Using routine electronic data of microbiology laboratory and hospital admission in hospitals in Thailand, we show that the yearly incidence of cases with *Burkholderia pseudomallei* and *Streptococcus suis* infection diagnosed by culture in 2022 were higher than those between 2012-2015, while those of non-typhoidal salmonella, typhoid, shigellosis and vibriosis were lower.

Running Title: Emerging bacterial diseases in Thailand, 2022

Title:

Emergence and endemicity of notifiable bacterial diseases, Thailand, 2022

Authors:

Charuttaporn Jitpeera, Somkid Kripattanapong, Preeyarach Klaytong, Chalida Rangsiwutisak, Prapass Wannapinij, Pawinee Doungngern, Papassorn Pinyopornpanish, Panida Chamawan, Voranadda Srisuphan, Krittinya Tuamsuwan, Phairam Boonyarit, Orapan Sripichai, Soawapak Hinjoy, John Stelling, Paul Turner, Wichan Bhunyakitikorn, Sopon Iamsirithaworn, Direk Limmathurotsakul

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Affiliation:

Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand (CJ, SK, PD, WB)

Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand (PK, CR, PW, DL)

Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, 11000, Thailand (PP)

Health Administration Division, The Office of Permanent Secretary, Ministry of Public Health, Nonthaburi, 11000, Thailand (P.C., V.S., K.T., P.B.)

Department of Medical Science, Ministry of Public Health, Nonthaburi, 11000, Thailand (OS)

Office of International Cooperation, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand (SH)

Office of Senior Executive Committee Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand (AS)

Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States (JS)

Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia (PT)

Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom (PT, DL)

Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand (SI)

Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand (DL)
ORCID

Charuttaporn Jitpeera 0009-0007-9298-5853

Preeyarach Klaytong 0000-0002-9906-5159

Chalida Rangsiwutisak 0009-0007-9380-9085

Paul Turner 0000-0002-1013-7815

Direk Limmathurotsakul 0000-0001-7240-5320
Abstract

To evaluate incidence and geographical distribution of notifiable bacterial diseases diagnosed by culture, we retrospectively analyzed data of microbiology laboratory and hospital admission in 110 public referral hospitals in Thailand during January-December 2022. We also compared these incidences with those diagnosed between 2012-2015 in 46 hospitals where paired data were available. In 2022, 4,407 patients with *Burkholderia pseudomallei*, 4,501 patients with non-typhoidal *Salmonella* spp. and 867 patients with *Streptococcus suis* infections were diagnosed by culture. Of these cases, 1,219 (27.7%), 461 (10.2%) and 134 (15.5%) died in the hospitals, respectively. The incidence of *S. suis* infection was associated with pig density. The yearly incidence of melioidosis and *S. suis* infection in 2022 were higher than those between 2012-2015, while those of non-typhoidal salmonella, typhoid, shigellosis and vibriosis were lower. Overall, melioidosis and *S. suis* infection are emerging and associated with high number of deaths. Public health interventions are warranted.
Introduction

Timely, reliable and complete information regarding notifiable infectious diseases is considered necessary for the prevention and control of the diseases at local, national and global levels [1, 2]. A number of enhanced surveillance-related activities such as automated, electronic laboratory-based reporting systems, have been developed and implemented in high-income countries (HICs) [3, 4]. Although resources, health infrastructures and national notifiable disease surveillance systems (NNDSS) are major challenges in low and middle-income countries (LMICs) [5], incorporating laboratory diagnostic data into the national disease surveillance systems could improve completeness and stability of reporting the diagnosed cases to the NNDSS [6].

Thailand has the NNDSS which monitors 13 dangerous communicable diseases and 57 notifiable diseases under the surveillance, responsible by the Department of Disease Control (DDC), Ministry of Public Health (MoPH) [7]. Recent studies showed that many public referral hospitals, which have microbiology laboratories, do not report most cases and deaths following notifiable bacterial diseases (NBDs) to the NNDSS [8]. The incomplete data hamper actions to improve awareness, diagnosis, treatment and prevention of NBDs in the country [9].

