1.2%), because of previous breast cancer (Bjurstam 2003). Information on screening of the control group varied, ranging from three to seven years after randomisation (Bjurstam 1997; Bjurstam 2003; Nyström 1993, figure; Nyström 2000). We estimated an intervention contrast of five years. A valid comparison of benefits and harms of screening should be confined to this period.

Assignment of cause of death
The autopsy rate was 31% (Nyström 2000). Cause-of-death assessments were blinded.

Likelihood of selection bias
We classified the trial as suboptimally randomised.

The UK age trial (UK age trial 1991)

Population studied
This trial included women aged 39 to 41 years who were randomised individually between 1991 and 1997 to an intervention group or a control group, in a ratio of 1:2. Women in the control group received no information about the trial. The trial was undertaken in 23 breast-screening units in England, Wales, and Scotland. Women were identified from lists of patients from general practitioners held on local Health Authority databases and randomisation was carried out stratified by practice. Prior to this, the general practitioners could remove women with previous breast cancer and others deemed inappropriate to invite for screening. From 1992 onwards the allocations were carried out on the Health Authority computer system with specifically written software. Before this, for women in three early centres, random numbers generated from the coordinating centre computer were applied to the lists.

Comparability of groups
We found baseline data only on age; the mean age was 40.38 and 40.39 years, respectively. Thirty and 51 women (0.05%) were excluded from analysis for similar reasons in the two groups. The intervention contrast was 10 years. A valid comparison of benefits and harms of screening should be confined to this period.

Assignment of cause of death
There was no information on autopsy rate; information on cause of death was obtained from the central register of the National Health Service.

Likelihood of selection bias
We classified the trial as adequately randomised.

Sources of data used for the meta-analyses

Allocation
We classified three trials as adequately randomised (Canada, Malmö and UK age trial) and four as suboptimally randomised (Göteborg, New York, Stockholm, Two-County), as was also the extension of the Malmö trial, MMST II. One trial (Edinburgh) was not adequately randomised and cannot provide reliable data.

Blinding
We classified three trials as having low risk of bias for cause of death assessment (Canada, Malmö and UK age trial) and four trials as having high risk of bias due to lack of blinded cause of death assessment (Göteborg, New York, Stockholm, and Two-County).

Incomplete outcome data
We classified four trials as having low risk of bias due to incomplete reporting (Canada, Malmö, Göteborg and UK age trial) and three as having high risk (New York, Stockholm, Two-County).

Selective reporting
We classified four trials as having low risk of bias due to selective reporting (Canada, Malmö, Göteborg and UK age trial) and three as having high risk (New York, Stockholm, Two-County). All-cause mortality estimates for the adequately randomised trials (Analysis 1.9; Analysis 1.10; Analysis 1.15). The suboptimally randomised trials did not provide reliable estimates after 13 years; and RR 1.01, 95% CI 0.99 to 1.04 after 22 years (data only available for the Canadian and UK Age trial). All-cause mortality was not reduced; RR 0.98, 95% CI 0.94 to 1.03 after 7 years; RR 0.99, 95% CI 0.95 to 1.03 after 13 years; and RR 1.01, 95% CI 0.99 to 1.04 after 22 years (data only available for the Canadian and UK Age trial). The adequately randomised trials did not find an effect of screening on deaths ascribed to breast cancer in the youngest age group (under 50 years of age at randomisation except for Malmö for which the limit was 55 years): RR 0.94 (95% CI 0.78 to 1.14) after 7 years and RR 0.87 (95% CI 0.73 to 1.03) after 13 years (Analysis 1.3; Analysis 1.5). The suboptimally randomised trials found an RR of 0.81 (95% CI 0.63 to 1.05) after 7 years and RR 0.75 (95% CI 0.67 to 0.83) after 13 years (Analysis 1.1; Analysis 1.2). The adequately randomised trials did not find an effect of screening on deaths ascribed to breast cancer in the suboptimally randomised trials found an RR of 0.71 (95% CI 0.61 to 0.83) after 7 years and RR 0.75 (95% CI 0.67 to 0.83) after 13 years (Analysis 1.1; Analysis 1.2). The adequately randomised trials did not find an effect of screening on deaths ascribed to breast cancer before systematic screening in the control group started (data were not available for the Canadian and UK age trials)(Analysis 1.1; Analysis 1.2). The four suboptimally randomised trials found a beneficial effect: RR 0.71 (95% CI 0.61 to 0.83) after 7 years and RR 0.75 (95% CI 0.67 to 0.83) after 13 years (Analysis 1.1; Analysis 1.2). The adequately randomised trials did not find an effect of screening on deaths ascribed to breast cancer after the intervention phase (RR 1.25, CI 1.18 to 1.34) (Analysis 1.14). Only the Two-County trial included women aged 70 years and above and reported results. It was not possible to provide reliable estimates of effect for this age group. Deaths ascribed to breast cancer We judged assignment of breast cancer mortality to be unreliable and biased in favour of screening (see above and ‘Discussion’), but included this outcome because it was the main focus in all trials. The three adequately randomised trials did not find an effect of screening on deaths ascribed to breast cancer, risk ratio (RR) 0.93 (95% CI 0.79 to 1.09) after 7 years; RR 0.90 (95% CI 0.79 to 1.02) after 13 years; and RR 0.95 (95% CI 0.86 to 1.04) after 22 years (data available only for the Canadian and UK age trials)(Analysis 1.1; Analysis 1.2; Analysis 1.7). The four suboptimally randomised trials found a beneficial effect: RR 0.71 (95% CI 0.61 to 0.83) after 7 years and RR 0.75 (95% CI 0.67 to 0.83) after 13 years (Analysis 1.1; Analysis 1.2). The adequately randomised trials did not provide reliable estimates of breast cancer deaths after 13 years (Analysis 1.2). The effects of the intervention for various age groups and times of follow-up, as well as our GRADE assessments for primary and secondary outcomes, are summarized in our Summary of Findings tables here: Summary of findings table 1; Summary of findings table 2; Summary of findings table 3; Summary of findings table 4. Other potential sources of bias We classifi ed four trials as having low risk of bias due to other reasons (Canada, Malmö, and UK age trial) and four as having high risk (New York, Stockholm, Göteborg, and Two-County).

Effects of interventions

Eight trials provided data. We classified three trials as adequately randomised (Canada, Malmö and UK age trial) and four as suboptimally randomised (Göteborg, New York, Stockholm, Two-County), as was also the extension of the Malmö trial, MMST II. One trial (Edinburgh) was assessed as being too unreliable to provide reliable data due to substantial baseline imbalances and it is accordingly excluded from other key reviews (UK review 2012); we have therefore only shown its results for completeness, in a separate graph (Analysis 1.22). As the short-term results from the UK Age trial were obtained after a mean follow up of 10.7 years, we included them in the results both after 7 and after 13 years(Analysis 1.1; Analysis 1.2). The adequately randomised trials provided 40% of the breast cancer deaths after 13 years (Analysis 1.2). The effects of the intervention for various age groups and times of follow-up, as well as our GRADE assessments for primary and secondary outcomes, are summarized in our Summary of Findings tables here: Summary of findings table 1; Summary of findings table 2; Summary of findings table 3; Summary of findings table 4.

Deaths ascribed to breast cancer

We judged assignment of breast cancer mortality to be unreliable and biased in favour of screening (see above and ‘Discussion’), but included this outcome because it was the main focus in all trials. The three adequately randomised trials did not find an effect of screening on deaths ascribed to breast cancer, risk ratio (RR) 0.93 (95% CI 0.79 to 1.09) after 7 years; RR 0.90 (95% CI 0.79 to 1.02) after 13 years; and RR 0.95 (95% CI 0.86 to 1.04) after 22 years (data available only for the Canadian and UK age trials)(Analysis 1.1; Analysis 1.2; Analysis 1.7). The four suboptimally randomised trials found a beneficial effect: RR 0.71 (95% CI 0.61 to 0.83) after 7 years and RR 0.75 (95% CI 0.67 to 0.83) after 13 years (Analysis 1.1; Analysis 1.2). The adequately randomised trials did not find an effect of screening on deaths ascribed to breast cancer in the youngest age group (under 50 years of age at randomisation except for Malmö for which the limit was 55 years): RR 0.94 (95% CI 0.78 to 1.14) after 7 years and RR 0.87 (95% CI 0.73 to 1.03) after 13 years (Analysis 1.3; Analysis 1.5). The suboptimally randomised trials found an RR of 0.81 (95% CI 0.63 to 1.05) after 7 years and RR of 0.80 (95% CI 0.64 to 0.98) after 13 years (Analysis 1.3; Analysis 1.5). For women aged >50 years, the estimates for the adequately randomised trials were RR 0.88 (95% CI 0.64 to 1.20) and RR 0.94 (95% CI 0.77 to 1.15), respectively; for suboptimally randomised trials they were RR 0.67 (95% CI 0.56 to 0.81) and RR 0.70 (95% CI 0.62 to 0.80), respectively (Analysis 1.4; Analysis 1.6). Only the Two-County trial included women aged 70 years and above and reported results. It was not possible to provide reliable estimates of effect for this age group.

Deaths ascribed to any cancer

The adequately randomised trials did not find an effect of screening on deaths ascribed to any cancer, including breast cancer; RR 1.00, 95% CI 0.96 to 1.04; the follow up was 10.5 years for Canada, 9 years for Malmö and 23 years for the UK age trial (Analysis 1.8). The suboptimally randomised trials did not provide reliable estimates of total cancer mortality (see above); the estimate for the two suboptimally randomised trials that provided data (New York and Two-County trials) was RR 0.99 (95% CI 0.93 to 1.06)(Analysis 1.8).

All-cause mortality

All-cause mortality was not reduced; RR 0.98, 95% CI 0.94 to 1.03 after 7 years; RR 0.99, 95% CI 0.95 to 1.03 after 13 years; and RR 1.01, 95% CI 0.99 to 1.04 after 22 years (data only available for the Canadian and UK Age trials)(Analysis 1.9; Analysis 1.10; Analysis 1.15). The suboptimally randomised trials did not provide reliable estimates of the effects on all-cause mortality (see ‘Risk of bias in included studies’ and ‘Discussion’) and the reported effects were heterogeneous (P = 0.03 after 7 years; P = 0.001 after 13 years). For completeness, their mortality estimates are shown in the graphs but collectively, they did not show a difference either (Analysis 1.10). For women under age 50 years, see (Analysis 1.11; Analysis 1.13); for women over age 50 years, see (Analysis 1.12; Analysis 1.14).

Number of cancers (overdiagnosis)

More women were diagnosed with breast cancer in the screened group in the adequately randomised trials that did not systematically screen women in the control group after the intervention phase (RR 1.25, CI 1.18 to 1.34) (Analysis 1.23). Systematic screening offered to the control group at the end of the intervention phase means overdiagnosis cannot be reliably assessed in the remaining trials.

Surgery

More breast operations (mastectomies plus lumpectomies) were performed in the study groups than in the control groups: RR 1.31 (95% CI 1.22 to 1.42) for the adequately randomised trials; RR 1.42 (95% CI 1.26 to 1.61) for the suboptimally randomised trials before systematic screening in the control group started (data were available only for Kopparberg and Stockholm)(Analysis 1.16). The increased surgery rate could not be explained
by the excess of detected tumours at the first screen but seemed to persist, as the mean follow up was seven years for Canada and nine years for Malmö. For Stockholm, the reported data after five years had been transformed according to the smaller size of the control group (Rapport 1982) but have not been published.

The number of mastectomies (excluding partial mastectomies, quadrantectomies and lumpectomies) was also increased: RR 1.20 (95% CI 1.08 to 1.32) for the adequately randomised trials; RR 1.21 (95% CI 1.06 to 1.38) for the suboptimally randomised trials (Analysis 1.17).

Other adjuvant therapy

We found little information on other adjuvant therapy. It differed substantially for two of the Swedish trials even though they were carried out at the same time. Chemotherapy was given to only 7% of the breast cancer patients in Malmö but to 31% in Kopparberg before the control group was screened (Analysis 1.19). Conversely, hormone therapy was given to 17% in Malmö, and to 2% in Kopparberg (Analysis 1.20). Information exists from Kopparberg on therapeutic adjuvant therapy given over the years but has not been published (Tabar 1999).

Radiotherapy

More women received radiotherapy in the study groups: RR 1.24 (95% CI 1.04 to 1.49) for Malmö after nine years; and RR 1.40 (95% CI 1.17 to 1.69) for Kopparberg before the control group screen (Analysis 1.18).

Harms

We found no comparative data on psychological morbidity. Duration of sick leave and mobility of the shoulder were recorded in the Two-County trial (Rapport 1982) but have not been reported.

Discussion

Summary of main results

The decision to embark on the screening programmes was made mainly because of the positive results in the New York and Two-County trials (Forrest report 1986). Policy makers and many scientists believed that the benefit of screening was well documented. However, information essential to judging the reliability of the trials was often unpublished or published only in Swedish, in theses, letters, conference reports, reviews, or in journals that are not widely read and with titles and abstracts that did not indicate that important data were described. Furthermore, the harms of screening received very little attention.

Breast cancer mortality

The main focus in the screening trials was breast cancer mortality, as very large trials are needed to assess the effect on all-cause mortality. We cannot assume, however, that a beneficial effect on breast cancer mortality can be translated into improved overall survival. First, screening may increase mortality because of overdiagnosis and the increased use of radiotherapy. A meta-analysis predicted that overall, radiotherapy is beneficial for women at high risk of local recurrence. However, it is harmful for women at particularly low risk such as those who have their cancers found by screening and those who are overdiagnosed. This is primarily because of damage to the coronary arteries and development of heart failure resulting from at least some types of radiotherapy (EBCTCG 2000) and because radiotherapy causes lung cancer. A meta-analysis of radiotherapy showed that there was a 27% excess mortality from heart disease and a 78% excess mortality from lung cancer (EBCTCG 2005a). This excess mortality becomes important when many healthy women are overdiagnosed, even if radiotherapy has been improved and harms reduced since the trials.

Second, assessment of cause of death is susceptible to bias. The authors of the Two-County trial assessed cause of death openly and reported a 24% reduction in breast cancer mortality for Östergötland (Tabar 2000), whereas a meta-analysis of the Swedish trials based on an official cause of death register reported only a 10% reduction for Östergötland (Nyström 2002). The trial authors reported 10 fewer deaths from breast cancer in the study group despite slightly longer follow up, and 23 more deaths in the control group. They have not provided a plausible explanation of this large discrepancy (Duffy 2002; Tabar 2002). In 2009, "a complete audit of breast cancer cases and deaths" in the Two-County trial was published, but it is not convincing (Holmberg 2009). There was no blinding; it was not an independent audit; there was no attempt at producing a new data set based on the clinical records (which were only retrieved "where necessary"); and the Two-County trialists were directly involved with interpretations and resolving disagreements.

The bias seems to favour screening even when cause of death is determined blindly. In the New York trial, differential misclassification might be responsible for about half of the reported breast cancer mortality benefit. A similar number of dubious cases were selected for blinded review from each group, but a much smaller proportion of the screened group were finally classified as having died from breast cancer (Getzschke 2004). Furthermore, although the mammographic equipment was standard at the time, its performance was poor. Only 15% of 299 cancers in the study group were detected solely by mammography, and mammography did not identify a single case of minimal breast cancer (< 1 cm) (Thomas 1977). The New York trial reported a 35% reduction in breast cancer mortality after seven years, but we consider it unlikely that it was a true effect.

