Abstract
Understanding virus mutations is critical for shaping public health interventions. These mutations lead to complex multi-strain dynamics often underrepresented in models. Aiming to understand the factors influencing variants’ fitness and evolution, we explore several scenarios of virus spreading to gain qualitative insight into the factors dictating which variants ultimately predominate at the population level. To this end, we propose a two-strain stochastic model that accounts for asymptomatic transmission, mutations, and the possibility of disease import. We find that variants with milder symptoms are likely to spread faster than those with severe symptoms. This is because severe variants can prompt affected individuals to seek medical help earlier, potentially leading to quicker identification and isolation of cases. However, milder or asymptomatic cases may spread more widely, making it harder to control the spread. Therefore, increased transmissibility of milder variants can still result in higher hospitalizations and fatalities due to widespread infection. The proposed model highlights the interplay between viral evolution and transmission dynamics. Offering a nuanced view of factors influencing variant spread, the model provides a foundation for further investigation into mitigating strategies and public health interventions.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
MA acknowledges the financial support by the Ministerio de Ciencia e Innovacion (MICINN) of the Spanish Government through the Ramon y Cajal grant RYC2021-031380-I. This research is also supported by the Basque Government through the Mathematical Modeling Applied to Health (BMTF) Project, BERC 2022-2025 program and by the Spanish Ministry of Sciences, Innovation and Universities: BCAM Severo Ochoa accreditation CEX2021-001142-S / MICIN / AEI / 10 13039/501100011033.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
We do not analyse or generate any datasets, because our work proceeds within a theoretical and mathematical approach.