To overcome the challenges of resource limitation and data security in LMICs, we developed the AMASS (AutoMated tool for Antimicrobial resistance Surveillance System), an offline application that enable hospitals to automatically analyse and generate standardized antimicrobial resistance (AMR) surveillance reports from routine microbiology and hospital data [10]. The AMASS version 1.0 (AMASSv1.0) was released on 1st February 2019 and tested in six hospitals in six low and middle-income countries (LMICs) [10]. We conceptualized that the
AMASS could additionally analyse and generate summary reports for notifiable bacterial
diseases (NBDs) and tested the approach in six public referral hospitals using the data from 2020
or 2021 in Thailand [11]. In 2022, we released the AMASS version 2.0 (AMASSv2.0), which
included an additional report on notifiable bacterial diseases (Annex A) and blood culture
contamination rate (Annex B). Applying AMASSv2.0 to the data from 2012 to 2015 of 49 public
referral hospitals, we reported the potential use of the tool to support the national information of
AMR and NBD based on routine microbiology laboratory and hospital admission data [12]. In
2023, collaborating with Health Administration Division, MoPH Thailand, the AMASSv2.0 was
implemented in 127 public referral hospitals in Thailand using the data from 2022 countrywide
[13].

Here, we report the incidence, geographical distribution and related factors of NBDs in Thailand
using the data from 2022. We also evaluate trends of NBDs by comparing the data from 2022
with data from 2012 to 2015.

Methods

Study setting

In 2022, Thailand had a population of 66.1 million, consisted of 77 provinces, and covered
513,120 km². The health systems in each province were integrated into 12 groups of provinces,
known as health regions, plus the capital Bangkok as health region 13 (Figure S1), using the
concept of decentralization [14]. The Health Administration Division, Ministry of Public Health
(MoPH) Thailand, supervised 127 public referral hospitals in health regions 1 to 12. These
included 35 advanced-level referral hospital (i.e. level A, with a bed size of about 500-1,200 beds), 55 standard-level referral hospital (i.e. level S, with a bed size of about 300 to 500) and 37 mid-level referral hospital (i.e. level M1, with a bed size of about 180-300) [15]. All level A and S hospitals, and most of level M1 hospitals were equipped with a microbiology laboratory capable of performing bacterial culture using standard methodologies for bacterial identification and susceptibility testing provided by the Department of Medical Sciences, MoPH, Thailand [16].

From 16 December 2022 to 30 June 2023, on behalf of the Health Administration Division, MoPH, we invited and trained 127 public referral hospitals in health regions 1 to 12 to utilize the AMASS with their own microbiology and hospital admission data files via four online meetings, five face-to-face meetings and on-line support. Subsequently, the hospitals that completed utilization of the AMASS submitted summary data generated by the tool to the MoPH.

Study design

We conducted a retrospective study evaluating incidence and geographical distribution of NBDs diagnosed by culture, and their associated factors using public referral hospital data from 2022. We also compared these incidences with those from 2012-2015, using paired data from 49 public referral hospitals that has been previously published [12].

The NBDs under evaluation included *Brucella* spp., *Burkholderia pseudomallei*, *Corynebacterium diphtheriae*, *Neisseria gonorrhoeae*, *Neisseria meningitidis*, Non-typhoidal *Salmonella* spp., *Salmonella enterica* serovar Paratyphi, *Salmonella enterica* serovar Typhi, *Shigella* spp., *Streptococcus suis*, and *Vibrio* spp. infections. NBD cases were defined as having
a clinical specimen culture positive for a pathogen. The AMASS deduplicated the laboratory data by reporting total number of inpatients with a clinical specimen culture positive for a pathogen during the evaluation period. Then, AMASS merged the deduplicated laboratory data with the hospital admission data, using the hospital number (i.e. the patient identifier) present in both data files for the NBD mortality report. Data of specimens from outpatients or other hospitals were excluded from the NBD mortality report. Mortality was defined using the discharge summary (in the hospital admission data) which was routinely completed by the attending physician and reported to the MoPH. In case a patient was admitted with an NBD more than once during the evaluation period, the mortality outcome of the first admission was presented.