In conjunction with the first meta-analysis of the Swedish trials, causes of death were reclassified blindly in some patients (Nyström 1993). Breast cancer was considered the underlying cause of death in 419 of the screened group and 409 of the control group according to Statistics Sweden, and in 418 and 425 cases according to the committee (Nyström 1993). The fact that all 17 reclassifications favoured the screened group suggests differential
misclassification. This bias is difficult to avoid (Gotzsche 2001). Early cancers are treated by lumpectomy and radiotherapy, and radiotherapy reduces the rates of local recurrence by about two-thirds (EBCTCG 2000). This might increase the likelihood that deaths from 2000 to 2004 will be ascribed to breast cancer (EBCTCG 1995). The bias might have occurred because breast cancer deaths from other causes (EBCTCG 1992) will be misclassified as deaths from breast cancer. In fact, for the Swedish trials it was stated that "most patients with locally advanced disease will die due to cancer" and that breast cancer as the underlying cause of death includes women with locally advanced breast cancer, whereas women who have been treated successfully should not be classified as having breast cancer deaths if another specified disease could be the cause of death (Nyström 2000). The use of an official cause of death register as in more recent meta-analyses (Nyström 2002) cannot solve these problems.

Postrandomisation exclusion of women who already had breast cancer at the time of entry to the trial is another possible source of bias. The exclusions were sometimes made many years after the trial started, or even after it had ended. In the Two-County trial, only women who were considered to have died from breast cancer were excluded (Nixon 2000), a highly bias-prone process because those assessing cause of death were not blinded for screening status. Furthermore, the process seemed not to have been adequately monitored as it was not possible to identify prior breast cancers in Östergötland, by cluster (Nixon 2000). It should therefore not be possible to do analyses that respect the clustering with those women excluded, although such analyses have been reported (Tabar 1989; Tabar 1990; Tabar 1991; Tabar 1995). A study that used the same registers as those used by the trialists found that a large number of breast cancer cases and deaths seemed to be missing in reports on the Two-County trial (Zahl 2006). Another study found that the large reduction in breast cancer mortality agreed poorly with the cancer stages that were reported (Zahl 2001).

The largest effects on breast cancer mortality were reported in trials that had long intervals between screenings (Two-County trial), invited a large fraction of the women to only two or three screenings (Two-County and Stockholm trials), started systematic screening of the control group after three to five years (Two-County, Göteborg and Stockholm trials), had only one-view mammography rather than two views (Two-County trial), and that had poor equipment for mammography (New York trial); and the cancers found with mammography were considerably smaller in the Canadian trial than in the Two-County trial (Narod 1997). This suggests that differences in reported effects are related to the risk of bias in the trials rather than to the quality of the mammograms or the screening programmes. The sensitivity of mammographic readings in the trials that followed the New York trial has not consistently improved (Fletcher 1993; IARC 2002) and meta-analyses have failed to find an association between mammographic quality and breast cancer mortality (Glasziou 1995; Kerlikowske 1995). A meta-analysis found that the effect of screening was largest in those trials that found fewest node-positive cancers in the screened group relative to the control group (Gotzsche 2011). However, the regression line was in the wrong place. A screening effectiveness of zero (same proportion of node-positive cancers in the screened group as in the control group) predicted a 16% reduction in breast cancer mortality after 13 years (95% CI 9% to 23% reduction). This can only occur if there is bias, and there was bias for both variables, assessment of cause of death and of the number of node-positive cancers.

Several of the trials had clinical examination or regular self-examination of the breasts as part of their design (see 'Description of studies') but this is not likely to have had a major influence on the effect estimates. The effect of clinical examination is uncertain, and large randomised trials did not find an effect of self-examination (Kösters 2003).

Cancer mortality

The major difficulty in assessing cause of death might have occurred when the patients were diagnosed with more than one malignant disease (Miller 2001). The importance of autopsy is illustrated by the fact that 21% of the women with breast cancer who died in the Malmö trial had two or three types of different cancers (Andersson 1988a; Janzon 1991). Patients with cachexia and no signs of recurrence of breast cancer would likely be assigned to another type of cancer.

Since cancer mortality is likely to be less subject to bias than breast cancer mortality, we calculated what the expected cancer mortality (including breast cancer mortality) would be if the reported reduction in breast cancer mortality of 29% after seven years for the suboptimally randomised trials (Analysis 1.1) were true. Weighting the four trials that provided data on number of cancer deaths (Analysis 1.8), the expected risk ratio was 0.95. However, all-cancer mortality in these trials was not reduced (RR 1.00, 95% CI 0.96 to 1.05), and this estimate was higher than what was expected (P = 0.02). This provides further evidence that assessment of cause of death was biased in favour of screening. Data from the Two-County trial (Tabar 1988) illustrates the misclassification directly (Analysis 1.21) (Gotzsche 2004). Among women with a diagnosis of breast cancer, mortality for other cancers was higher in the screened group and mortality from all other causes also tended to be higher. The increase in mortality for causes other than breast cancer amounts to 38% of the reported decrease in breast cancer mortality in the Kopparberg part of the trial and 56% in the Östergötland part.

It has been shown that belief in the effectiveness of an intervention may influence the decision on which type of cancer caused the patient's death (Newschaffer 2000). Also, lethal complications of cancer treatments are often ascribed to other causes. The size of this misclassification is 37% for cancer generally and 9% for breast cancer (Brown 1993).

For our current update, we could include cancer deaths also from the UK Age trial. Screening still had no effect on cancer mortality, RR 1.00 (95% CI 0.96 to 1.04).
All-cause mortality

The trials were not powered to detect an effect on all-cause mortality, but it is an important outcome since the identified risk relates to breast cancer mortality as well. The trials that included 300,000 women do not have power to show an effect on all-cause mortality in the trials with suboptimal randomisation. Furthermore, these trials introduced early screening of the control group or had differentially excluded women after randomisation. Incidentally, however, all-cause mortality after 13 years was the same in adequately randomised trials and in suboptimally randomised trials (RR 0.99, 95% CI 0.97 to 1.03; and RR 0.99, 95% CI 0.97 to 1.01, respectively). There were many more deaths after 22 years, and RR was now 1.01 (95% CI 0.99 to 1.04) for the adequately randomised trials, which speaks against any mortality benefit of mammography screening.

While the Göteborg trial found a reduction in all-cause mortality (Bjurstam 2016), being the only trial to do so, it was substantially underpowered to show this, even if its estimated reduction in cause-specific mortality was correct. The reduction in all-cause mortality therefore supports that the trial was biased due to suboptimal randomisation and that its estimated effect on breast cancer mortality is unreliable.

In 2000, the estimate reported for the four Swedish trials was RR 1.00 (95% CI 0.98 to 1.02) after adjustment for imbalances in age (Nyström 2000). In 2002, the authors reported a 2% non-significant reduction in all-cause mortality (RR 0.98, 95% CI 0.96 to 1.00) and stated that they would have expected a 2.3% reduction (Nyström 2002). However, the calculation was incorrect and the expected reduction, given their results, was only 0.9% (Gøtzsche 2002a). The error has been acknowledged (Nyström 2002a; The Lancet Erratum 2002) but the published response to our criticism was also incorrect (Nyström 2002b). The reported decrease of 2% in total mortality corresponds to a 10% decrease in all-cancer mortality, which is not plausible (see ‘Cancer mortality’ above).

The Östergötland part of the Two-County trial contributed about half of the deaths in the 2002 report and had a risk ratio for all-cause mortality of 0.98 (Nyström 2002). The women were randomised to only 24 clusters. In the Edinburgh trial there were 87 clusters, but double as many women in the invited group belonged to the highest socioeconomic level compared to the control group (Alexander 1994). Socioeconomic factors are strong mortality predictors and could easily explain a 2% reduction in all-cause mortality, but such data remain unpublished and are also unavailable for the other Swedish trials. It has been reported that pretrial breast cancer incidence and breast cancer mortality were similar in the study group and in the control group in Östergötland (Nyström 2002), but the power of the test was very low (Gøtzsche 2002a). In contrast, another report found that breast cancer mortality was 15% lower in the invited groups in the Two-Country trial and that correction for this difference changed the estimate of the effect from a 31% reduction to a 27% reduction in breast cancer mortality (Duffy 2003).

It is not clear why the unadjusted and age-adjusted estimates for all-cause mortality were the same with an RR of 0.98. The 2002 Swedish meta-analysis comprised 43,343 deaths whereas in the 2000 meta-analysis of 27,582 deaths the estimates were RR 1.06 (95% CI 1.04 to 1.08) (Gøtzsche 2000) and RR 1.00 (95% CI 0.98 to 1.02) (Nyström 2000), with non-overlapping confidence intervals. The Kopparberg part of the Two-County trial was not available for the 2002 meta-analysis, but this should not have made any difference since the RR for Kopparberg was 1.00 (95% CI 0.96 to 1.04) (Nyström 2000). The only other difference is that the extended data for the Malmö trial (MSST II) were included, but this trial contributed only 702 deaths (1.6%).

All-cause mortality has been reported to be lower in the Two-County trial when the analysis was confined to women with breast cancer (Tabar 2002a). Such subgroup analyses are very unreliable, as are similar analyses in historically controlled studies (Tabar 2001; Tabar 2003a), since many breast cancer cases in the screened groups will have an excellent prognosis because of overdiagnosis and length bias (Berry 2002).

Overdiagnosis and overtreatment

Overdiagnosis is an inevitable consequence of cancer screening and a critically important source of harm (IARC 2002). Screening primarily identifies slow-growing cancers and cell changes that are biologically benign (Doll 1981; Ernster 1996; Fox 1979). This is because slow-growing tumours have existed for longer than fast-growing tumours in the detectable range of tumour sizes and are therefore more likely to be detected at a screening session (length bias). Survival of women with screen-detected cancers is therefore very high, for example 97% in Malmö after 10 years (Janzon 1991). Even within the same stage, it is higher for cancers detected clinically (Moody-Ayers 2000).

The level of overdiagnosis and overtreatment was about 25% in the trials that did not introduce early screening in the control group, and somewhat larger (33%) in the suboptimally randomised trials before the control group screen (Analysis 1.23). This is apart from the New York trial, which is unreliable since far more breast cancer cases were excluded from the screened group than from the control group (Shapiro 1977; Shapiro 1982; Shapiro 1989). The true increase in surgery is considerably larger, however. As the excess surgery in the trials is similar to the increase in diagnoses, reoperations have likely not been included, although many women are operated upon more than once. In New South Wales, for example, one third of women with carcinoma in situ had either mastectomy alone (19%) or after breast conserving surgery (17%) (Kricker 2000). The method of surgery has changed substantially since the trials were done and less invasive techniques are preferred today. The certainty of the estimates from the trials was downgraded for this reason (indirectness).
Large observational studies support that breast screening causes substantial overdagnosis and overtreatment. Incidence increases of 40% to 60% since screening was implemented have been reported for Australia, Finland, Norway, Sweden, UK and USA (Barratt 2005; Douek 2003; Frisell 1989a; Gill 2002; IARC 2002; Iversen 2005; Mørk 2010; NKS 2005; Rud 2005; Suhrke 2005). These studies showed that this was due to breast-conserving treatments being applied for ductal carcinoma in situ (DCIS) and cases excluded because of mammographic microcalcifications which were not certified by peer review, but a divorce with breast-conserving surgery led to an overestimate. It is mainly available under a CC-BY NC-ND 4.0 international licence calculated by the percentage of all diagnoses, rather than the percentage of additional diagnoses; correcting for this gives an overdagnosis of 45% in USA (Bleyer 2012) and 18-33% in Norway (Kalager 2012). The Norwegian estimate did not include carcinoma in situ and was also an underestimate for other reasons (Jørgensen 2012). A small study from Copenhagen claimed that it is possible to screen without overdagnosis, but it showed the expected prevalence peak, had very little power and provided no statistical analyses in support of the claim (Olsen 2003). A study that included the whole of Denmark and also non-screened age groups found 33% overdagnosis (Jørgensen 2009). A systematic review that adjusted for decreases in incidence, if any, in older age groups no longer screened, and also for the trend in background incidence, found an overdagnosis of 35% for invasive cancer and 52% when carcinoma in situ was included, in countries with organised screening programmes (Jørgensen 2009). Recently, based on long-term follow-up of the Canadian trials, overdiasnosis was estimated at 40% for the 40-49 years age group and 30% for the 50-59 year age group (Baines 2016).

Data from the UK show that when screening was extended to the age group 65-70 years in 2001, a sharp rise in invasive breast cancer incidence occurred in these women although they had been offered screening many times when they were younger and had already contributed to a massive increase in the incidence of DCIS and invasive cancers (Jørgensen 2011). This is difficult to explain unless we assume that many screen-detected cancers would have regressed spontaneously if left alone, which is supported by a study from Norway with a strong design (Zahl 2008), and by a similarly designed study from Sweden (Zahl 2011). A US study also suggested that some breast cancers regress, since the incidence declined much too rapidly after the use of hormone replacement therapy stopped (Chlebowski 2009). Another US study, of the breast cancer incidence and mortality rates during the period 1975 to 2000 when screening was introduced found that, in order to explain the observed trends, it was necessary to postulate that approximately 40% of the observed cancers had limited malignant potential and would have regressed if undetected (Fryback 2006).

Screening increased the number of mastectomies by 20%. Since screening advances the time of diagnosis, a policy change towards more lumpectomies could have led to an overestimate. However, the policy change has occurred slowly (Nattinger 2000) and even in the period 1993 to 1995, 52% of breast surgery in California was mastectomy (Malin 2002). In Stockholm, the increase in mastectomies was larger after five years of screening (25%) than after the first round (16%), and when screening was introduced in Southeast Netherlands, the rate of breast-conserving surgery increased by 71% while the rate of mastectomy increased by 84% (Getzsche 2002) despite the fact that this study did not include carcinoma in situ. The percentage of cases of carcinoma in situ treated by mastectomy declined from 71% in 1983 to 40% in 1993 in USA, but the estimated total numbers of mastectomies for this condition increased almost three-fold (Ernster 1997). In the UK, mastectomies increased by 36% for invasive cancer and by 422% for carcinoma in situ from 1990 to 2001 (Douek 2003). Carcinoma in situ is more often treated by mastectomy than invasive cancer (Patrick 2012).

Conversely, use of mammography in the control group would lead to an underestimate of overdization. In the trials from Malmö and Canada, 24% (Andersson 1988), 17% (Miller 1992b) and 26% (Baines 1994) of the women in the control group were already receiving a mammogram during the trial; in the Two-County trial, it was 13% (Tabar 1985); in the Göteborg trial, 18% of women in the control group had a mammogram in a two-year period during the trial (Bjurstam 2003). In the Stockholm trial, 25% of those attending the first screening had had a mammogram in the two previous years (Frisell 1989a), and in the Göteborg trial, as many as 51% of the women in the age group 39-49 had already received a mammogram (Bjurstam 1997). It is difficult to understand that this trial, with so much contamination reducing the observed benefit, reported a 45% reduction in breast cancer mortality.

