The relationship between acceleration during running at optimal speed and changes in the T2 times of the lumbar intervertebral disc

Takayoshi Hakkaku*, Yoshiaki Kubo2, Koji Koyama2, Koichi Nakazato1,3 Takashi Okada1,4, Kenji Hiranuma3

1 Graduate School of Health and Sport Science Health and Sport Science Programs, Nippon Sport Science University, Tokyo, Japan
2 Tokyo Ariake University of Medical and Health Sciences, Tokyo, Japan
3 Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
4 Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan

* Corresponding author

E-mail: 22sda07@nittai.ac.jp (TH)
Abstract

T2 times by magnetic resonance imaging techniques has been used to examine the beneficial effects of exercise on the human intervertebral disc (IVDs). The magnitude, frequency, and duration of running can contribute to both beneficial and detrimental responses. Slow running (7-9 km/h) is considered the optimal range. By revealing the detailed loading direction and acute changes in T2 times that occur in the IVDs, the positive effects of running on the IVDs can be explored. This study aimed to investigate the relationship between load during slow running and changes in the T2 times of lumbar IVDs before and after running. Sixteen healthy male students were fitted with a triaxial accelerometer and ran on a treadmill at 8 km/h for 1 min. Three lumbar T2 times from the L3/L4 to L5/S1 levels were measured before and after exercise using magnetic resonance imaging, and the analysis divided into five regions of interest. Acceleration was 0.23 ± 0.06 root mean square in the X-axis (mediolateral), 1.37 ± 0.08 in the Y-axis (vertical), and 0.30 ± 0.06 in the Z-axis (anteroposterior). An analysis of the correlation between the change in T2 time and acceleration showed a strong correlation, particularly in the Z-axis.
(anteroposterior direction) acceleration. At L3/L4, a positive correlation was observed for the posterior nucleus ($r = 0.72, p = 0.002, R^2 = 0.59$), at L4/L5, a positive correlation was observed for the central nucleus ($r = 0.73, p = 0.003, R^2 = 0.49$); in L5/S1, a negative correlation was observed for the anterior annulus fibrosus ($r = -0.73, p = 0.01, R^2 = 0.48$).

These results suggest that anteroposterior loading may play a significant role in the response of the IVDs.

Introduction

Human intervertebral discs (IVDs) are primarily avascular tissues, and the maintenance of homeostasis in disc cells depends on nutrient exchange between the disc and the adjacent vertebrae. Nutrients such as glucose and oxygen are transported into the vertebral column by two mechanisms: diffusion of nutrients from the vertebral vascular supply terminating at the vertebral endplate and fluid convection due to loading [1-3]. Oxygen plays an important role in disc cell metabolism, and the diminished transport of these nutrients is often proposed as a factor in age-related disc degeneration (IDD) [4].
Quantitative magnetic resonance imaging (MRI) techniques using T2 values can assess IVDs, and T2 times are strongly correlated with its biochemical composition [5]. T2 times are based on two parameters: water content and collagen arrangement in the IVDs, and as the IDD, the water content decreases and the collagen arrangement becomes irregular, resulting in a decrease in the T2 times of the nucleus pulposus [6, 7]. Investigations using T2 time to elucidate the mechanism of IDD suggest that in the nucleus pulposus, which undergoes fewer degenerative changes, T2 time is temporarily decreased by exercise stress and recovered by rest. However, progressive degeneration does not cause changes in T2, suggesting irreversible progression [8].

Recently, T2 has been used to examine the beneficial effects of exercise on the IVDs. Belavy et al. [9] reported that athletic individuals had longer T2 times of lumbar IVDs, whereas long-distance runners exhibited longer T2 times of lumbar IVDs, suggesting greater vertebral height and IVDs hypertrophy. Another study found longer T2 times of the IVDs annulus fibrosus and better IDD status in men with more than 10 years of running experience, suggesting that long-term running may delay IDD [10]. In contrast, prolonged dynamic loading during running has been reported to cause signs of degeneration. Takatalo et al. [11] investigated the incidence of IDD in adolescents and reported that
running at least twice a week among endurance runners was associated with IDD. This result is inconsistent with those of earlier studies that proposed that running benefits IVDs.