Statistical Analysis

We calculated total number of cases and deaths following NBDs diagnosed by culture among inpatients in hospitals included in the analysis. Data from the NBD mortality report in each AMASS report were used. We then calculated the incidence of NBDs per 100,000 population in each province in 2022 [17].

For NBDs with more than 100 cases in the year 2022 (Table S1-S4), we evaluated factors associated with the incidence rates of NBDs per 100,000 admissions using multivariable Poisson random-effects regression models [18]. We assumed that the distribution of hospital-specific random effects was normal. To take account of missing data that not all hospitals in every province was included in the study, we evaluated factors associated with NBDs per 100,000 hospital admissions. Factors evaluated included hospital level, health region, hospital bed size, Gross Provincial Product (GPP), pig density, poultry density, percentage of patients having
blood culture taken within the first two calendar days of hospital admission. Data of GPP in 2021 were used as a proxy for the size of the economy in each province [17]. Pig density and poultry density (per square meters) were estimated by using the total number of pigs and poultry in each province in Thailand in 2022, divided by the total area of each province [19]. Percentage of patients having blood culture taken within the first two calendar days of hospital admission were used as a proxy for culture utilization for NBDs in each hospital [20].

We compared the median number of cases with each NBD diagnosed by culture in 2022 with the those between 2012-2015 in hospitals where paired data were available, using Wilcoxon matched-pairs signed rank test. Univariable Poisson random-effects regression models were then used to evaluate the change of incidence rate per 100,000 admissions between the time periods. We also compared the total number of cases and deaths of each NBD diagnosed by culture in 2022 in our study with those of relevant notifiable diseases reported to the NNDSS of Thailand [21].

We used STATA (version 14.2; College Station, Texas) for all analyses. For percentages, one digit after the decimal points is shown when the total number of denominators is higher than 100.

Data availability
The hospital-level summary data used for the study are open-access and available at

Ethics
Ethical permission for this study was obtained from the Institute for the Committee of the Faculty of Tropical Medicine, Mahidol University (TMEC 23-085). Individual patient consent was not sought as this was a retrospective study, and the Ethical and Scientific Review Committees approved the process.

Results

Baseline characteristics

Of 127 public referral hospitals, 116 (91.3%) used the AMASS to analyze their microbiology and hospital admission data files, and submitted summary AMR and NBD data of the year 2022 to the MoPH. After reviewing reports, we excluded four hospitals having incomplete microbiology data file, and one hospital having incomplete hospital admission data from the analysis. Therefore, a total of 111 hospitals were included in the final analysis.

Of all public referral hospitals in Thailand, 100% of Level A hospitals (35/35), 89% of Level S hospitals (49/55) and 73% of Level M1 hospitals (27/37) were included in this study. Data were available from 74 of 77 provinces (96%) in Thailand, all provinces except Mae Hong Son, Nakorn Nayok and Bangkok.

A total of 46 hospitals had paired data for the year 2022 and between 2012-2015.

Brucella spp.
In 2022, there were 11 cases from 111 hospitals with culture-confirmed *Brucella* spp. infection (Figure 1A and 2A) and 1 of them died (in-hospital mortality 9%). Among 46 hospitals where paired data were available, the median number of cases did not differ between the time periods (p=0.37, Figure 3A).

B. pseudomallei

In 2022, there were 4,407 cases with culture-confirmed *B. pseudomallei* infection (Figure 1B) and 1,219 of them died (in-hospital mortality 27.7%). In the multivariable models, health region and percentage of patients tested for blood culture within two calendar days of hospital admission were associated with the incidence of melioidosis cases diagnosed by culture per 100,000 admissions (Table S1). The incidence rate was highest in the northeast (health regions 7, 8, 9 and 10, p<0.001, Figure 2B), followed by the upper central (health region 3).