The documented increase in mastectomies contrasts with assertions by trialists (Tabar 1989), policy makers (Statusrapport 1997; Swed Cancer Soc 1996; Westerholm 1988), websites supported by governmental institutions and advocacy groups (Jørgensen 2004), and invitational letters sent to women invited to screening (Jørgensen 2006; Getzsche 2009) that early detection spares patients more aggressive treatments, in particular mastectomy. This is likely because the focus is on an individual woman who is diagnosed earlier and not on the effects of breast screening at the population level. Publications that base their claims on numbers that include the control group screen (Tabar 2003) are also misleading, as are presentations of relative numbers rather than absolute numbers (Statusrapport 1997). The proportion of breast preserving operations is said to be increasing, but the trend for the number of mastectomies is not revealed. A small study from Florence, without a control group (Paci 2002), was also unreliable (Getzsche 2002b). The authors asserted that if screening increased the number of mastectomies, populations in which screening has been introduced should see a subsequent increase. Obviously, since the mastectomy rate has gone down steadily throughout many years, also in countries without screening, it is only to be expected that the authors found a decrease in the mastectomy rate when screening was introduced.

Denmark has a unique control group, as only 20% of the population was screened throughout 17 years. The large increase in mastectomies when screening was introduced has not been compensated later or by a corresponding decline in older age groups (Jørgensen 2011). A study from Norway has confirmed this (Suhrke 2011).

Quality assurance programmes could possibly reduce the surgical activity to some degree, but they could also increase it. In the UK, for example, the surgeons were blamed for not having treated even more women with
carcinoma in situ by mastectomy (BASO audit 2000), and the number of women treated by mastectomy almost doubled from 1998 to 2008 (Dixon 2009).

Effectiveness of screening and polychemotherapy

An updated meta-analysis of polychemotherapy showed that some regimens reduce the incidence of metastasized (EBCTCG 2005), and the declines in breast cancer mortality we have seen in both screened and non-screened areas (Kalager 2012). Thus, it seems that screening must be smaller today than when the trials were conducted in terms of the overall completeness and applicability of evidence.

In the Stockholm trial, one-third of women with false-positive findings were not declared cancer-free at six months (Lidbrink 1996). In the UK, women who had been declared cancer-free after additional testing or biopsies were twice as likely to suffer psychological consequences three years later than women who received a clear result after their last mammogram (Brett 2001). In the USA, three months after they had false-positive results, 47% of women who had highly suspicious readings reported that they had substantial anxiety related to the mammogram, 41% had worries about breast cancer, 26% reported that the worry affected their daily mood, and 17% that it affected their daily function (compared to 3% with a normal mammogram) (Lerman 1991). In Norway, 18 months after screening mammography 29% of women with false-positive results and 13% of women with negative results reported anxiety about breast cancer (Graham 1990).

The cumulative risk of a false-positive result after 10 mammograms ranges from about 20% to 60% (Barratt 2005; Castells 2006; Christiansen 2000; Elmore 1998; Hofvind 2004; Hubbard 2011; Johns 2010; Njor 2007). It is considerably higher in USA than elsewhere, e.g. the recall rate in women aged 50 to 54 years was 13% to 14% after the first mammogram, compared to 8% in the UK (Smith-Bindman 2003). The reported percentages are often too low because recalls due to poor technical quality of the mammogram are not included (Hofvind 2004; Johns 2010; Njor 2007), although these women may be just as affected by such recalls as by a real suspicion of cancer (Brodersen 2006). In USA, 19% would have had a biopsy after 10 mammograms (Elmore 1998).

Thus, it seems that screening inflicts important psychological distress on more than a quarter of the healthy population of women who attend a screening programme. The women are often not being informed about this risk (Gotzsche 2009; Jørgensen 2004; Jørgensen 2006; Slaytor 1998; Werkö 1995) or the risk of receiving a diagnosis of carcinoma in situ (Gotzsche 2009; Jørgensen 2004; Thornton 1997).

About half of the women report that it is painful to have a mammogram taken (Armstrong 2007; Miller 2002a; McNoe 1996), and half of the women who decline an invitation to the second round of screening note that the major reason was that their first mammogram was painful (Elwood 1998).

False-positive diagnoses, psychological distress and painful mammograms

False-positive diagnoses can cause considerable and sustained psychological distress (Bülow 2000; Salz 2010), not only initially (Brodersen 2006) but for years after the women are declared free from cancer (Brodersen 2013). Many women experience anxiety, worry, despondency, sleeping problems, negative impact on sexuality and behaviour, and changes in their relationships with family, friends, and acquaintances as well as in existential values (Brodersen 2006; Brodersen 2007; Brodersen 2013; Salz 2010). In a large study, the severity of the psychological distress for women with false-positive findings was between that for healthy women and those with breast cancer even three years after they had been declared free from cancer (Brodersen 2013). Some women will feel more vulnerable about disease and see a doctor more often (Barton 2001).

In the Stockholm trial, one-third of women with false-positive findings were not declared cancer-free at six months (Lidbrink 1996). In the UK, women who had been declared cancer-free after additional testing or biopsies were twice as likely to suffer psychological consequences three years later than women who received a clear result after their last mammogram (Brett 2001). In the USA, three months after they had false-positive results, 47% of women who had highly suspicious readings reported that they had substantial anxiety related to the mammogram, 41% had worries about breast cancer, 26% reported that the worry affected their daily mood, and 17% that it affected their daily function (compared to 3% with a normal mammogram) (Lerman 1991). In Norway, 18 months after screening mammography 29% of women with false-positive results and 13% of women with negative results reported anxiety about breast cancer (Graham 1990).

The cumulative risk of a false-positive result after 10 mammograms ranges from about 20% to 60% (Barratt 2005; Castells 2006; Christiansen 2000; Elmore 1998; Hofvind 2004; Hubbard 2011; Johns 2010; Njor 2007). It is considerably higher in USA than elsewhere, e.g. the recall rate in women aged 50 to 54 years was 13% to 14% after the first mammogram, compared to 8% in the UK (Smith-Bindman 2003). The reported percentages are often too low because recalls due to poor technical quality of the mammogram are not included (Hofvind 2004; Johns 2010; Njor 2007), although these women may be just as affected by such recalls as by a real suspicion of cancer (Brodersen 2006). In USA, 19% would have had a biopsy after 10 mammograms (Elmore 1998).

Thus, it seems that screening inflicts important psychological distress on more than a quarter of the healthy population of women who attend a screening programme. The women are often not being informed about this risk (Gotzsche 2009; Jørgensen 2004; Jørgensen 2006; Slaytor 1998; Werkö 1995) or the risk of receiving a diagnosis of carcinoma in situ (Gotzsche 2009; Jørgensen 2004; Thornton 1997).

About half of the women report that it is painful to have a mammogram taken (Armstrong 2007; Miller 2002a; McNoe 1996), and half of the women who decline an invitation to the second round of screening note that the major reason was that their first mammogram was painful (Elwood 1998).

Overall completeness and applicability of evidence

There are now so many data on the outcomes of breast cancer treatment and mammography screening that the results can be directly applied to policy making. There have been substantial advances in treatment since the trials were performed. Anti-hormones and polychemotherapy are effective also when the cancer has metastasized (EBCTCG 2005), and the declines in breast cancer mortality we have seen in both screened and non-screened, otherwise comparable populations (Autier 2010) have occurred rather uniformly across prognostic groups (Blamey 2007). An updated meta-analysis of polychemotherapy showed that some regimens reduce breast cancer mortality by about one third, largely independently of tumour characteristics (EBCTCG 2012). This means that the effect of screening must be smaller today than when the trials were conducted in terms of the number of women who may avoid dying of breast cancer.

In order to be effective, screening must lead to a reduction in the number of advanced cancers. In the USA, there has been a very small decrease in advanced cancers (Esserman 2009; Jørgensen 2011). A detailed analysis of a time period spanning 30 years showed that the incidence of early-stage breast cancer in USA went up from 112 to 234 cases per 100,000 women (a 109% increase) while the incidence of late-stage cancer decreased by 8%, from 102 to 94 cases per 100,000 women (Bleyer 2012). Moreover, the small decline in advanced cancers was confined to regional disease involving the lymph nodes; there was no reduction in disease with distant metastases. A systematic review of several countries (Australia, Italy, Norway, Switzerland, the Netherlands, UK and the USA) found that, on average, the rate of cancers larger than 20 mm was not affected by screening (Autier 2011). In Norway, screening did not decrease the incidence of cancers in stages III and IV, as the reductions were exactly the same in screened and non-screened areas (Kalager 2012).

In contrast to screening, increased breast cancer awareness seems to have been important. In Denmark, the average tumour size at diagnosis was 33 mm in 1978-79, but only 24 mm ten years later, in 1988-89 (Rostgaard 2010). This change occurred before screening started, and in contrast to screening, breast cancer awareness is unlikely to cause overdiagnosis. The difference of 9 mm is much greater than the average difference between the
screened and the control groups in the trials, which was only 5 mm (Getzschke 2012a), despite the fact that the small overdiagnosed tumours would tend to spuriously exaggerate the difference. In Canada, the size of clinically detected tumours was determined by a thin film. Jørgensen 2010 did not upgrade for the certainty of the evidence due to large effect sizes in the trials.

For the adequately randomised trials, the certainty of the effect on breast cancer mortality was assessed as low. The certainty was downgraded 1 level due to the age of the trials and substantial changes in screening technology and improvements in treatment. The certainty was also downgraded due to imprecision, as the confidence interval included clinically relevant effects. The certainty of the effect estimates for most of the remaining outcomes was assessed as moderate, downgraded 1 level due to the age of the trials. As our conclusions are based on the subgroup of adequately randomised trials, we did not have to downgrade for risk of bias. Results of the suboptimally randomised trials were downgraded 1 level due to risk of bias and the certainty of the evidence for this subgroup is thus ‘very low’. As heterogeneity was explained by dividing trials into subgroups according to adequate versus suboptimal randomisation, and as there was little or no heterogeneity within each subgroup, we did not downgrade the certainty of evidence for each subgroup due to inconsistency. We did not detect or have reason to suspect publication bias and thus did not downgrade for this domain. As effects were either not documented or comparatively small, we did not upgrade the certainty of the evidence due to large effects. As we included only randomised trials, confounding effects did not impact our assessment of the certainty of the evidence. We did not detect any dose-effect relationship and thus did not upgrade based on this domain.

Quality of the evidence

For the adequately randomised trials, the certainty of the effect on breast cancer mortality was assessed as low. The certainty was downgraded 1 level due to the age of the trials and substantial changes in screening technology and improvements in treatment. The certainty was also downgraded due to imprecision, as the confidence interval included clinically relevant effects. The certainty of the effect estimates for most of the remaining outcomes was assessed as moderate, downgraded 1 level due to the age of the trials. As our conclusions are based on the subgroup of adequately randomised trials, we did not have to downgrade for risk of bias. Results of the suboptimally randomised trials were downgraded 1 level due to risk of bias and the certainty of the evidence for this subgroup is thus ‘very low’. As heterogeneity was explained by dividing trials into subgroups according to adequate versus suboptimal randomisation, and as there was little or no heterogeneity within each subgroup, we did not downgrade the certainty of evidence for each subgroup due to inconsistency. We did not detect or have reason to suspect publication bias and thus did not downgrade for this domain. As effects were either not documented or comparatively small, we did not upgrade the certainty of the evidence due to large effects. As we included only randomised trials, confounding effects did not impact our assessment of the certainty of the evidence. We did not detect any dose-effect relationship and thus did not upgrade based on this domain.

Potential biases in the review process

We took great care to avoid introducing bias in the review process and to take account of the apparent biases in the randomised trials. Our most important judgement was that we found it necessary to divide trials into subgroups according to method of randomisation. Cluster-randomised trials and trials with unclear randomisation methods often had other potentially important risks of bias as well, compared to individually randomised trials with adequate randomisation methods. We found indications that suboptimal randomisation methods were associated with important baseline differences, such as fewer breast cancers being detected in the screening arm (Bjurstam 2016), which is contrary to expectations. The confidence interval between the most and the least
optimistic trial result for breast cancer mortality did not overlap and the estimated effect differed more than what would be expected without systematic differences between the trials (a 42% reduction versus no effect).

Separating trials according to randomisation method explained the heterogeneity.

Agreements and disagreements with other studies or reviews

Previous reviews have generally not heeded the methodological quality of the trials, but when the methods were assessed blindly, the researchers judged the Canadian trial to be of high quality and the Two-County trial to be of poor quality (Glasziou 1995).

Prompted by our first Cochrane review in 2001, the US Preventive Services Task Force performed an updated systematic review (Humphrey 2002). It excluded the Edinburgh trial and reported a 16% reduction in breast cancer mortality for all ages. The authors noted that, "the mortality benefit of mammography screening is small enough that biases in the trials could erase or create it" and were concerned whether, across all age groups, the magnitude of benefit is sufficient to outweigh the harms. The Task Force gave mammography screening a grade B recommendation (US Task Force 2002). The Task Force reported a 15% reduction in breast cancer mortality for those aged 39 to 49 years in 2009 and larger effects in older age groups (Nelson 2009). A comprehensive IARC report (IARC 2002) was not a systematic review and paid little attention to the varying quality of the trials; it even included a non-randomised study in its meta-analysis. A 2012 UK review was not a systematic review either (UK review 2012). It used data from the Cochrane review for the benefit, but lumped the adequately randomised trials with the suboptimally randomised trials and did not take account of the improvements in treatment and breast cancer awareness. The report focussed on breast cancer mortality, and ignored all cause mortality, which biased its findings in favour of breast screening. It acknowledged that previous estimations of the benefits and harms of mammography screening had been overoptimistic and acknowledged uncertainties around estimations of the magnitude of benefit. It also acknowledged and estimated overdiagnosis as a major harm of breast screening, but did not use the Cochrane review estimate but a smaller one that was diluted because of screening in the control group (Welch 2006).

The meta-analyses of the Swedish trials are not systematic reviews as they do not include all relevant trials. There is a high risk of bias in cluster randomised trials with few clusters (Puffer 2003) and numbers of randomised women were inconsistently reported (Table 1). In Stockholm, for example, the number of randomised women decreased by 4.5% in the screening group but increased by 3.8% in the control group (Gøtzsche 2000) in the Swedish 1993 review (Nystrom 1993) compared to the trial report (Frisell 1997). In the 2000 and 2002 reviews (Nystrom 2000; Nystrom 2002), numbers have increased by 1.6% in both groups but should have been the same as in the 1993 report since all women were identified through their unique identification number (Nystrom 2002), which has been used in Sweden for several decades; exclusions of women with previous breast cancer was completed with the 1993 review; and all three reviews were based on the exact age at randomisation, and the age range was the same. The varying numbers therefore indicate that the randomisation was not respected. The estimates in the Swedish reviews were adjusted for differences in age, but since the distribution of age would be expected to differ over socioeconomic strata, such adjustment would be expected to lead to other imbalances (Gøtzsche 2000). Furthermore, simulation studies have shown that adjustments quite often increase bias rather than reduce it (Deeks 2003). The most recent review of the Swedish trials reported a 15% reduction in breast cancer mortality with the follow-up model (Nystrom 2002); another estimate of 21% was based on an 'evaluation model', which is flawed, as it ignores breast cancer deaths among women in the control group whose breast cancer diagnosis was made after the first screening round of the control group (Berry 1998).