Thus, even during running, the magnitude, frequency, and duration of force may contribute to both beneficial and deleterious responses. Belavy et al. [9] used triaxial accelerometer to determine the mean absolute deviation (MAD) during running and found that 0.46 to 0.78 G is the optimal range for lumbar IVDs. In other words, by clarifying the detailed loading direction and T2 times of the acute changes that occur in IVDs during slow running at 7–9 km/h (the optimal range), the positive effects of running on IVDs can be explored. This also clarifies the inconsistency in the impact of running on the IVDs. Thus, the relationship between the direction of loading and the change in T2 times of the IVDs due to exercise loading in the optimal range of MAD has yet to be elucidated.

Therefore, this study aimed to investigate the relationship between load during slow running and changes in the T2 times of lumbar IVDs before and after running. We hypothesized that investigating the load applied by the MAD in the optimal range would provide clues for improving T2 times. Our primary hypothesis was that the T2 times in the nucleus pulposus of the IVDs would improve after slow running (MAD: 0.4–0.7 G; running speed: 7–9 km/h), and that changes would be categorized
into positive and negative effects depending on the direction of any of the triaxial accelerations.

Materials and methods

Participants

Our local ethics committee approved this study (no. 022-H173; January 31, 2023), which was performed in accordance with the guidelines for experimental studies involving human participants and met the ethical standards of the journal. The study was conducted in accordance with the principles of the Declaration of Helsinki. All participants were informed of the study’s purpose, experimental procedures, potential benefits, and possible risks, and were enrolled after providing written informed consent. Minor subjects were enrolled after obtaining parental consent. This study was conducted from February to May 2023. Sixteen healthy male university students were enrolled in this study (age, 20.8 ± 1.2 years; height, 172.2 ± 4.4 cm; weight, 72.3 ± 9.2 kg). The participants did not run daily and had no history of low back pain.

Procedures

After arriving at the laboratory, the participants were briefed on the study, placed on their backs
in bed, and allowed to rest for 10 min before pre-MRI testing was performed. Thereafter, patients were fitted with a triaxial accelerometer and performed a 1-minute run, followed by post-MRI testing. After running, the participants rested on their backs at all times, and MRI measurements were obtained 30 min after running to determine IVDs changes over time.

Running exercise and triaxial accelerometer

Participants ran on a treadmill (Elite 5000; Johnson, Tokyo, Japan) for 1 min. The exercise duration in this study was selected based on the fact that the T2 values changed even with very low exercise loads (15 repetitions of trunk flexion, extension, and rotation exercises) [8]. The running speed was set at 8 km/h, within the range of MAD that had a positive effect on the IVDs based on the report by Bellaby et al. [9] No warm-up was performed before the run, and the experiment began as soon as the participants were ready. To measure the load caused by running, a triaxial accelerometer (wGT3X-BT; ActiGraph, Chiba, Japan) was fixed to the L4-L5 lumbar intervertebral region using a belt, and acceleration data were collected at 100 Hz. The x axis was oriented in the mediolateral direction. Acceleration was indicated on the X-axis as mediolateral acceleration, on the Y-axis as vertical acceleration, and on the Z-axis as anteroposterior acceleration.
Testing and MRI scanning protocol

The participants were instructed not to perform any exercise on the day of the scan. T2 times before and after exercise were measured using MRI (ECHELON OVAL, 1.5 T; Hitachi Medical Systems, Tokyo, Japan). To avoid the effects of normal diurnal variations on the spine [12], all the tests were performed at approximately noon. The resulting images were evaluated by an orthopedic surgeon specializing in spinal diseases to assess IDD.

Sagittal T2 mapping using spin-echo multi-echo sequences (nine echo times: 12, 24, 36, 48, 60, 72, 84, 96, and 108 ms; repetition time, 1600 ms; number of slices, 12; slice thickness, 4 mm; gap, 5 mm; interslice distance, 5.0 mm; field of view, 200 mm; resolution, 1.04 × 1.25 × 4.00 mm per pixel; and acquisition time, 6 min 55 s).