Among 46 hospitals where paired data were available, the median number of melioidosis cases diagnosed by culture in 2022 was higher than that between 2012-2015 (p<0.001, Figure 3B). The incidence of melioidosis cases diagnosed by culture per 100,000 admissions increased by 50% (incidence rate ratio [IRR] 1.50, 95% confidence interval [CI] 1.41-1.60, p<0.001).

C. diphtheriae

In 2022, there were 10 cases with culture-confirmed *C. diphtheriae* infection (Figure 1C and 2C) and 1 of them died (in-hospital mortality 10%). Among 46 hospitals where paired data were available, the median number of cases did not differ between the time periods (p=0.41, Figure 3C).
In 2022, there were 25 cases with culture-confirmed *N. gonorrhoeae* infection (Figure 1D and 2D) and none died. Among 46 hospitals where paired data were available, the median number of cases did not differ between the time periods (p=0.70, Figure 3D).

N. meningitidis

In 2022, there were 9 cases with culture-confirmed *N. meningitidis* infection (Figure 1E and 2E) and 2 died (in-hospital mortality 22%). Among 46 hospitals where paired data were available, the clear difference in the median number of cases with culture-confirmed *N. meningitidis* between the time periods was not observed (Figure 3E).

Non-typhoidal *Salmonella* spp.

In 2022, there were 4,501 cases with culture-confirmed non-typhoidal *Salmonella* spp. infection (Figure 1F) and 461 died (in-hospital mortality 10.2%). In the multivariable models, the percentage of patients tested for blood culture within two calendar days of hospital admission was associated with the incidence of non-typhoidal *Salmonella* spp. cases diagnosed by culture per 100,000 admissions (Table S2). Cases were diagnosed in every province (Figure 2F) and health region was not associated with the incidence (p=0.29).

Among 46 hospitals where paired data were available, the median number of non-typhoidal salmonella cases diagnosed by culture in 2022 was lower than that between 2012-2015 (p=0.013, Figure 3F). The incidence of non-typhoidal salmonella cases diagnosed by culture per 100,000 admissions was lower in 2022 (p=0.001, Figure 3F).
admissions decreased by 26% (incidence rate ratio [IRR] 0.74, 95% confidence interval [CI]
0.70-0.78, p<0.001).

253

254 *Salmonella enterica* serovar Paratyphi

In 2022, there were 30 cases with culture-confirmed *Salmonella* enterica serovar Paratyphi
infection (Figure 1G and 2G) and 4 died (in-hospital mortality 13%). Among 46 hospitals where
paired data were available, the median number of cases did not differ between the time periods
(p=0.33, Figure 3G).

259

260 *Salmonella enterica* serovar Typhi

In 2022, there were 32 cases with culture-confirmed *Salmonella* enterica serovar Typhi infection
(Figure 1H and 2H) and 6 died (in-hospital mortality 19%).

263

Among 46 hospitals where paired data were available, the median number of typhoid cases
diagnosed by culture per year in 2022 was lower than that between 2012-2015 (p=0.015, Figure
3H). The incidence of typhoid cases diagnosed by culture per 100,000 admissions decreased
85% (incidence rate ratio [IRR] 0.15, 95% confidence interval [CI] 0.06-0.36, p<0.001).

268

269 *Shigella* spp.

In 2022, there were 68 cases with culture-confirmed *Shigella* spp. infection (Figure 1I and 2I)
and 4 died (in-hospital mortality 6%).
Among 46 hospitals where paired data were available, the median number of shigellosis cases diagnosed by culture in 2022 was lower than that between 2012-2015 (p<0.001, Figure 3I). The incidence of shigellosis cases diagnosed by culture per 100,000 admissions decreased by 79% (incidence rate ratio [IRR] 0.21, 95% confidence interval [CI] 0.13-0.34, p<0.001).

S. suis

In 2022, there were 867 cases with culture-confirmed *S. suis* infection (Figure 1J) and 134 of them died (in-hospital mortality 15.5%). In the multivariable models, health region, percentage of patients tested for blood culture within two calendar days of hospital admission, and pig density (adjusted IRR 1.30; 95% confidence interval 1.07-1.58, p=0.008) were associated with the incidence of *S. suis* infection cases diagnosed by culture per 100,000 admissions (Table S3). The incidence was highest in the upper central (health region 3, p<0.001, Figure 2J), followed by the north (health region 1 and 2).