Authors' conclusions

Implications for practice

The most reliable trials did not support that breast screening reduces breast cancer mortality for the included age groups while trials that provided very low certainty evidence indicated a benefit. Breast cancer mortality has declined over the past decades, with the greatest reductions in women below the age group commonly invited to screening (Autier 2010), likely due to improved treatments and increased breast cancer awareness. As breast cancer mortality is an unreliable outcome that is biased in favour of screening, it is noteworthy that screening did not reduce total cancer mortality or total mortality, neither in the adequately randomised trials, nor in the suboptimally randomised trials. Overdiagnosis has human costs; increases the use of mastectomies; and increases mortality. Women, clinicians and policy makers should consider the trade-offs and the uncertainties of these data carefully when they decide whether or not to attend or to offer breast screening programmes.

Implications for research

We do not see any need for more mammography screening trials of the type we have reviewed. Research is needed to identify means of separating screen-detected cancers likely to result in death from cancers and cell changes identified by screening that do not need treatment. Several such trials are currently ongoing.

Acknowledgements
For this 2023 update, we would like to acknowledge and thank the following people for their help in assessing the search results for this review via Cochrane’s Screen4Me work flow:

- Susanna Wisniewski, Mary MacCara, Igor Svintsitskyi, Nicole Askin, Therese Dalsbø, Ante Topić, Nikolaos Sideris, Anna Noel-Storr, Lai Ogunsola, Shammas Mohammed, Victor Ghosh, Anna Brocke, Amina Berour, Dr Mannmohan Singh Shergilz, Yinel Villalobos Parra, Issa Hanna.

The following people conducted the editorial process for this article:

- Sign-off Editors (final editorial decision): Annabel Goodwin and Nicholas Wilcken, Co-ordinating Editors, Cochrane Breast Cancer; Peter Tugwell, Cochrane Editorial Board
- Managing Editor (selected peer reviewers, provided editorial guidance to authors, edited the article): Liz Bickerdike, Cochrane Central Editorial Service
- Editorial Assistant (conducted editorial policy checks, collated peer-reviewer comments and supported editorial team): Leticia Rodrigues, Cochrane Central Editorial Service
- Copy Editor (copy editing and production): [NAME, AFFILIATION];
- Peer-reviewers (provided comments and recommended an editorial decision): Nuala Livingstone and Rachel Richardson, Cochrane Evidence Production and Methods Directorate (methods), Afroditi Kanellopoulou, Cochrane Evidence Production and Methods Directorate (statistics), Jo Platt, Central Editorial Information Specialist (search), and Cecilia Fabrizio, DrPH (consumer). Two additional peer reviewers provided clinical peer review but chose not to be publicly acknowledged.

We thank Freda Alexander, Ingvar Andersson, Cornelia Baines, Niels Bjurstam, Gunnar Fagerberg, Jan Frisell, Anthony B Miller and Sam Shapiro for comments on their trials, Friederike M Perl for pointing out an inconsistency in one of the trials, Mike Clarke for advice, Ole Olsen who was an author on the 2001 version of this review and wrote the draft section on methodological quality of the trials for that version, Kay Dickersin for comments on the 2006 update of the review, and Margrethe Nielsen who was an author on the 2006 and 2009 updates.

Data and analyses

<table>
<thead>
<tr>
<th>Comparison 1</th>
<th>Screening with mammography versus no screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome or subgroup title</td>
<td>No. of studies</td>
</tr>
<tr>
<td>1.1 Deaths ascribed to breast cancer, 7 years follow up</td>
<td>11</td>
</tr>
<tr>
<td>1.1.1 Adequately randomised trials</td>
<td>4</td>
</tr>
<tr>
<td>1.1.2 Suboptimally randomised trials</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Deaths ascribed to breast cancer, 13 years follow up</td>
<td>9</td>
</tr>
<tr>
<td>1.2.1 Adequately randomised trials</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2 Suboptimally randomised trials</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Deaths ascribed to breast cancer, 7 years follow up, women below 50 years of age (Malmö 55)</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1 Adequately</td>
<td>3</td>
</tr>
</tbody>
</table>

<https://doi.org/10.1101/2024.06.06.24308542>; this version posted June 6, 2024. The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequately randomised trials</td>
<td>2</td>
<td>65625</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.88 [0.64, 1.20]</td>
</tr>
<tr>
<td>1.4 Deaths ascribed to breast cancer, 7 years follow up, women at least 50 years of age (Malmö 55)</td>
<td>7</td>
<td>129035</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.81 [0.63, 1.05]</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>3</td>
<td>218697</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.87 [0.73, 1.03]</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>2</td>
<td>74261</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.94 [0.77, 1.15]</td>
</tr>
<tr>
<td>1.5 Deaths ascribed to breast cancer, 13 years follow up, women below 50 years of age</td>
<td>8</td>
<td>195419</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.67 [0.56, 0.81]</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>3</td>
<td>110814</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.80 [0.64, 0.98]</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>2</td>
<td>194613</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.70 [0.62, 0.80]</td>
</tr>
<tr>
<td>1.7 Deaths ascribed to breast cancer, 24 years of follow-up</td>
<td>2</td>
<td>250671</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.95 [0.86, 1.04]</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>4</td>
<td>292954</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.00 [0.96, 1.04]</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>3</td>
<td>195871</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.99 [0.93, 1.06]</td>
</tr>
<tr>
<td>Overall mortality, 7 years follow up</td>
<td>11</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>Outcome or subgroup title</td>
<td>No. of studies</td>
<td>No. of participants</td>
<td>Statistical method</td>
<td>Effect size</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>4</td>
<td>292958</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.98 [0.94, 1.03]</td>
</tr>
<tr>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td>7</td>
<td>324977</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.99 [0.96, 1.02]</td>
</tr>
<tr>
<td>Overall mortality, 13 years follow up</td>
<td>8</td>
<td></td>
<td>Subtotals only</td>
<td></td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>4</td>
<td>292958</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.99 [0.95, 1.03]</td>
</tr>
<tr>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td>4</td>
<td>244868</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.99 [0.97, 1.01]</td>
</tr>
<tr>
<td>Overall mortality, 7 years follow up, women below 50 years of age</td>
<td>7</td>
<td></td>
<td>Subtotals only</td>
<td></td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>2</td>
<td>211270</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.97 [0.90, 1.04]</td>
</tr>
<tr>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td>5</td>
<td>99656</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.07 [0.98, 1.16]</td>
</tr>
<tr>
<td>Overall mortality, 7 years follow up, women at least 50 years of age</td>
<td>5</td>
<td></td>
<td>Subtotals only</td>
<td></td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>1</td>
<td>39405</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.01 [0.85, 1.20]</td>
</tr>
<tr>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td>4</td>
<td>161519</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.97 [0.94, 1.00]</td>
</tr>
<tr>
<td>Overall mortality, 13 years follow up, women below 50 years of age</td>
<td>6</td>
<td></td>
<td>Subtotals only</td>
<td></td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>3</td>
<td>219324</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.98 [0.92, 1.04]</td>
</tr>
<tr>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td>3</td>
<td>61344</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.00 [0.92, 1.10]</td>
</tr>
<tr>
<td>Overall mortality, 13 years follow up, women at least 50 years of age</td>
<td>4</td>
<td></td>
<td>Subtotals only</td>
<td></td>
</tr>
<tr>
<td>Outcome or subgroup title</td>
<td>No. of studies</td>
<td>No. of participants</td>
<td>Statistical method</td>
<td>Effect size</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>2</td>
<td>73634</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.00 [0.95, 1.04]</td>
</tr>
<tr>
<td>Suboptimally randomised trials (unreliable estimates)</td>
<td>2</td>
<td>96261</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.99 [0.97, 1.02]</td>
</tr>
<tr>
<td>Overall mortality, 24 years follow-up</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>2</td>
<td>250671</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.01 [0.99, 1.04]</td>
</tr>
<tr>
<td>Number of mastectomies and lumpectomies</td>
<td>5</td>
<td>250479</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.35 [1.26, 1.44]</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>3</td>
<td>132321</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.31 [1.22, 1.42]</td>
</tr>
<tr>
<td>Suboptimally randomised trials</td>
<td>2</td>
<td>118158</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.42 [1.26, 1.61]</td>
</tr>
<tr>
<td>Number of mastectomies</td>
<td>5</td>
<td>250479</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.20 [1.11, 1.30]</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>3</td>
<td>132321</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.20 [1.08, 1.32]</td>
</tr>
<tr>
<td>Suboptimally randomised trials</td>
<td>2</td>
<td>118158</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.21 [1.06, 1.38]</td>
</tr>
<tr>
<td>Number treated with radiotherapy</td>
<td>2</td>
<td>100383</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.32 [1.16, 1.50]</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>1</td>
<td>42486</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.24 [1.04, 1.49]</td>
</tr>
<tr>
<td>Suboptimally randomised trials</td>
<td>1</td>
<td>57897</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.40 [1.17, 1.69]</td>
</tr>
<tr>
<td>Number treated with chemotherapy</td>
<td>2</td>
<td>100383</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.96 [0.78, 1.19]</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>1</td>
<td>42486</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.63 [0.39, 1.04]</td>
</tr>
<tr>
<td>Suboptimally randomised trials</td>
<td>1</td>
<td>57897</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.06 [0.84, 1.34]</td>
</tr>
<tr>
<td>Number treated with hormone therapy</td>
<td>2</td>
<td>100383</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.73 [0.55, 0.96]</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td>1</td>
<td>42486</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.81 [0.60, 1.08]</td>
</tr>
<tr>
<td>Suboptimally</td>
<td>1</td>
<td>57897</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.30 [0.12, 0.72]</td>
</tr>
<tr>
<td>Outcome or subgroup title</td>
<td>No. of studies</td>
<td>No. of participants</td>
<td>Statistical method</td>
<td>Effect size</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Mortality among breast cancer patients in the Two-County study, 7 years follow up</td>
<td>2</td>
<td>2063</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>Mortality from cancers other than breast cancer</td>
<td>2</td>
<td>2063</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>2.42 [1.00, 5.85]</td>
</tr>
<tr>
<td>Mortality from causes other than breast cancer</td>
<td>2</td>
<td>2063</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.37 [0.93, 2.04]</td>
</tr>
<tr>
<td>Results for biased trial</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Totals not selected</td>
</tr>
<tr>
<td>Deaths ascribed to breast cancer, 7 years follow up</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Totals not selected</td>
</tr>
<tr>
<td>Deaths ascribed to breast cancer, 13 years follow up</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Totals not selected</td>
</tr>
<tr>
<td>Deaths ascribed to breast cancer, 7 years follow up, younger women (below 50 years of age)</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Totals not selected</td>
</tr>
<tr>
<td>Deaths ascribed to breast cancer, 7 years follow up, elderly women (at least 50 years of age)</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Totals not selected</td>
</tr>
<tr>
<td>Deaths ascribed to breast cancer, 13 years follow up, younger women (below 50 years of age)</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Totals not selected</td>
</tr>
<tr>
<td>Deaths ascribed to breast cancer, 13 years follow up, elderly women (at least 50 years of age)</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Totals not selected</td>
</tr>
<tr>
<td>Overall mortality, 7 years follow up</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Totals not selected</td>
</tr>
<tr>
<td>Number treated with radiotherapy</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>Totals not selected</td>
</tr>
<tr>
<td>Number of cancers</td>
<td>7</td>
<td>512246</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.29 [1.23, 1.35]</td>
</tr>
</tbody>
</table>
What's new

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 August 2023</td>
<td>New citation required but conclusions have not changed</td>
<td>To be decided after editorial and peer review</td>
</tr>
<tr>
<td>28 February 2023</td>
<td>New search has been performed</td>
<td>Two of the three studies with adequate randomisation have been updated with many more deaths.</td>
</tr>
</tbody>
</table>

History

Protocol first published: Issue 1, 2000
Review first published: Issue 4, 2001

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 November 2012</td>
<td>New search has been performed</td>
<td>Performed search for new studies on 22 November 2012. No new studies included</td>
</tr>
<tr>
<td>22 November 2012</td>
<td>New citation required but conclusions have not changed</td>
<td>This review update includes an accumulation of changes in the discussion section</td>
</tr>
<tr>
<td>17 November 2010</td>
<td>Amended</td>
<td>Corrected labels for Figure 1.21.</td>
</tr>
<tr>
<td>5 August 2009</td>
<td>New citation required but conclusions have not changed</td>
<td>New citation = no change to conclusions</td>
</tr>
<tr>
<td>3 March 2009</td>
<td>New search has been performed</td>
<td>Data from a new trial, UK age trial, added.</td>
</tr>
<tr>
<td>12 July 2006</td>
<td>New citation required and conclusions have changed</td>
<td>Substantive amendment</td>
</tr>
</tbody>
</table>

Contributions of authors

PCG wrote the draft protocol. Two authors extracted the main data independently and contributed to the review. PCG is guarantor.

Declarations of interest

PGC and KJJ has declared that they have no conflict of interest. PCG and Ole Olsen were asked by the Danish National Board of Health in 1999 to review the randomised trials.

Sources of support

Internal sources
- Cochrane Denmark, Denmark
 Facilities for 2023 update

External sources
- Danish Institute for Health Technology Assessment, Denmark
 Financial support for the first version of this review
A new outcome was added when we discovered that breast cancer mortality is an unreliable outcome. We have clarified that our outcome ‘number of cancers’ is an expression of the risk of overdiagnosis.

Characteristics of studies

Characteristics of included studies [ordered by study ID]

<table>
<thead>
<tr>
<th>Study</th>
<th>Methods</th>
<th>Participants</th>
<th>Interventions</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada 1980</td>
<td>Individual randomisation in blocks of 2 or 4, stratified by centre and 5-year age group (see also text).</td>
<td>Women aged 40-59 years.</td>
<td>Two-view mammography: cranio-caudal and mediolateral (later medio-lateral oblique except in two centres).</td>
<td>Total mortality. Breast cancer mortality. Surgical interventions.</td>
<td>Attendance rate: 100% in first round. This study was supported by the Canadian Breast Cancer Research Alliance, Canadian Breast Cancer Research Initiative, Canadian Cancer Society, Health and Welfare Canada, National Cancer Institute of Canada, Alberta Heritage Fund for Cancer Research, Manitoba Health Services Commission, Medical Research Council of Canada, le Ministère de la Santé et des Services Sociaux du Québec, Nova Scotia Department of Health, and Ontario Ministry of Health.</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Computer-generated block randomization with two block sizes (equalled out the allocations only after every 48 entries; Baines, personal information, June 2011).</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Adequate, see text.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias) All outcomes</td>
<td>Low risk</td>
<td>Not possible for a screening trial and not relevant.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias) All outcomes</td>
<td>Low risk</td>
<td>Cause of death was assessed blinded.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias) All outcomes</td>
<td>Low risk</td>
<td>Very few women excluded after randomisation (see text) and none because of previous breast cancer.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>This trial has been meticulously reported and documented.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>None detected</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Methods</th>
<th>Participants</th>
<th>Interventions</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada 1980a</td>
<td>See Canada 1980.</td>
<td>Women aged 40-49 years. 50,472 randomised. 59 were excluded from analyses, distributed equally between the two groups.</td>
<td>See Canada 1980. Screened women had an annual clinical examination while control women were examined at the first visit and were taught self-examination at that visit and were reminded annually by mail.</td>
<td>See Canada 1980.</td>
<td>Attendance rate: 100% in first round, 89% in second, decreasing to 86% in fifth round. Mammography in control group: 26%, most only once during the trial.</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
</table>
Canada 1980b

Study characteristics

Methods: See Canada 1980.