Acceleration and image data analysis

The recorded raw acceleration data collected during treadmill running were transferred to analysis software (OT BioLab, OT Bioelettronica, Italy) and filtered at a 10-Hz cut-off frequency. The rms of the X-, Y-axis-, and Z-axes, resultant acceleration (\(=\sqrt{x^2+y^2+z^2}\)), and mean amplitude deviation (\(MAD = \frac{\sum_{i=1}^{n}|x_i-\bar{x}|}{n}\), \(\bar{x}\) = resultant acceleration) were calculated every 30 s on the analysis
screen, excluding the 15 s before and after the 1-min running session.

T2 values were calculated using the MRI software. After the images were obtained in ECHELON OVAL format, they were loaded and viewed using the T2*RelaxMap feature of the MRI system (Hitachi Medical Systems). After the images of the nine echo times were superimposed using the software, the outlines of the lumbar IVDs were traced to determine the region of interest (ROI) in each image. The T2 times for each pixel were calculated using the software, whereas the T2 times were measured for each slice. The three IVDs analyzed were L3/L4 to L5/S1, which had a high incidence of IDD. The IVDs was segmented into five subregions from the anterior to posterior aspect (Fig 1) [13]: from front to back, the anterior annulus fibrosus (AF), anterior nucleus (AN), central nucleus (CN), posterior nucleus (PN), and posterior annulus fibrosus (PF). Image calculations were performed thrice for each ROI, and the average value was used as the T2 time.

Fig 1. Examples of IVDs and ROIs on MR images.

T2* RelaxMap of lumbar intervertebral discs in the central slice (left) and from L3/L4 to L5/S1 divided into five subregions (right): 1. anterior annulus fibrosus; 2. anterior nucleus; 3. central nucleus; 4.
posterior nucleus; and 5. posterior annulus fibrosus.

Statistical analysis

Data are expressed as mean ± standard deviation. Changes in T2 times and differences in IVDs levels were compared using one-way analysis of variance. Pearson’s correlation coefficient was used to examine the correlation between changes in T2 times and triaxial acceleration, synthetic acceleration, and MAD. The rate of change in T2 was determined by normalizing pre-MRI values. Where a correlation was found, the adjusted R-squared was determined using simple linear regression analysis. All tests were performed using statistical analysis software SPSS Statistics for Macintosh (ver. 29.0.2.0; IBM, Armonk, NY, USA). The significance level was set at p < .05.

Results

T2 times

Disc degeneration was characterized by the Pfirrmann grade [14]. Of the 16 subjects in the study, two discs were Pfirrmann grade III on L4/L5 and four discs were Pfirrmann grade III on L5/S1, and
the corresponding IDD was excluded from this study. The T2 values for each IVDs level are shown in Table 1. There were no significant differences in the changes over time in any of the ROI.

Table 1. Changes in T2 relaxation times within the intervertebral disc

pre- versus post-running

<table>
<thead>
<tr>
<th></th>
<th>AF(ROI1)</th>
<th>AN(ROI2)</th>
<th>CN(ROI3)</th>
<th>PN(ROI4)</th>
<th>PF(ROI5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3/L4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pre</td>
<td>101.7±26.6</td>
<td>165.5±34.1</td>
<td>210.9±25.8</td>
<td>165.6±32.8</td>
<td>94.3±29.2</td>
</tr>
<tr>
<td>post</td>
<td>101.8±25.3</td>
<td>165.2±33.5</td>
<td>209.3±19.4</td>
<td>158.2±23.2</td>
<td>90.4±18.9</td>
</tr>
<tr>
<td>post30</td>
<td>100.2±25.6</td>
<td>163.4±38.1</td>
<td>209.7±24.5</td>
<td>160.8±24.2</td>
<td>89.0±18.0</td>
</tr>
<tr>
<td>L4/L5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pre</td>
<td>97.6±28.4</td>
<td>165.2±44.5</td>
<td>224.2±30.4</td>
<td>173.3±31.3</td>
<td>97.6±24.0</td>
</tr>
<tr>
<td>post</td>
<td>96.7±27.2</td>
<td>158.0±38.4</td>
<td>219.3±34.5</td>
<td>171.5±29.0</td>
<td>104.2±31.7</td>
</tr>
<tr>
<td>post30</td>
<td>96.6±23.3</td>
<td>158.6±31.0</td>
<td>219.8±37.5</td>
<td>175.2±35.0</td>
<td>95.2±25.1</td>
</tr>
<tr>
<td>L5/S1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pre</td>
<td>101.0±30.7</td>
<td>154.1±46.2</td>
<td>193.5±55.0</td>
<td>143.7±36.2</td>
<td>88.3±17.8</td>
</tr>
<tr>
<td>post</td>
<td>105.6±28.7</td>
<td>155.7±44.3</td>
<td>191.2±54.4</td>
<td>141.0±29.0</td>
<td>86.1±26.6</td>
</tr>
<tr>
<td>post30</td>
<td>101.6±22.8</td>
<td>149.8±32.1</td>
<td>193.4±45.1</td>
<td>148.5±35.2</td>
<td>92.4±18.2</td>
</tr>
</tbody>
</table>