Among 46 hospitals where paired data were available, the median number of *S. suis* infection cases diagnosed by culture in 2022 was higher than that between 2012-2015 (p=0.002, Figure 3J). The incidence of *S. suis* infection cases diagnosed by culture per 100,000 admissions increased by 165% (incidence rate ratio [IRR] 2.65, 95% confidence interval [CI] 2.23-3.16, p<0.001).

Vibriosis

In 2022, there were 809 cases with culture-confirmed *Vibrio* spp. infection (Figure 1K) and 122 of them died (in-hospital mortality 15.1%). In the multivariable models, health region and percentage of patients tested for blood culture within two calendar days of hospital admission...
were associated with the incidence of vibriosis cases diagnosed by culture per 100,000 admissions (Table S4). The incidence was highest in the west (health region 5, p=0.029, Figure 2K), followed by the upper northeast (health region 8).

Among 46 hospitals where paired data were available, the median number of cases diagnosed by culture in 2022 was not different than that between 2012-2015 (p=0.18, Figure 3J), but the incidence of cases diagnosed by culture per 100,000 admissions decreased by 30% (rate ratio [RR] 0.70, 95% confidence interval [CI] 0.61-0.79, p<0.001).

Comparison of total number of cases and deaths following NBDs with those reported to the NNDSS

In 2022, the total number of melioidosis cases diagnosed by culture in 111 hospitals was higher than the total number of cases reported to the NNDSS nationwide (4,407 vs. 3,573 cases, Table S5), and the total number of deaths was also higher (1,219 vs. 157 deaths). The total number of *S. suis* infection cases diagnosed by culture in 111 hospitals was higher than the total number of cases reported to the NNDSS nationwide (867 vs. 383 cases), and the total number of deaths was also higher (134 vs. 10 deaths). The total number of deaths following food-borne NBDs diagnosed by culture (including 460 for non-typhoidal salmonella, 122 for vibriosis, 4 for paratyphoid, 6 for typhoid and 4 for shigella) were higher than those reported to the NNDSS nationwide (0 deaths in all relevant food-borne NBDs).

We also evaluated data of the NNDSS between 2012-2015 and 2022 whether the difference we observed using the microbiology data was also observed in the NNDSS data. Data of the NNDSS
(Table S6) showed that the total number of *S. suis* infection cases reported to the NNDSS also increased, and that of food poisoning, cholera, paratyphoid, typhoid and bacillary dysentery cases reported also decreased. However, the change in total number of deaths following *S. suis* infection being reported to the NNDSS was not observed. The increase in total number of melioidosis cases being reported to the NNDSS was not observed, but the total number of deaths following melioidosis increased from less than 15 per year between 2012-2014 to 112 in 2015 and 157 in 2022.

Discussion

Our findings provide evidence that melioidosis and *S. suis* infection are emerging and associated with a high number of deaths in Thailand in 2022. Some foodborne NBDs including salmonellosis, typhoid, shigellosis and vibriosis are present and associated with deaths, but are decreasing compared to the data between 2012-2015. This study highlights the potential advantage of utilization of routine microbiology and hospital admission data from public referral hospitals. The local and timely data of NBDs can supplement and monitor the performance of the NNDSS of the country. The DDC, MoPH, Thailand, will use the data of NBDs diagnosed by culture to identify diseases and areas with high burden, improve public health interventions, and prioritize resource allocation.