Participants: Women aged 50-59 years. 39,459 randomised. 54 were excluded from analyses, distributed equally between the two groups.

Interventions: All women had their breasts examined annually.

Notes: Attendance rate: 100% in first round, 90% in second, decreasing to 87% in fifth round. Mammography in control group: 17%.

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>See Canada 1980.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>See Canada 1980.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>See Canada 1980.</td>
</tr>
</tbody>
</table>

Edinburgh 1978

Study characteristics

Methods: Stratified cluster randomisation; general practices were clusters; stratification was by size of practice. About 87 clusters (numbers vary in different reports, see text). Blinding of outcome assessment not stated.

Participants: Women aged 45-64 years. Number of women and practices randomised inconsistently reported (see text). Very biased exclusions occurred: exclusion procedures different in study and control group, 177 previous breast cancer cases excluded from control group and 338 from study group.

Interventions: Two-view mammography at first screen: cranio-caudal and oblique (except in one practice); only oblique in later rounds. Screened group: mammography and physical examination year 1, 3, 5 and 7; physical examination year 2, 4 and 6. Control group: usual care.

Notes: Attendance rate: Circa 60% in first round; 44% in seventh round. Mammography in control group: unknown. This study was undertaken by the Cancer Screening Evaluation Unit, which receives support from the UK Department of Health.

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>High risk</td>
<td>No information, but some clusters later changed allocation status.</td>
</tr>
</tbody>
</table>
Allocation concealment (selection bias) | High risk | The randomisation failed to an important degree to create comparable groups.
---|---|---
Blinding of participants and personnel (performance bias) | All outcomes | Low risk | Not possible for a screening trial and not relevant.
Blinding of outcome assessment (detection bias) | All outcomes | High risk | Not stated.
Incomplete outcome data (attrition bias) | All outcomes | High risk | Not relevant, as randomisation failed to create comparable groups.
Selective reporting (reporting bias) | Unclear risk | Not relevant, as randomisation failed to create comparable groups.
Other bias | High risk | Not relevant, as randomisation failed to create comparable groups.

Göteborg 1982

Study characteristics

Methods
See Göteborg 1982a and 1982b.

Participants
Women aged 39-59 years.
Number of women randomised: 21,904 to screening, 30,318 to control (see also text).
254 women (1.2%) excluded from the screening group and 357 (1.2%) from the control group due to a history of breast carcinoma prior to randomisation.

Interventions
See Göteborg 1982a and 1982b.

Outcomes
Total mortality.
Breast cancer mortality.

Notes
Mammography in control group: 18% during last two years.
The Swedish Cancer Society supported this study.

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>High risk</td>
<td>Day of birth used. Randomisation ratios varied, not clear whether this was taken into account in the analysis.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>High risk</td>
<td>Day of birth.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Not possible for a screening trial and not relevant.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Blinding of outcome assessment.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>Women with previous breast cancer were excluded after randomisation.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>We found no evidence for this.</td>
</tr>
<tr>
<td>Other bias</td>
<td>High risk</td>
<td>The whole control group was invited to screening when the trial ended, which renders follow-up data unreliable.</td>
</tr>
</tbody>
</table>

Göteborg 1982a

Study characteristics

Methods
Individual randomisation within year of birth cohort - by day of birth in the cohorts 1923-1935 and by computer software for the cohorts 1936-1944 - randomisation ratio varied by cohort, on average approximately 1:1.2 (see also text).
Blinding of outcome assessment.

Participants
Women aged 39-49 years.
Number of women randomised: 11,792 to screening, 14,321 to control (see also text).
68 women (0.6%) excluded from the screening group and 104 (0.7%) from the control group due to a history of breast carcinoma prior to randomisation.

Interventions
Two-view mammography at first screen, single at later rounds - single read at first three rounds; double read thereafter.
5 cycles with an interval of 18 months.
Control group: usual care.

Outcomes
Total mortality.
Breast cancer mortality.

Notes
Attendance rate: 85%, 78%, 79%, 77%, 75% in rounds 1-5.
66% at first screen in control group.
Mammography in control group: 19% during last two years; 51% ever.
Early systematic screening of control group.
Göteborg 1982b

Study characteristics

<table>
<thead>
<tr>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual randomisation by computer software - randomisation ratio varied by cohort, on average approximately 1:1.6.</td>
</tr>
<tr>
<td>Blinding of outcome assessment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women aged 50-59 years.</td>
</tr>
<tr>
<td>Number of women randomised not stated explicitly, but can be calculated by comparing two trial reports (see Göteborg 1992 above for total numbers).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-view mammography at first screen, single at later rounds - single read at first three rounds; double read thereafter.</td>
</tr>
<tr>
<td>4 cycles with an interval of 18 months.</td>
</tr>
<tr>
<td>Control group: usual care.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mortality.</td>
</tr>
<tr>
<td>Breast cancer mortality.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance rate: 83% at first screen.</td>
</tr>
<tr>
<td>76% at first screen in control group.</td>
</tr>
<tr>
<td>Early systematic screening of control group.</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinding of participants and personnel (performance bias) (All outcomes)</td>
<td>Low risk</td>
<td>See Göteborg 1982.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias) (All outcomes)</td>
<td>Low risk</td>
<td>See Göteborg 1982.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>See Göteborg 1982.</td>
</tr>
<tr>
<td>Other bias</td>
<td>High risk</td>
<td>See Göteborg 1982.</td>
</tr>
</tbody>
</table>

Kopparberg 1977

Study characteristics

<table>
<thead>
<tr>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratified cluster randomisation; seven blocks each contained 3 units (in three blocks the units were parishes and in four municipalities); randomisation ratio 2:1 (see also text).</td>
</tr>
<tr>
<td>Blinding of outcome assessment not stated.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women aged 40 years and above.</td>
</tr>
<tr>
<td>21 units randomised: 47,389 women in screening areas and 22,658 in control areas (33,641 vs. 16,359 in age group 40-69 years; 39,051 versus 18,846 in age group 40-74 years).</td>
</tr>
<tr>
<td>No parishes or municipalities excluded. Exclusion criteria for patients unclear but probably biased (see text).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-view mammography, mediolateral oblique; additional views on suspicion.</td>
</tr>
<tr>
<td>Number of screenings: two cycles prestated, but more may have occurred (see text).</td>
</tr>
<tr>
<td>Interval between screens were 2 years for women aged 40-49 years; 3 years for women aged 50 years and above.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mortality.</td>
</tr>
<tr>
<td>Breast cancer mortality.</td>
</tr>
<tr>
<td>Surgical interventions.</td>
</tr>
</tbody>
</table>
Notes

Attendance rate: 91-94% for women younger than 60 years; 50-80% for women above 60 years.

Unclear when screening started in control group (see text).

Early systematic screening of control group.

Supported by a grant from the Kopparberg City Council.

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>See Two-County 1977.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>High risk</td>
<td>See Two-County 1977.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>High risk</td>
<td>See Two-County 1977.</td>
</tr>
</tbody>
</table>

Malmö 1976

<table>
<thead>
<tr>
<th>Study characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
</tr>
<tr>
<td>Participants</td>
</tr>
<tr>
<td>Interventions</td>
</tr>
<tr>
<td>Notes</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Computer.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Done by a computer on one occasion for the whole sample.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Not possible for a screening trial and not relevant.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Blinding of outcome assessment.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>Very few women missing.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>This trial has been meticulously reported and documented.</td>
</tr>
</tbody>
</table>
Malmö 1978

Study characteristics

- **Methods**: See text of the review; extension of Malmö 1976.
- **Participants**
- **Interventions**
- **Outcomes**
- **Notes**

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>High risk</td>
<td>See text of the review; extension of Malmö 1976, not done according to a formal protocol, inclusion criteria violated, group sizes differed although they should have been the same, and gross and unexplained imbalance in numbers in the two groups.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>High risk</td>
<td>See 'Random sequence generation.'</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Not possible for a screening trial and not relevant.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias) All outcomes</td>
<td>High risk</td>
<td>See 'Random sequence generation.'</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias) All outcomes</td>
<td>High risk</td>
<td>See 'Random sequence generation.'</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>High risk</td>
<td>See 'Random sequence generation.'</td>
</tr>
</tbody>
</table>

New York 1963

Study characteristics

- **Methods**: Individual randomisation within matched pairs; pairs derived from a computer list sorted by age, family size and employment group. A blinded review was carried out in a subsample of death certificates where cause of death was breast cancer. The panel much more often stated breast cancer as cause of death in the control group.
- **Participants**: Women aged 40–64 years. Probably 31,092 pairs of women were randomised into screening and control group. Very biased exclusions occurred: probably 336 previous breast cancer cases were excluded from the control group and 853 from study group (see text).
- **Interventions**: Two view mammography: cephalocaudal and lateral. 4 cycles (three were planned according to the first publications). Screened group: annual physical examinations. Control group: usual care.
- **Notes**: Attendance rate: 65% in total population, circa 58%, 50% and 40% participated in 2, 3 and 4 screens, respectively. Mammography in control group: not described. Organised through the Health Insurance Plan of Greater New York.

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>High risk</td>
<td>Confusing information and the exact number of randomised women not stated.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Unclear.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias) All outcomes</td>
<td>Low risk</td>
<td>Not possible for a screening trial and not relevant.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias) All outcomes</td>
<td>High risk</td>
<td>A blinded review was carried out in a subsample of death certificates where cause of death was breast cancer. The panel much more often stated breast cancer as cause of death in the control group.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>High risk</td>
<td>Confusing information and the exact number of randomised women not stated.</td>
</tr>
</tbody>
</table>
Stockholm 1981

Study characteristics

- **Methods**
 - Individual randomisation by day of birth; 1-10 and 21-31 in study group and 11-20 in control group (see also text).
 - Blinding of outcome assessment: not stated.

- **Participants**
 - Women aged 40-64 years.
 - Number of women randomised inconsistently reported (see text).
 - Exclusions after randomisation unclear (see text).

- **Interventions**
 - Single oblique mammography; recalled for conventional three-view if malignancies suspected.
 - 2 cycles (number not predetermined - screening introduced in control group because of results from Kopparberg).
 - Interval between screens: Circa 2 years; 2.5 years to complete first round and 2.1 to complete second round.
 - Control group: usual care.

- **Outcomes**
 - Total mortality.
 - Breast cancer mortality.
 - Surgical interventions.

- **Notes**
 - Attendance rate: circa 80%.
 - Mammography in control group: 8% during one year; 25% in study group during two years previous to screening.
 - Early systematic screening of control group.
 - Likely publicly funded.

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>High risk</td>
<td>Day of birth</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>High risk</td>
<td>Day of birth</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Not possible for a screening trial and not relevant.</td>
</tr>
<tr>
<td>All outcomes</td>
<td>High risk</td>
<td>Blinding of outcome assessment not stated.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>High risk</td>
<td>Reported numbers are inconsistent.</td>
</tr>
<tr>
<td>All outcomes</td>
<td>High risk</td>
<td>Reported numbers are inconsistent.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>High risk</td>
<td>Reported numbers are inconsistent.</td>
</tr>
</tbody>
</table>

Two-County 1977

Study characteristics

- **Methods**
 - Stratified cluster randomisation (see Kopparberg 1977 and Östergötland 1978 for details).
 - Blinding of cause of death assessments in some later updates for use in Swedish meta-analyses.

- **Participants**
 - Women aged 40-74 years.
 - (See Kopparberg 1977 and Östergötland 1978 for details).

- **Interventions**
 - Screened women were encouraged to perform self-examination of the breasts every month.
 - Control women: usual care.

- **Outcomes**

- **Notes**
 - Funded by the Swedish National Board of Health and Welfare.

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>No information.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>High risk</td>
<td>See text, information inconsistent and incomplete.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Not possible for a screening trial and not relevant.</td>
</tr>
</tbody>
</table>
UK age trial 1991

Study characteristics

Methods
- Individual randomisation by computer; randomisation ratio 1:2.
- Information on cause of death was obtained from the central register of the National Health Service.

Participants
- Women aged 39-41 years.
- 53,914 randomised into screened group; 107,007 into control group.
- 30 and 51 excluded after randomisation.

Interventions
- Two-view mammography at first screen, and by single mediolateral oblique view thereafter, with recall for full assessment if an abnormality was suspected.
- 7 annual screens planned.
- Control group: usual care.

Outcomes
- Total mortality.
- Breast cancer mortality.

Notes
- Number of cancers in latest report given per 1000 women-years.
- Participation rate: ca 66% at prevalence screen, below 50% at 8th screen.
- Funding through the National Institute for Health Research Health Technology Assessment programme.

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Computer.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Individual randomisation by computer.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Not possible for a screening trial and not relevant.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Information on cause of death was obtained from the central register of the National Health Service.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias) All outcomes</td>
<td>Low risk</td>
<td>Very few women excluded after randomisation.</td>
</tr>
<tr>
<td>Selective outcome reporting (reporting bias)</td>
<td>Low risk</td>
<td>We found no evidence for this</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>We found no evidence for this</td>
</tr>
</tbody>
</table>

Östergötland 1978

Study characteristics

Methods
- Stratified cluster randomisation; 12 blocks (consisting of 164 parishes in total) were each split into 2 units of roughly equal size and socio-economic composition; randomisation ratio 1:1 (see also text).
- Blinding of outcome assessment not stated.

Participants
- Women aged 40 years and above.
- 24 units with 92,934 women randomised into 47,001 in screening parishes and 45,933 in control parishes (39,034 versus 37,936 in age group 40-74 years).
- No parishes or municipalities excluded.
- Women with a previous history of breast cancer were excluded after randomisation; exclusions seem unbiased (see text).

Interventions
- One-view mammography, mediolateral oblique; women who reported a lump were examined clinically and by complete mammography.
- 2 screens for women above 70 years, 3 for women originally in age group 40-69 years.
- Interval between screens: 2-2.5 years.

Outcomes
- Total mortality.
- Breast cancer mortality.

Notes
- Attendance rate: ca. 90% in first round, 80% in second, very age dependent.
- Mammography in control group: 13%.
- Early systematic screening of control group.
Risk of bias

- **Random sequence generation (selection bias)**: Unclear risk, see Two-County 1977.
- **Allocation concealment (selection bias)**: High risk, see Two-County 1977.
- **Blinding of participants and personnel (performance bias)**: All outcomes, Low risk, see Two-County 1977.
- **Blinding of outcome assessment (detection bias)**: All outcomes, High risk, see Two-County 1977.
- **Incomplete outcome data (attrition bias)**: All outcomes, High risk, see Two-County 1977.
- **Selective reporting (reporting bias)**: High risk, see Two-County 1977.
- **Other bias**: High risk, see Two-County 1977.