Data are shown as mean ± standard deviation. AF, annulus fibrosus; AN, anterior nucleus; CN, central nucleus; PN, posterior nucleus; PF, posterior annulus fibrosus; Post, post-running; Post30, 30 min post-running; Pre, pre-running; ROI, region of interest

Triaxial acceleration during running
The triaxial accelerations were 0.23 ± 0.06 rms in the X-axis (mediolateral), 1.37 ± 0.08 rms in the Y-axis (vertical), and 0.30 ± 0.06 rms in the Z-axis (anteroposterior). The resultant acceleration and MAD were 1.43 ± 0.07 rms and 0.71 ± 0.09 G, respectively.

Correlation between T2 times and triaxial acceleration

The results of the correlation analysis between changes in T2 and acceleration are shown in Table 2. In the T2 times variation of L3/L4, negative correlations were observed for AN (r = -0.58, p = 0.02), CN (r = -0.54, p = 0.03) and PN (r = -0.59, p = 0.02) on the X-axis and positive correlations were observed for AN (r = 0.53, p = 0.04), CN (r = 0.62, p = 0.01) and PN (r = 0.72, p = 0.002) on the Z-axis. In addition, the Y-axis (r = 0.57, p = 0.02), resultant acceleration (r = 0.55, p = 0.03), and MAD (r = 0.68, p = 0.004) were positively correlated with PF. In the change in T2 time for L4/L5, a positive correlation was observed for CN (r = 0.73, p = 0.003), and a negative correlation was observed for PF at the post (r = -0.59, p = 0.03) on the Z-axis. In MAD, a negative correlation is observed for CN (r = -0.55, p = 0.04). The change in T2 times for L5/S1 showed a negative correlation with AF (r = -0.73, p = 0.01) and PN at the post-(r = -0.59, p = 0.05) and post30 (r = -0.69, p = 0.01) time points on the Z-axis. The strongest correlations were post30 PN ($R^2 = 0.59$) for L3-L4, CN ($R^2 = 0.49$) for L4-L5,
and AF ($R^2 = 0.48$) for L5-S1 on the Z-axis. The regression equations were $y=144.5 \times +55.2$ for the PF of L3/4, $y=115.4 \times +63.2$ for the CN of L4/5, and $y=-219.9 \times +174.1$ for the AF of L5/S1, respectively.