The finding that more than 1,200 deaths following melioidosis in 2022 is worrying. This finding is consistent with a previous modelling study predicting that the total number of deaths following melioidosis could range from 1,259 to 6,678 in Thailand if all patients were tested with bacterial
culture and data were reported nationwide [22]. The increase in melioidosis cases diagnosed by
culture in most hospitals could be associated with the increasing incidence of diabetes (the major
risk factor of melioidosis) and improvement of diagnostic stewardship (i.e. utilization of culture)
and bacterial identification in public referral hospitals in Thailand over time [9, 23, 24]. The
increase in total number of deaths following melioidosis reported to the NNDSS was because of
a collaborative action and a few referral hospitals starting to report the deaths following culture-
confirmed melioidosis into the NNDSS [9]. It is unknown whether the decrease in incidence of
melioidosis cases diagnosed by culture at the Sunpasitthiprasong hospital, Ubon Ratchathani
(from 336 per year between 2012-2015 to 241 in 2022, the green color in Figure 3J) is due to the
preventive measures previously implemented in the province [25], potentially increased capacity
of smaller public referral hospitals in the province (therefore, less melioidosis patients were
transferred to Sunpasitthiprasong hospital) or a spurious finding. Further studies and actions are
urgently needed [26].

Similarly, the increase in S. suis infection is alarming. This could be associated with an increase
in consumption of undercooked pork products [27-29] and an increase in infected meat in the
market [30]. The latter is a concern following the news of the large illegal pork imported to
Thailand since 2021 after the shortage of domestic pork due to the outbreak of African swine
fever in Thailand [31]. The association between S. suis infection and pig density in the provinces
also suggests that infections via close contact with infected pigs should also be evaluated. The
DDC will utilize the data to additionally implement and enforce behavioral interventions,
education and food biosafety in the country [29].
The decrease of multiple food-borne diseases including non-typhoidal salmonellosis, typhoid, shigellosis, and vibriosis could be due to improvement in clean water supply, sanitation and related health intervention programs over time [32, 33]. The MoPH and related stakeholders should maintain and strengthen the public health interventions to decrease incidences of these infections further.

Our study and approach have several strengths. First, our study included most of the public referral hospitals in the country. Second, including culture confirmed NBDs is highly specific. Third, our approach is easy to scale up in LMICs because the AMASS programme is open-access, highly-compatible, and user-friendly without the need for data experts with adequate skills in statistical software [10, 13]. The AMASS programme also has high data security because the hospitals do not require the internet for operation and do not have to transfer raw individual data to any institutions outside of the hospital to analyze the data and generate the reports. Our study highlights the potential uptake of AMASS in LMICs.

Our study and approach have several limitations. First, our approach included only inpatients in the public referral hospitals. Therefore, our estimates did not include patients who did not require hospitalization, and those who were hospitalized in private, military or university hospitals. Nonetheless, majority of healthcare services in Thailand are in the public sector [34]. Second, our approach is not applicable in settings where microbiology and hospital admission data are not computerized. Third, our approach focused on bacterial culture results. Therefore, the findings could be influenced by diagnostic stewardship and, capability and expertise of the microbiology laboratories. Fourth, mortality (%) reported in this study was all-cause in-hospital
mortality, and could be much lower than the true all-cause mortality because a preference to die at home is high in some regions in Thailand [8].

In conclusion, melioidosis and S. suis infection are emerging in Thailand. Systematic utilization of microbiology and hospital admission data nationwide could support the NNDSS and the national actions on NBDs.
Acknowledgement

We gratefully acknowledge the laboratory team, IT team, antimicrobial stewardship team and infection control team of all hospitals for their participation and support.

Funding

This research was funded in part by the Wellcome Trust [224681/Z/21/Z]. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.
References

Figure legends

Figure 1. Incidence of cases with NBDs diagnosed by culture in Thailand in 2022

Footnote of figure 1. Data were from 111 public referral hospitals. The total no. of cases is shown by provinces.

Figure 2. Incidence rate of cases with NBDs per 100,000 population in 2022 in Thailand

Footnote of figure 2. Data were from 111 public referral hospitals. The incidence rate is calculated by provinces.

Figure 3. Yearly incidence of cases with NBDs diagnosed by culture in 46 hospitals in Thailand, where paired data between 2012-2015 and from 2022 were available.

Footnote of figure 3. Red (green) color represents hospitals where the incidence in 2022 was higher (lower) than the yearly average incidence between 2012-2015. Grey color represents hospitals where the incidence in 2022 was equal to the yearly average incidence between 2012-2015.