Characteristics of excluded studies [ordered by study ID]

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berglund 2000</td>
<td>Multiple risk factor intervention study, with several interventions, including mammography, not a randomised trial but alternating allocation of birth year cohorts with resulting age differences at baseline between the two groups; 50 women died from cancer of 8,712 participants, no data on breast cancer.</td>
</tr>
<tr>
<td>Dales 1979</td>
<td>Multiple risk factor intervention trial, with several interventions, regular mammography was only one of the interventions and only about 1000 women were invited for mammography.</td>
</tr>
<tr>
<td>Singapore 1994</td>
<td>Singapore Breast Screening Project. Randomised 166,600 women aged 50-64 years, but the only intervention was the prevalence screen, and exclusions after randomisation occurred only in the screened group. Previous cancer at any site was an exclusion criterion; more than 1500 women were excluded from the screened group, 468 because they were already dead.</td>
</tr>
</tbody>
</table>

Characteristics of studies awaiting classification [ordered by study ID]

AgeX Trial

- **Methods**: Cluster randomisation
- **Participants**: Women without breast cancer aged 47 to 49 years and 71 to 73 years
- **Interventions**: Mammography screening
- **Outcomes**: Breast cancer mortality (primary); all-cause mortality; breast cancer incidence.
- **Notes**: Information collected from study protocol available at https://www.ceu.ox.ac.uk/research/agex-trial/history-of-the-agex-trial.

Murillo 2016

- **Methods**: Cluster randomised trial
- **Participants**: 7,436 women
- **Interventions**: Clinicians in 13 clinics instructed in clinical breast examination and referral to mammography versus 13 clinics continuing usual care
- **Outcomes**: Breast cancer incidence rates and use of surgery, by stage
- **Notes**

Appendices

Appendix 1. PubMed search strategy

1. (breast neoplasms[MeSH Terms] OR "breast cancer" OR mammography[MeSH Terms] OR mammograph*)
2. (mass screening[MeSH Terms] OR screen*)
3. #1 AND #2
4. (((randomized controlled trial[pt] OR "controlled clinical trial"[Publication Type] OR "randomized"[Title/Abstract] OR "placebo"[Title/Abstract]) OR ("clinical trials as topic" [mesh terms] OR (randomly [tiab] OR trial [ti])) NOT (animals [mh] NOT humans [mh]))
5. #3 AND #4
6. "2012/11/01"[Date - Publication] : "2023/02/28"[Date - Publication]
Appendix 2. CENTRAL Search Strategy

#1 MeSH descriptor: [Breast Neoplasms] explode all trees
#2 (early breast cancer* or early breast neoplas* or early breast carcinoma* or early breast tumour* or early breast tumor*)
#3 MeSH descriptor: [Mammography] explode all trees
#4 Mammograph*
#5 #1 OR #2 OR #3 OR #4
#6 MeSH descriptor: [Mass Screening] explode all trees
#7 screen*
#8 #6 OR #7
#9 #5 AND #8 with Publication Year from 2012 to present, in Trials

Appendix 3. World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) Search Strategy

Basic search:
Breast cancer AND mammograph*

Advanced search:
1. Condition: breast AND (cancer* OR carcinoma* OR neoplas* OR tumour* OR tumor*)
 Intervention: mammograph*
 Recruitment Status: All

2. Condition: breast AND (cancer* OR carcinoma* OR neoplas* OR tumour* OR tumor*)
 Intervention: screen*
 Recruitment Status: All

Appendix 4. Clinicaltrials.gov Search Strategy

Basic search:
Condition or disease: Breast cancer
Other terms: mammography
Status: All studies

Advanced search:
1. Condition: breast cancer OR breast neoplasm
 Intervention/treatment: mammography

2. Condition: breast cancer OR breast neoplasm
 Intervention/treatment: screening

References

References to studies included in this review

Canada 1980 (published and unpublished data)

Canada 1980a {published and unpublished data}

Canada 1980b {published and unpublished data}
Göteborg 1982 {published data only}

Göteborg 1982a {published data only}

Göteborg 1982b {published data only}

Kopparberg 1977 {published data only}

Malmö 1976 {published data only}

Andersson I. Detection bias in mammographic screening for breast carcinoma. Recent Results in Cancer Research 1984;90:164-5.

Östergötland 1978 {published data only}

Thomas LB, Ackerman LV, McDivitt RW, Hanson TAS, Hankey BF, Prorok PC. Report of NCI ad hoc pathology working group to review the gross and microscopic findings of breast cancer cases in the HIP study. Journal of the National Cancer Institute 1977;59(2):496-541.

Stockholm 1981 {published data only}

Frisell J. Personal communication 13 Nov 2000.

Frisell J. Personal communication 16 Nov 2000.

Two-County 1977 {published data only}

Tabar L. Personal communication 17 Jan 2000.

UK age trial 1991 {published data only}

Johns LE, Moss SM. False-positive results in the randomized controlled trial of mammographic screening from age 40 ("Age" trial). Cancer Epidemiology Biomarkers and Prevention 2010;19:2758-64.

References to studies excluded from this review

Berglund 2000 {published data only}

Dales 1979 {published data only}

Singapore 1994 {published data only}

References to studies awaiting assessment
AgeX Trial {published data only}

Additional references

Alexander 1989

Alexander 1994

Alexander 1999

Alexander 2000

Andersson 1980

Andersson 1981

Andersson 1981a

Andersson 1983

Andersson 1988

Andersson 1988a
Andersson I, Janzon L. Mammografi för screening - kritisk inställning stöds av nya fynd [Screening with mammography - a critical attitude is supported by new findings]. Läkartidningen 1988;85(44):3666-9.

Andersson 1997

Andersson 1999a
Andersson I. Personal communication 15 June 1999.

Andersson 1999b
Andersson I. Personal communication 21 June 1999.

Andersson 2000
Armstrong 2007

Arnesson 1995

Arnold 2022

Aron 1986

Atterstam 1999

Autier 2010

Autier 2011

Autier 2011a

Bailar 1997

Baines 1994

Baines 1995

Baines 1997

Baines 2001

Baines CJ. Personal communication 18 Jan 2001.

Baines 2005

Baines CJ. Personal communication 30 Nov 2005.
Baines 2016

Barratt 1997

Barratt 1999

Barratt 2005

Barratt 2015

Barton 2001

BASO audit 2000

Baum 2000

Benjamin 1996

Berry 1998

Berry 2002
Berry DA. The Utility of Mammography for Women 40 to 50 Years of Age (Con). In: DeVita VT, Hellman S, Rosenberg SAe, editors(s). Progress in Oncology. Sudbury: Jones and Bartlett, 2002:346-72.

Berry 2005

Bjurstam 1997

Bjurstam 2000
Bjurstam N. Personal communication 10 Oct 2000.

Bjurstam 2003
Bjurstam 2016

Blamey 2000

Blamey 2007

Bleyer 2011

Bleyer 2012

Brett 2001

Brodersen 2006

Brodersen 2007

Brodersen 2013

Brown 1993

Burton 2011

Bülow 2000

Castells 2006

Chamberlain 1981

Dean P, Tabár L. Why does vehement opposition to screening come from Denmark, which has one of Europe's highest breast cancer mortality rates? BMJ 2010:http://www.bmj.com/content/340/bmj.c1241.full/reply#bmj_el_234798.

Duffy 2003

Duffy 2020a

EBCTCG 1995

EBCTCG 2000

EBCTCG 2005

EBCTCG 2005a

EBCTCG 2012

Elmore 1998

Elwood 1993

Elwood 1998

Ernster 1996

Ernster 1997

Esserman 2009

European Commission Initiative 2020
Fagerberg 1985

Fang 2012

Final reports 1977

Fink 1972

Fletcher 1993

Fletcher 2003

Forrest report 1986

Fox 1979

Freedman 2004

Frisell 1986

Frisell 1989a

Frisell 1991

Frisell J. Personal communication 13 Nov 2000.

Frisell J. Personal communication 16 Nov 2000.

Hubbard 2011

Humphrey 2002

IARC 2002

Isacsson 1985

Janzon 1991

Jodal 2019

Johns 2010
Johns LE, Moss SM. False-positive results in the randomized controlled trial of mammographic screening from age 40 ("Age" trial). Cancer Epidemiology Biomarkers and Prevention 2010;19:2758-64.

Jonsson 2005

Jørgensen 2004

Jørgensen 2006

Jørgensen 2009

Jørgensen 2009a

Jørgensen 2010

Jørgensen 2011

Jørgensen 2012
Kalager 2010

Kalager 2012

Kerlikowske K.

Kerlikowske 1997

Kricker 2000

Kösters 2003

Larsson 1996

Larsson 1997

Lerman 1991

Lidbrink 1996

Malin 2002

Marshall 2018

McNee 1996
Menon 2021

Miller 1992a

Miller 1992b

Miller 1993

Miller 1997

Miller 1997a

Miller 2000

Miller 2001

Miller 2002

Miller 2002a

Miller 2014

Moody-Ayers 2000

Morrell 2010

Moss 2005

NBCC 2002

New Reference 1

NHS leaflet 2001

NHS leaflet 2010

Nixon 2000

Njor 2007

Noel-Storr 2020

Noel-Storr 2021

Nyström 1993

Nyström 1993a

Nyström 1996

Nyström 1997

Nyström 2000

Nyström 2002

Nyström 2002a
Nyström L. Personal communication 31 July 2002.

Nyström 2002b

Olsen 2001a

Olsen 2001b

Prorok PC. Personal communication 2 Febr 2000.

Schwartz 2000

Shapiro 1966

Shapiro 1972

Shapiro 1977

Shapiro 1982

Shapiro 1985

Shapiro 1985a

Shapiro 1988

Shapiro 1989

Shapiro 1994

Skrabanek 1993

Slaytor 1998

Smart 1995

Smith-Bindman 2003

Socialstyrelsen 1985

Statusrapport 1997

Strax 1973

Suhrke 2011

Swed Cancer Soc 1996

Swift 1993

Tabar 1979

Tabar 1981

Tabar 1985

Tabar 1985a

Tabar 1988

Tabar 1989

Tabar 1990

Tabar 1991

Tabar 1992

Tabar 1995

Tabar 1999

Tabar 2000

Tabar 2000a
Tabar L. Personal communication 17 Jan 2000.

Tabar 2001

Tabar 2002

Tabar 2002a

Tabar 2003

Tabar 2003a

The Lancet Erratum 2002

Thomas 1977
Thomas LB, Ackerman LV, McDivitt RW, Hanson TAS, Hankey BF, Prorok PC. Report of NCI ad hoc pathology working group to review the gross and microscopic findings of breast cancer cases in the HIP study. Journal of the National Cancer Institute 1977;59(2):496-541.

Thomas 2020

Thornton 1997

To 2014

UK Review 2012

UKNSC Criteria

US Task Force 2002

Wald 1993

Walter 1999

Welch 1997

Welch 2004

Welch 2006

Werkö 1995

Westerholm 1988

Woloshin 2023

World Cancer Data 2023

Zahl 2001

Zahl 2004

Zahl 2006
Zahl P-H, Gøtzsche PC, Andersen JM, Mæhlen J. Results of the Two-County trial of mammography screening are not compatible with contemporaneous official Swedish breast cancer statistics. Danish Medical
References to other published versions of this review

Gøtzsche 2006

Gøtzsche 2009a

Gøtzsche 2013

Olsen 2001

Additional tables

Table 1
Examples of varying numbers of women in the Swedish trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Age range</th>
<th>Study group</th>
<th>Control group</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malmö</td>
<td>40-74</td>
<td>21242</td>
<td>21240</td>
<td>Andersson 1980</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>21242</td>
<td>21244</td>
<td>Andersson 1983</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>21088</td>
<td>21195</td>
<td>Andersson 1988</td>
</tr>
<tr>
<td>Köpparberg total</td>
<td>47389</td>
<td>22658</td>
<td></td>
<td>Socialstyrelsen 1985</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>39051</td>
<td>18846</td>
<td>Tabar 1985</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>38589</td>
<td>18582</td>
<td>Tabar 1989</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>38562</td>
<td>18478</td>
<td>Nyström 1993</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>38589</td>
<td>18582</td>
<td>Tabar 1995</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>38568</td>
<td>18479</td>
<td>Nyström 2000</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>38588</td>
<td>18582</td>
<td>Nixon 2000</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>data not available</td>
<td>data not available</td>
<td>Nyström 2002</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td>9625</td>
<td>5053</td>
<td>Tabar 1988</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td>data not available</td>
<td>data not available</td>
<td>Nyström 1993a</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td>9582</td>
<td>5031</td>
<td>Tabar 1995</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td>9650</td>
<td>5009</td>
<td>Nyström 1997</td>
</tr>
<tr>
<td>Östergötland total</td>
<td>47001</td>
<td>46503</td>
<td></td>
<td>Socialstyrelsen 1985</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>39034</td>
<td>37906</td>
<td>Tabar 1985</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>38491</td>
<td>37403</td>
<td>Tabar 1989</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>38405</td>
<td>37145</td>
<td>Nyström 1993</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>38491</td>
<td>37403</td>
<td>Tabar 1995</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>38942</td>
<td>37675</td>
<td>Nyström 2000</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>39105</td>
<td>37858</td>
<td>Nixon 2000</td>
</tr>
<tr>
<td></td>
<td>40-74</td>
<td>38942</td>
<td>37675</td>
<td>Nyström 2002</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td>10312</td>
<td>10625</td>
<td>Tabar 1988</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td>data not available</td>
<td>data not available</td>
<td>Nyström 1993a</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td>10262</td>
<td>10573</td>
<td>Tabar 1995</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td>10340</td>
<td>10411</td>
<td>Nyström 1997</td>
</tr>
<tr>
<td>Stockholm total</td>
<td>47001</td>
<td>46503</td>
<td></td>
<td>Socialstyrelsen 1985</td>
</tr>
<tr>
<td></td>
<td>40-64</td>
<td>40318</td>
<td>19943</td>
<td>Friis 1980a</td>
</tr>
<tr>
<td></td>
<td>40-65 (sic)</td>
<td>38525</td>
<td>20651</td>
<td>Nyström 1993</td>
</tr>
<tr>
<td></td>
<td>40-64</td>
<td>40318</td>
<td>19943</td>
<td>Friis 1997</td>
</tr>
<tr>
<td></td>
<td>40-69</td>
<td>39139</td>
<td>20978</td>
<td>Nyström 2000</td>
</tr>
<tr>
<td>Age Group</td>
<td>Records</td>
<td>Retained</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>14842</td>
<td>7103</td>
<td>Frisell 1997</td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>14185</td>
<td>7985</td>
<td>Nyström 1997</td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>14303</td>
<td>8021</td>
<td>Nyström 2002</td>
<td></td>
</tr>
<tr>
<td>39-59</td>
<td>21650</td>
<td>29961</td>
<td>Bjureman 1997a</td>
<td></td>
</tr>
<tr>
<td>40-59</td>
<td>21000</td>
<td>29200</td>
<td>Nyström 2000</td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>10821</td>
<td>13101</td>
<td>Nyström 1993a</td>
<td></td>
</tr>
<tr>
<td>39-49</td>
<td>11724</td>
<td>14217</td>
<td>Bjureman 1997</td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>10888</td>
<td>13203</td>
<td>Nyström 2002</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1

Screen4Me Summary Diagram

- **3912 Total records**
- **106 Possible RCT**
- **3912 Known assessments**
- **37 Rejected**
- **3769 RCT classifier**
- **715 Rejected**
- **2056 Possible RCT**
- **3054 Cochrane Crowd (0 remaining)**
- **998 Rejected**
- **2162 Possible RCT**
- **3912 Completed**
- **1750 Rejected**
- **44 Screeners**
- **25 Need acknowledgement**