Table 2. Correlation between T2 relaxation time and triaxial acceleration

<table>
<thead>
<tr>
<th></th>
<th>X-axis</th>
<th></th>
<th>Z-axis</th>
<th></th>
<th>Resultant acceleration</th>
<th></th>
<th>MAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p</td>
<td>R^2</td>
<td>r</td>
<td>R^2</td>
<td>r</td>
<td>R^2</td>
</tr>
<tr>
<td>L3/L4 (N=16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF(ROI1)</td>
<td>post</td>
<td>0.04</td>
<td>0.89</td>
<td>-0.11</td>
<td>0.70</td>
<td>-0.07</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>post30</td>
<td>0.12</td>
<td>0.67</td>
<td>-0.03</td>
<td>0.91</td>
<td>-0.32</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>post</td>
<td></td>
<td>-0.58</td>
<td>0.02</td>
<td>0.29</td>
<td>0.53</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>post30</td>
<td></td>
<td>-0.31</td>
<td>0.24</td>
<td>0.94</td>
<td>0.15</td>
<td>0.59</td>
</tr>
<tr>
<td>AN(ROI2)</td>
<td>post</td>
<td></td>
<td>-0.54</td>
<td>0.03</td>
<td>0.25</td>
<td>-0.21</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>post30</td>
<td></td>
<td>-0.19</td>
<td>0.48</td>
<td>0.58</td>
<td>0.16</td>
<td>0.56</td>
</tr>
<tr>
<td>CN(ROI3)</td>
<td>post</td>
<td></td>
<td>-0.36</td>
<td>0.17</td>
<td>0.89</td>
<td>0.06</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>post30</td>
<td></td>
<td>-0.59</td>
<td>0.02</td>
<td>0.31</td>
<td>-0.27</td>
<td>0.31</td>
</tr>
<tr>
<td>PN(ROI4)</td>
<td>post</td>
<td></td>
<td>-0.16</td>
<td>0.55</td>
<td>0.57</td>
<td>0.02</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>post30</td>
<td></td>
<td>-0.29</td>
<td>0.28</td>
<td>0.34</td>
<td>0.20</td>
<td>-0.18</td>
</tr>
<tr>
<td>L4/L5 (N=14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF(ROI1)</td>
<td>post</td>
<td>0.06</td>
<td>0.84</td>
<td>0.10</td>
<td>0.74</td>
<td>-0.05</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>post30</td>
<td>0.02</td>
<td>0.94</td>
<td>-0.25</td>
<td>0.39</td>
<td>-0.02</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>post</td>
<td>0.23</td>
<td>0.43</td>
<td>-0.01</td>
<td>0.99</td>
<td>0.05</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>post30</td>
<td>0.10</td>
<td>0.73</td>
<td>-0.10</td>
<td>0.75</td>
<td>-0.31</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>post</td>
<td>post30</td>
<td>post</td>
<td>post30</td>
<td>post</td>
<td>post30</td>
<td>post</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>CN(ROI3)</td>
<td></td>
<td></td>
<td>-0.39</td>
<td>0.17</td>
<td>-0.38</td>
<td>0.18</td>
<td>0.73</td>
</tr>
<tr>
<td>post30</td>
<td>-0.04</td>
<td>0.90</td>
<td>-0.45</td>
<td>0.11</td>
<td>0.09</td>
<td>0.75</td>
<td>-0.48</td>
</tr>
<tr>
<td>PN(ROI4)</td>
<td></td>
<td></td>
<td>-0.13</td>
<td>0.67</td>
<td>-0.14</td>
<td>0.63</td>
<td>0.28</td>
</tr>
<tr>
<td>post30</td>
<td>0.03</td>
<td>0.92</td>
<td>-0.25</td>
<td>0.40</td>
<td>-0.15</td>
<td>0.62</td>
<td>-0.30</td>
</tr>
<tr>
<td>PF(ROI5)</td>
<td></td>
<td></td>
<td>0.42</td>
<td>0.13</td>
<td>0.01</td>
<td>0.98</td>
<td>-0.59</td>
</tr>
<tr>
<td>post30</td>
<td>0.11</td>
<td>0.70</td>
<td>0.27</td>
<td>0.35</td>
<td>-0.50</td>
<td>0.07</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Bold text indicates the locations of significant correlations. \(r = \) Pearson’s correlation coefficient, \(R^2 = \) adjusted R-square, AF, annulus fibrosus; AN, anterior nucleus; CN, central nuclei; PN, posterior nucleus; PF, posterior annulus fibrosus; MAD, mean absolute deviation; Post, post-running; Post30, 30 min post-running; Pre, pre-running; ROI, region of interest

Discussion
The positive effects of running loading on IVDs have been reported in recent years; however, the direction of loading by MAD in the optimal range is unclear. This study revealed that in slow running in the general population, the correlation between the change in T2 times and the direction of loading was different for each IVD level. In particular, in the anteroposterior direction, there were ROI with high adjusted R-square values at all IVDs levels, explaining approximately 50% of the changes in T2 times.