Figure 2

Screen4Me Summary Diagram

IT is made available under a CC-BY-NC-ND 4.0 International license.
records after duplicates removed: 1797

records screened: 1797

records excluded: 1779

full-text articles assessed for eligibility: 18

full-text articles excluded, with reasons:
- 2 Wrong study design
- 1 Wrong intervention

new studies included: 0 (15 new papers describing previously included trials)

studies included in qualitative synthesis: 8

studies included in quantitative synthesis (meta-analysis): 8

Figure 3

Random sequence generation (selection bias)
Allocation concealment (selection bias)
Blinding of participants and personnel (performance bias): All outcomes
Blinding of outcome assessment (detection bias): All outcomes
Incomplete outcome data (attrition bias): All outcomes
Selective reporting (reporting bias)
Other bias

0% 25% 50% 75% 100%

Low risk of bias Unclear risk of bias High risk of bias
Analysis

Comparison 1: Screening with mammography versus no screening, Outcome 1: Deaths ascribed to breast cancer, 7 years follow up

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>M-H, Fixed, 95% CI</td>
<td>M-H, Fixed, 95% CI</td>
</tr>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockholm 1981</td>
<td>233</td>
<td>234</td>
<td>0.59 [0.42, 0.82]</td>
<td>0.68 [0.44, 1.06]</td>
</tr>
<tr>
<td>Malmö II 1978</td>
<td>136</td>
<td>141</td>
<td>0.71 [0.49, 1.01]</td>
<td>0.70 [0.47, 1.05]</td>
</tr>
<tr>
<td>Göteborg 1982</td>
<td>200</td>
<td>203</td>
<td>0.80 [0.59, 1.07]</td>
<td>0.79 [0.58, 1.09]</td>
</tr>
<tr>
<td>New York 1963</td>
<td>128</td>
<td>133</td>
<td>0.90 [0.62, 1.30]</td>
<td>0.70 [0.45, 1.08]</td>
</tr>
<tr>
<td>Östergötland 1978</td>
<td>104</td>
<td>112</td>
<td>0.74 [0.49, 1.12]</td>
<td>0.71 [0.45, 1.12]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>654</td>
<td>659</td>
<td>0.80 [0.67, 0.95]</td>
<td>0.72 [0.58, 0.90]</td>
</tr>
</tbody>
</table>

Total events: 1293

Risk of bias legend
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias

Test for subgroup differences: Chi² = 5.32, df = 1 (P = 0.02), I² = 81.2%
Test for overall effect: Z = 4.37 (P < 0.0001)
Heterogeneity: Chi² = 3.33, df = 3 (P = 0.34); I² = 10%

Comparison 1: Screening with mammography versus no screening, Outcome 2: Deaths ascribed to breast cancer, 13 years follow up

Analysis 1.3

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Odds Ratio</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>M-H, Fixed, 95% CI</td>
<td>M-H, Fixed, 95% CI</td>
</tr>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Göteborg 1982</td>
<td>200</td>
<td>203</td>
<td>0.83 [0.62, 1.11]</td>
<td>0.82 [0.61, 1.11]</td>
</tr>
<tr>
<td>New York 1963</td>
<td>128</td>
<td>133</td>
<td>0.79 [0.58, 1.09]</td>
<td>0.77 [0.55, 1.08]</td>
</tr>
<tr>
<td>Östergötland 1978</td>
<td>104</td>
<td>112</td>
<td>0.72 [0.50, 1.05]</td>
<td>0.70 [0.47, 1.07]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>432</td>
<td>440</td>
<td>0.81 [0.69, 0.95]</td>
<td>0.78 [0.60, 1.02]</td>
</tr>
</tbody>
</table>

Total events: 864

Risk of bias legend
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias

Test for subgroup differences: Chi² = 4.56, df = 1 (P = 0.03), I² = 78.1%
Test for overall effect: Z = 5.32 (P < 0.00001)
Heterogeneity: Chi² = 4.91, df = 4 (P = 0.30); I² = 18%

Comparison 1: Screening with mammography versus no screening, Outcome 3: Deaths ascribed to breast cancer, 19 years follow up

Analysis 1.4

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>M-H, Fixed, 95% CI</td>
<td>M-H, Fixed, 95% CI</td>
</tr>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Göteborg 1982</td>
<td>200</td>
<td>203</td>
<td>0.79 [0.60, 1.02]</td>
<td>0.78 [0.58, 1.06]</td>
</tr>
<tr>
<td>New York 1963</td>
<td>128</td>
<td>133</td>
<td>0.77 [0.55, 1.08]</td>
<td>0.76 [0.54, 1.08]</td>
</tr>
<tr>
<td>Östergötland 1978</td>
<td>104</td>
<td>112</td>
<td>0.70 [0.50, 1.05]</td>
<td>0.70 [0.50, 1.06]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>432</td>
<td>440</td>
<td>0.79 [0.69, 0.95]</td>
<td>0.78 [0.60, 1.02]</td>
</tr>
</tbody>
</table>

Total events: 864

Risk of bias legend
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias

Test for subgroup differences: Chi² = 4.56, df = 1 (P = 0.03), I² = 78.1%
Test for overall effect: Z = 5.32 (P < 0.00001)
Heterogeneity: Chi² = 4.91, df = 4 (P = 0.30); I² = 18%

Comparison 1: Screening with mammography versus no screening, Outcome 4: Deaths ascribed to breast cancer, 25 years follow up

Analysis 1.5

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>M-H, Fixed, 95% CI</td>
<td>M-H, Fixed, 95% CI</td>
</tr>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Göteborg 1982</td>
<td>200</td>
<td>203</td>
<td>0.78 [0.58, 1.05]</td>
<td>0.77 [0.57, 1.05]</td>
</tr>
<tr>
<td>New York 1963</td>
<td>128</td>
<td>133</td>
<td>0.76 [0.55, 1.07]</td>
<td>0.76 [0.55, 1.07]</td>
</tr>
<tr>
<td>Östergötland 1978</td>
<td>104</td>
<td>112</td>
<td>0.70 [0.50, 1.05]</td>
<td>0.70 [0.50, 1.06]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>432</td>
<td>440</td>
<td>0.78 [0.68, 0.91]</td>
<td>0.77 [0.58, 1.05]</td>
</tr>
</tbody>
</table>

Total events: 864

Risk of bias legend
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias

Test for subgroup differences: Chi² = 4.56, df = 1 (P = 0.03), I² = 78.1%
Test for overall effect: Z = 5.32 (P < 0.00001)
Heterogeneity: Chi² = 4.91, df = 4 (P = 0.30); I² = 18%
Analysis

Comparison 1: Screening with mammography versus no screening, Outcome 1: Deaths ascribed to breast cancer, 7 years follow up, women at least 50 years of age (Malmö 55)

Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)
- (G) Other bias

Analysis 1.4

1.4.1 Adequately randomised trials

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Total Events</th>
<th>Total Weight</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada 1980b</td>
<td>38</td>
<td>19711</td>
<td>39</td>
<td>19694</td>
<td>0.97 [0.62 , 1.52]</td>
<td>0.97 [0.62 , 1.52]</td>
<td></td>
</tr>
<tr>
<td>Malmö 1976</td>
<td>35</td>
<td>13107</td>
<td>44</td>
<td>13113</td>
<td>0.80 [0.51 , 1.24]</td>
<td>0.80 [0.51 , 1.24]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>32818</td>
<td>32807</td>
<td>100.0%</td>
<td></td>
<td>0.88 [0.64 , 1.20]</td>
<td>0.88 [0.64 , 1.20]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 73 83

Heterogeneity: Chi² = 0.39, df = 1 (P = 0.53); I² = 0%

Test for overall effect: Z = 0.80 (P = 0.42)

1.4.2 Suboptimally randomised trials

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Total Events</th>
<th>Total Weight</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Göteborg 1982b</td>
<td>21</td>
<td>9903</td>
<td>37</td>
<td>15708</td>
<td>10.8% 0.90 [0.53 , 1.54]</td>
<td>10.8% 0.90 [0.53 , 1.54]</td>
<td></td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>59</td>
<td>29426</td>
<td>44</td>
<td>13793</td>
<td>22.7% 0.63 [0.43 , 0.93]</td>
<td>22.7% 0.63 [0.43 , 0.93]</td>
<td></td>
</tr>
<tr>
<td>New York 1963</td>
<td>52</td>
<td>16151</td>
<td>80</td>
<td>16089</td>
<td>30.3% 0.65 [0.48 , 0.92]</td>
<td>30.3% 0.65 [0.48 , 0.92]</td>
<td></td>
</tr>
<tr>
<td>Östergötland 1978</td>
<td>42</td>
<td>28722</td>
<td>57</td>
<td>27311</td>
<td>22.1% 0.70 [0.47 , 1.04]</td>
<td>22.1% 0.70 [0.47 , 1.04]</td>
<td></td>
</tr>
<tr>
<td>Stockholm 1981</td>
<td>33</td>
<td>25476</td>
<td>28</td>
<td>12840</td>
<td>14.1% 0.59 [0.36 , 0.96]</td>
<td>14.1% 0.59 [0.36 , 0.96]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>109678</td>
<td>85741</td>
<td>100.0%</td>
<td></td>
<td>0.67 [0.56 , 0.81]</td>
<td>0.67 [0.56 , 0.81]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 207 246

Heterogeneity: Chi² = 1.58, df = 4 (P = 0.81); I² = 0%

Test for overall effect: Z = 4.13 (P < 0.0001)

Test for subgroup differences: Chi² = 2.02, df = 1 (P = 0.16); I² = 50.4%

Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)
- (G) Other bias

Comparison 1: Screening with mammography versus no screening, Outcome 2: Deaths ascribed to breast cancer, 7 years follow up, women below 50 years of age (Malmö 55)

Analysis 1.5

1.5 Adequately randomised trials

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Total Events</th>
<th>Total Weight</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada 1980b</td>
<td>38</td>
<td>19711</td>
<td>39</td>
<td>19694</td>
<td>0.97 [0.62 , 1.52]</td>
<td>0.97 [0.62 , 1.52]</td>
<td></td>
</tr>
<tr>
<td>Malmö 1976</td>
<td>35</td>
<td>13107</td>
<td>44</td>
<td>13113</td>
<td>0.80 [0.51 , 1.24]</td>
<td>0.80 [0.51 , 1.24]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>32818</td>
<td>32807</td>
<td>100.0%</td>
<td></td>
<td>0.88 [0.64 , 1.20]</td>
<td>0.88 [0.64 , 1.20]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 73 83

Heterogeneity: Chi² = 0.39, df = 1 (P = 0.53); I² = 0%

Test for overall effect: Z = 0.80 (P = 0.42)

1.5 Suboptimally randomised trials

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Total Events</th>
<th>Total Weight</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Göteborg 1982a</td>
<td>6</td>
<td>10821</td>
<td>10</td>
<td>13101</td>
<td>7.0% 0.73 [0.26 , 2.00]</td>
<td>7.0% 0.73 [0.26 , 2.00]</td>
<td></td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>12</td>
<td>9625</td>
<td>8</td>
<td>5053</td>
<td>8.1% 0.79 [0.32 , 1.93]</td>
<td>8.1% 0.79 [0.32 , 1.93]</td>
<td></td>
</tr>
<tr>
<td>Malmö 1976</td>
<td>29</td>
<td>9581</td>
<td>33</td>
<td>8212</td>
<td>27.5% 0.75 [0.46 , 1.24]</td>
<td>27.5% 0.75 [0.46 , 1.24]</td>
<td></td>
</tr>
<tr>
<td>New York 1963</td>
<td>39</td>
<td>14849</td>
<td>48</td>
<td>14911</td>
<td>37.1% 0.82 [0.54 , 1.24]</td>
<td>37.1% 0.82 [0.54 , 1.24]</td>
<td></td>
</tr>
<tr>
<td>Östergötland 1978</td>
<td>11</td>
<td>10312</td>
<td>10</td>
<td>10625</td>
<td>7.6% 1.13 [0.48 , 2.67]</td>
<td>7.6% 1.13 [0.48 , 2.67]</td>
<td></td>
</tr>
<tr>
<td>Stockholm 1981</td>
<td>20</td>
<td>14842</td>
<td>12</td>
<td>7103</td>
<td>12.6% 0.80 [0.39 , 1.63]</td>
<td>12.6% 0.80 [0.39 , 1.63]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>70030</td>
<td>59005</td>
<td>100.0%</td>
<td></td>
<td>0.81 [0.63 , 1.05]</td>
<td>0.81 [0.63 , 1.05]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 117 121

Heterogeneity: Chi² = 0.72, df = 5 (P = 0.98); I² = 0%

Test for overall effect: Z = 1.59 (P = 0.11)

Test for subgroup differences: Chi² = 0.85, df = 1 (P = 0.36); I² = 0%

Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)
- (G) Other bias

Comparison 1: Screening with mammography versus no screening, Outcome 3: Deaths ascribed to breast cancer, 7 years follow up, women below 50 years of age (Malmö 55)

Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)
- (G) Other bias

Comparison 1: Screening with mammography versus no screening, Outcome 4: Deaths ascribed to breast cancer, 7 years follow up, women at least 50 years of age (Malmö 55)
Analysis 1.6

Study or Subgroup

<table>
<thead>
<tr>
<th>Screening</th>
<th>No screening</th>
<th>Events</th>
<th>Total</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada 1980b</td>
<td>107</td>
<td>19711</td>
<td>105</td>
<td>19694</td>
</tr>
<tr>
<td>Malmö 1976</td>
<td>79</td>
<td>17430</td>
<td>92</td>
<td>17426</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>37141</td>
<td>37120</td>
<td>100.0%</td>
<td>0.94 [0.77, 1.15]</td>
</tr>
</tbody>
</table>

Total events: 186

Heterogeneity: $\chi^2 = 0.69$, df = 1 ($P = 0.41$); $I^2 = 0$

Test for overall effect: $Z = 0.57$ ($P = 0.57$)

Suboptimally randomised trials

<table>
<thead>
<tr>
<th>Screening</th>
<th>No screening</th>
<th>Events</th>
<th>Total</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Göteborg 1982b</td>
<td>54</td>
<td>9926</td>
<td>103</td>
<td>15744</td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>104</td>
<td>29007</td>
<td>88</td>
<td>13551</td>
</tr>
<tr>
<td>New York 1963</td>
<td>101</td>
<td>16505</td>
<td>130</td>
<td>16505</td>
</tr>
<tr>
<td>Östergötland 1978</td>
<td>112</td>
<td>28229</td>
<td>150</td>
<td>26830</td>
</tr>
<tr>
<td>Stockholm 1981</td>
<td>42</td>
<td>25476</td>
<td>33</td>
<td>12940</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>109143</td>
<td>85470</td>
<td>100.0%</td>
<td>0.70 [0.62, 0.80]</td>
</tr>
</tbody>
</table>

Total events: 413

Heterogeneity: $\chi^2 = 4.54$, df = 4 ($P = 0.34$); $I^2 = 12$

Test for overall effect: $Z = 5.28$ ($P < 0.00001$)

Test for subgroup differences: $\chi^2 = 5.83$, df = 1 ($P = 0.02$), $I^2 = 82.8$

Risk of bias legend

- **A** Random sequence generation (selection bias)
- **B** Allocation concealment (selection bias)
- **C** Blinding of participants and personnel (performance bias)
- **D** Blinding of outcome assessment (detection bias)
- **E** Incomplete outcome data (attrition bias)
- **F** Selective reporting (reporting bias)
- **G** Other bias

Comparison 1: Screening with mammography versus no screening, Outcome 6: Deaths ascribed to breast cancer, 13 years follow up, women at least 50 years of age
Study or Subgroup

- **Canada 1980**
- **UK age trial 1991**

Total (95% CI)

- **Events: Total**
 - **Control**
 - 98808 (151863)
 - **Experimental**
 - 95904 (131867)
 - **Risk Ratio**
 - **M-H, Fixed, 95% CI**
 - 0.95 [0.86, 1.04]

Test for subgroup differences: Not applicable

Risk of bias legend

- **(A) Random sequence generation (selection bias)**
- **(B) Allocation concealment (selection bias)**
- **(C) Blinding of participants and personnel (performance bias)**
- **(D) Blinding of outcome assessment (detection bias)**
- **(E) Incomplete outcome data (attrition bias)**
- **(F) Selective reporting (reporting bias)**
- **(G) Other bias**

Comparison 1: Screening with mammography versus no screening, **Outcome 7:** Deaths ascribed to breast cancer, **24 years of follow-up**

Analysis 1.8

Study or Subgroup

- **Screening**
 - **Events**
 - **Total**
 - **Control**
 - 500 (209)
 - **Experimental**
 - 500 (388)
 - **No screening**
 - 505 (474)

Risk Ratio

- **M-H, Fixed, 95% CI**
 - **0.99 [0.88, 1.12]**

Comparison 1: Screening with mammography versus no screening, **Outcome 8:** Deaths ascribed to any cancer, all women

Analysis 1.9

Study or Subgroup

- **Screening**
 - **Events**
 - **Total**
 - **Control**
 - 500 (209)
 - **Experimental**
 - 500 (388)
 - **No screening**
 - 505 (474)

Risk Ratio

- **M-H, Fixed, 95% CI**
 - **0.98 [0.83, 1.16]**

Comparison 1: Screening with mammography versus no screening, **Outcome 8:** Deaths ascribed to any cancer, all women
Comparison 1: Screening with mammography versus no screening, Outcome 10: Overall mortality, 13 years follow up

Analysis

Comparison 1: Screening with mammography versus no screening, Outcome 9: Overall mortality, 7 years follow up

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 13.75, df = 6 (P = 0.03); I² = 56%

Subtotal (95% CI)

Stockholm 1981
1.10.2 Suboptimally randomised trials (unreliable estimates)

Test for overall effect: Z = 0.78 (P = 0.44)

Heterogeneity: Chi² = 0.45, df = 3 (P = 0.93); I² = 0%

Subtotal (95% CI)

UK age trial 1991
1.10.1 Adequately randomised trials

Test for overall effect: Z = 0.78 (P = 0.44)

Heterogeneity: Chi² = 0.45, df = 3 (P = 0.93); I² = 0%

Subtotal (95% CI)

Malmö 1976
1.9.2 Suboptimally randomised trials (unreliable estimates)

Test for overall effect: Z = 0.77 (P = 0.44)

Heterogeneity: Chi² = 13.75, df = 6 (P = 0.03); I² = 56%

Subtotal (95% CI)

Östergötland 1978
1.9.1 Adequately randomised trials

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

UK age trial 1991
1.8.2 Suboptimally randomised trials (unreliable estimates)

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Malmö 1976
1.8.1 Adequately randomised trials

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Östergötland 1978
1.7.2 Suboptimally randomised trials (unreliable estimates)

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Stockholm 1981
1.7.1 Adequately randomised trials

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Malmö 1976
1.6.2 Suboptimally randomised trials (unreliable estimates)

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Östergötland 1978
1.6.1 Adequately randomised trials

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Stockholm 1981
1.5.2 Suboptimally randomised trials (unreliable estimates)

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Malmö 1976
1.5.1 Adequately randomised trials

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Östergötland 1978
1.4.2 Suboptimally randomised trials (unreliable estimates)

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Stockholm 1981
1.4.1 Adequately randomised trials

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Malmö 1976
1.3.2 Suboptimally randomised trials (unreliable estimates)

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Östergötland 1978
1.3.1 Adequately randomised trials

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Stockholm 1981
1.2.2 Suboptimally randomised trials (unreliable estimates)

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Malmö 1976
1.2.1 Adequately randomised trials

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Östergötland 1978
1.1.2 Suboptimally randomised trials (unreliable estimates)

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Stockholm 1981
1.1.1 Adequately randomised trials

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Malmö 1976
1.0.2 Suboptimally randomised trials (unreliable estimates)

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)

Östergötland 1978
1.0.1 Adequately randomised trials

Test for overall effect: Z = 0.74 (P = 0.46)

Heterogeneity: Chi² = 2.38, df = 6 (P = 0.50); I² = 56%

Subtotal (95% CI)
Analysis 1.12

<table>
<thead>
<tr>
<th>Study Or Subgroup</th>
<th>Events</th>
<th>Total</th>
<th>Weight</th>
<th>M-H, Fixed, 95% CI</th>
<th>M-H, Fixed, 95% CI</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No screening</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total events: 253

Risk of bias legend

(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias

Comparison 1: Screening with mammography versus no screening, Outcome 12: Overall mortality, 7 years follow up, women below 50 years of age

Analysis 1.13

<table>
<thead>
<tr>
<th>Study Or Subgroup</th>
<th>Events</th>
<th>Total</th>
<th>Weight</th>
<th>M-H, Fixed, 95% CI</th>
<th>M-H, Fixed, 95% CI</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No screening</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total events: 8713

Risk of bias legend

(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias

Comparison 1: Screening with mammography versus no screening, Outcome 12: Overall mortality, 7 years follow up, women at least 50 years of age
Analysis 1.14

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M-H, Fixed, 95% CI</td>
<td>M-H, Fixed, 95% CI</td>
</tr>
<tr>
<td></td>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A B C D E F G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A B C D E F G</td>
<td></td>
</tr>
</tbody>
</table>

Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)
- (G) Other bias

Comparison 1: Screening with mammography versus no screening, Outcome 13: Overall mortality, 13 years follow up, women below 50 years of age

Analysis 1.15

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M-H, Fixed, 95% CI</td>
<td>M-H, Fixed, 95% CI</td>
</tr>
<tr>
<td></td>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A B C D E F G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A B C D E F G</td>
<td></td>
</tr>
</tbody>
</table>

Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)
- (G) Other bias

Comparison 1: Screening with mammography versus no screening, Outcome 14: Overall mortality, 13 years follow up, women at least 50 years of age
Comparison 1: Screening with mammography versus no screening, Outcome 15: Overall mortality, 24 years follow-up

Analysis 1.16

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>M-H, Fixed, 95% CI</td>
<td>M-H, Fixed, 95% CI</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1980a</td>
<td>415</td>
<td>313</td>
<td>22.1%</td>
<td>1.25 [1.08, 1.44]</td>
</tr>
<tr>
<td>Canada 1980b</td>
<td>448</td>
<td>351</td>
<td>25.6%</td>
<td>1.33 [1.18, 1.50]</td>
</tr>
<tr>
<td>Malmo 1976</td>
<td>561</td>
<td>419</td>
<td>42.3%</td>
<td>1.59 [1.37, 1.84]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>66187</td>
<td>56154</td>
<td>70.6%</td>
<td>1.42 [1.26, 1.62]</td>
</tr>
<tr>
<td>Adequately randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total events:</td>
<td>1424</td>
<td>1083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Ch² = 0.28, df = 2 (P = 0.87); I² = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 6.85 (P < 0.00001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for subgroup differences: Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis 1.17

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>M-H, Fixed, 95% CI</td>
<td>M-H, Fixed, 95% CI</td>
</tr>
<tr>
<td>Suboptimally randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>621</td>
<td>306</td>
<td>14.8%</td>
<td>1.12 [1.03, 1.22]</td>
</tr>
<tr>
<td>Stockholm 1981</td>
<td>360</td>
<td>120</td>
<td>10.5%</td>
<td>1.10 [1.00, 1.21]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>79369</td>
<td>38789</td>
<td>29.4%</td>
<td>1.23 [1.12, 1.36]</td>
</tr>
<tr>
<td>Suboptimally randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total events:</td>
<td>981</td>
<td>306</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Ch² = 0.26, df = 1 (P = 0.61); I² = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 6.85 (P < 0.00001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for subgroup differences: Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risk of bias legend
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias

Comparison 1: Screening with mammography versus no screening, Outcome 16: Number of mastectomies and lumpectomies
1.17 Adequately randomised trials

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
<td>M-H, Fixed, 95% CI</td>
<td>A</td>
</tr>
<tr>
<td>Canada 1980a</td>
<td>260</td>
<td>209</td>
<td>51.0%</td>
<td>1.24 [1.04, 1.49]</td>
<td></td>
</tr>
<tr>
<td>Canada 1980b</td>
<td>209</td>
<td>21244</td>
<td>51.0%</td>
<td>1.24 [1.04, 1.49]</td>
<td></td>
</tr>
<tr>
<td>Malmö 1976</td>
<td>433</td>
<td>149</td>
<td>49.0%</td>
<td>1.40 [1.17, 1.69]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>60293</td>
<td>40090</td>
<td>100.0%</td>
<td>1.32 [1.16, 1.50]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total events: 693</td>
<td>358</td>
<td>Heterogeneity: Chi² = 0.82, df = 1 (P = 0.36); I² = 0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test for overall effect: Z = 4.22 (P < 0.0001)</td>
<td></td>
<td>Test for subgroup differences: Chi² = 0.82, df = 1 (P = 0.36); I² = 0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)
- (G) Other bias

Comparison 1: Screening with mammography versus no screening, Outcome 17: Number of mastectomies

1.18 Suboptimally randomised trials

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
<td>M-H, Fixed, 95% CI</td>
<td>A</td>
</tr>
<tr>
<td>Kopparberg 1977</td>
<td>260</td>
<td>209</td>
<td>51.0%</td>
<td>1.24 [1.04, 1.49]</td>
<td></td>
</tr>
<tr>
<td>Stockholm 1981</td>
<td>433</td>
<td>149</td>
<td>49.0%</td>
<td>1.40 [1.17, 1.69]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>60293</td>
<td>40090</td>
<td>100.0%</td>
<td>1.32 [1.16, 1.50]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total events: 693</td>
<td>358</td>
<td>Heterogeneity: Chi² = 0.82, df = 1 (P = 0.36); I² = 0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test for overall effect: Z = 4.22 (P < 0.0001)</td>
<td></td>
<td>Test for subgroup differences: Chi² = 0.82, df = 1 (P = 0.36); I² = 0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)
- (G) Other bias

Comparison 1: Screening with mammography versus no screening, Outcome 18: Number treated with radiotherapy
<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
<td>M-H, Fixed, 95% CI</td>
<td>M-H, Fixed, 95% CI</td>
</tr>
<tr>
<td>Malmö 1976</td>
<td>26</td>
<td>21242</td>
<td>80</td>
<td>21244</td>
<td>85.0%</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>21242</td>
<td>21244</td>
<td>85.0%</td>
<td>0.81</td>
<td>[0.60 , 1.08]</td>
</tr>
<tr>
<td>Total events</td>
<td>80</td>
<td>99</td>
<td></td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>21242</td>
<td>21244</td>
<td>30</td>
<td>18846</td>
<td>15.0%</td>
</tr>
<tr>
<td>Total events</td>
<td>8</td>
<td>13</td>
<td></td>
<td>0.09</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Risk of bias legend:
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias

Comparison 1: Screening with mammography versus no screening, Outcome 20: Number treated with hormone therapy
Analysis 1.22

Risk of bias legend

(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias

Comparison 1: Screening with mammography versus no screening, Outcome 21: Mortality among breast cancer patients in the Two-County study, 7 years follow up

1.22.1 Deaths ascribed to breast cancer, 7 years follow up

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edinburgh 1978</td>
<td>68</td>
<td>76</td>
<td>21904</td>
<td>0.84 [0.61, 1.17]</td>
</tr>
<tr>
<td>kopparberg 1977</td>
<td>13</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Östergötland 1978</td>
<td>12</td>
<td>621</td>
<td>3</td>
<td>464</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1295</td>
<td>768</td>
<td>100%</td>
<td>2.42 [1.00, 5.85]</td>
</tr>
</tbody>
</table>

Total events: 6
Heterogeneity: Chi² = 2.22, df = 1 (P = 0.14); I² = 0%
Test for overall effect: Z = 1.97 (P = 0.05)

1.22.2 Mortality from causes other than breast cancer

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Screening</th>
<th>No screening</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>kopparberg 1977</td>
<td>47</td>
<td>674</td>
<td>15</td>
<td>304</td>
</tr>
<tr>
<td>Östergötland 1978</td>
<td>34</td>
<td>621</td>
<td>19</td>
<td>464</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1295</td>
<td>768</td>
<td>100%</td>
<td>1.37 [0.93, 2.04]</td>
</tr>
</tbody>
</table>

Total events: 81
Heterogeneity: Chi² = 0.82, df = 1 (P = 0.37); I² = 0%
Test for overall effect: Z = 1.58 (P = 0.11)

Risk of bias legend

(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias

Comparison 1: Screening with mammography versus no screening, Outcome 22: Results for biased trial

Analysis 1.23

Risk of bias legend

(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias

Comparison 1: Screening with mammography versus no screening, Outcome 22: Results for biased trial
Study or Subgroup

1.23.1 Adequately randomised trials (after 7-9 years)

Canada 1980a
Canada 1980b
Malmö 1976
UK age trial 1991

Subtotal (95% CI)

<table>
<thead>
<tr>
<th>Events</th>
<th>Total</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M-H, Fixed, 95% CI</td>
<td>M-H, Fixed, 95% CI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(C)</td>
<td>(D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(E)</td>
<td>(F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(G)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal (95% CI)

- **Total events**: 1956, 1960
- **Heterogeneity**: Chi² = 2.65, df = 3 (P = 0.45); I² = 0%
- **Test for overall effect**: Z = 7.01 (P < 0.00001)

1.23.2 Suboptimally randomised trials (before control group screen)

Göteborg 1982a
Stockholm 1981
Two-County 1977

Subtotal (95% CI)

<table>
<thead>
<tr>
<th>Events</th>
<th>Total</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M-H, Fixed, 95% CI</td>
<td>M-H, Fixed, 95% CI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(C)</td>
<td>(D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(E)</td>
<td>(F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(G)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal (95% CI)

- **Total events**: 1950, 1049
- **Heterogeneity**: Chi² = 3.48, df = 2 (P = 0.18); I² = 43%
- **Test for overall effect**: Z = 7.47 (P < 0.00001)

Total (95% CI)

- **Total events**: 249025, 263221
- **Heterogeneity**: Chi² = 7.55, df = 6 (P = 0.27); I² = 21%
- **Test for overall effect**: Z = 10.20 (P < 0.00001)
- **Test for subgroup differences**: Chi² = 1.47, df = 1 (P = 0.22), I² = 32.2%

Risk of bias legend

(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias

Comparison 1: Screening with mammography versus no screening, Outcome 23: Number of cancers
Click here to access/download

Supplementary material
CD001877-data-package-info.html
Click here to access/download
Supplementary material
CD001877-overall-estimates-and-settings.csv
Click here to access/download

Supplementary material

CD001877-subgroup-estimates.csv
Click here to access/download
Supplementary material
CD001877-additional-references.ris
Click here to access/download

Supplementary material

CD001877-excluded.ris