Previous studies have suggested that for IVDs, activities such as walking provide a “probable healthy” range of load based on the size, speed, direction, and type [15, 16]. Acute effects of running have been reported, with an average decrease of 1 mm in lumbar IVDs height after 1 h of running and a decrease in IVDs height and volume after moderate-intensity running [17, 18]. However, middle-aged men with >10 years of running experience showed differences in IVDs status, suggesting that long-term running may delay IDD [10]. These results suggest that the running load temporarily pushes water out of the IVDs; however, repeated loading in the optimal range may produce a favorable response in IVDs as a chronic change.

The IVDs in adults suggest that pumping by motion (fluid flow or convection) plays a role in
transporting larger nutrients [19]. Thus, the transport of nutrients in IVDs requires motor loading, which may affect water movement. In this study, an optimal speed range of 8 km/h and running time were determined based on the reports of Chokan et al. and Bellaby et al. [8, 9]. Chokan et al. showed that in the nucleus pulposus, the T2 times significantly decreased after exercise and returned to the pre-exercise rest time. The results showed that there was a change in T2 times for trunk exercises (flexion-extension/rotation) and no change in T2 times for running, despite a similar exercise duration as in the present study, suggesting that T2 times are related to trunk range of motion and cause differences. While T2 times may be affected by the range of motion, the direction of exercise loading at a running speed of 8 km/h suggests that loading in the anteroposterior direction of the Z-axis may affect T2 times by nearly 50%, based on the adjusted R-square value. Previous recommendations for beneficially modulating the IVDs include [15]: (a) use dynamic loading; (b) emphasize axial loading; and (c) choose exercises that load the IVDs in the range of 0.2–0.8 MPa, corresponding to an intradiscal pressure of 0.3–1.2 MPa [16]. In trunk motion, the greatest impact on intradiscal pressure is in flexion-extension [20], a movement that produces a range of 0.3-1.2 MPa, the optimal pressure
for IVDs during the movement. Meadows et al. also observed that in their investigation of disc mechanics in disc strain, disc anterior-posterior shear, and mechanics due to flexion were related to the nucleus pulposus T2 values [21]. Therefore, IVDs may have been more susceptible to anteroposterior loading, and L3/L4 and L4/L5 [22], with greater flexion range of motion positively correlated with the application of optimal intradiscal pressure. In contrast, L5/S1 had greater posterior shear forces due to flexion than the other levels [21]. Shear forces may induce IDD [23, 24], and a negative correlation may be observed between different ranges of trunk motion and applied internal pressure at different IVDs levels. Interestingly, L3/L4 was also affected by influences other than the Z-axis; L3/L4 had greater lateral flexion and rotation than the bottom two, and the X-axis was negatively correlated. This characteristic of cranial IVDs may be due to the high incidence of IDD in gymnasts with high rotational stress, which suggests that changes in T2 times are influenced by range of motion [25, 26]. Based on the present results, the hypothesis that slow running improves the T2 times of the nucleus pulposus was rejected because it did not significantly change the T2 times. However, the results partially support the hypothesis because it was improved by loading in the anteroposterior
direction. This study had several limitations. In this study, a treadmill was used to maintain a constant running speed within the optimal loading range of the IVDs. However, the similarity in the triaxial acceleration data between treadmill and ground running suggests that the results for the loading direction were unaffected [27]. Although only male subjects were included in the study, sex was standardized because sex differences have been observed in pelvic movements during running [28], which may have affected the loading pattern. Finally, although there is a correlation, other factors may also have an effect. Further investigation is needed on factors other than speed that may contribute to IDD. The next investigation should be a slow-running motion analysis to determine the reasons for the high anteroposterior loading. Despite these limitations, the evidence suggests that IVDs are a beneficial response to certain types of loading and may have public health implications. IDD is an important factor in spinal pain. Understanding how IVDs respond to certain types of stress will lead to improved exercise guidelines for the prevention and management of spinal pain.

Conclusion

The results of this study suggest that changes in the T2 times of the IVDs due to running at 8
km/h correlate with acceleration, suggesting that anteroposterior loading may contribute to the important response of the IVDs.

Acknowledgements

The authors would like to thank all members of the research team and all participants of the study.

This study was supported by the Japan Society for the Promotion of Science (,) KAKENHI (30434153).

References

