The diagnostic accuracy of the point-of-care urine dipstick test in detecting urinary tract infection among symptomatic patients in Nairobi County, Kenya.

Hellen A. Onyango1,2,3*, Derek J Sloan1¶, Katherine Keenan2¶, Mike Kesby2¶, Caroline Ngugi3&, Humphrey Gitonga4&, Robert Hammond1¶

1School of Medicine, University of St Andrews, Scotland, United Kingdom
2School of Geography and Sustainable Development, University of St Andrews, Scotland, United Kingdom
3College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
4Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya.

*Corresponding author
E-mail: hao1@st-andrews.ac.uk (HAO)

¶ These authors contributed equally to this work
& These authors also contributed equally to this work

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Urinary tract infections (UTIs) are among the most frequently diagnosed bacterial infections and constitute a large proportion of workload in clinical microbiology laboratories. Urine culture is the confirmatory test for UTI. However, most primary care settings routinely use the more rapid, less labour-intensive dipstick. This study assesses the characteristics of a urine dipstick test in predicting a positive urine culture and how best it can be used in resource constrained settings despite its limitations.

Method: A cross-sectional study was conducted at two level-V health facilities in Nairobi County, Kenya. Adults and children presenting with clinical symptoms of UTI were enrolled after obtaining written informed consent. Midstream urine samples were collected. Urinary dipstick was used to identify Nitrites (NIT) and leucocyte esterase (LE) production. Urine was cultured on Cystine Lactose Electrolyte Deficient agar, blood agar and MacConkey agar; and incubated at 37°C for 24 hours. Urine cultures with pure bacterial colony counts of ≥10⁴ cfu/ml were classified as “positive” for UTI.

Results: Of a total of 552 participants enrolled into the study, 124 (23%) were urine culture positive. Prior medication use was associated with culture negativity. With urine culture as the reference standard, urinary dipstick sensitivity was poor overall (using either LE+ or NIT+ to confer a positive dipstick result still only achieved sensitivity of 66.9%). Using combined NIT+ and LE+ to confer a positive dipstick result had the highest specificity (99.2%), alongside a positive predictive value of 91.1%, and a positive likelihood ratio of 35.6. A NIT+ test alone showed highest concordance with urine culture results (percentage agreement: 86%) but still had a Cohen’s Kappa value of only 0.5, conferring weak agreement overall.

Conclusion: Dipstick test is a poor surrogate of urine culture. However, the test may be suitable as a ‘rule-out’ test to exclude UTI, and avoid antibiotic prescription, when both NIT
and LE are negative. Although dipstick continues to be in use in resource constrained settings, poor concordance with urine culture results highlights a need for better near patient tests to diagnose UTI and guide antibiotic decision-making.

Keywords: Urinary tract infection, point of care, dipstick, urine culture, low-and-middle income countries, accuracy.

1. Introduction

UTI is an inflammatory response of the urothelium to bacterial invasion and is among the most frequent community-acquired bacterial infection, affecting more than 150 million individuals globally [1,2]. The disease is associated with morbidity and mortality, particularly among high-risk subpopulations such as children, pregnant women, the elderly and immunocompromised patients [3,4]. Allied to death and disability are prolonged hospital stays, the need for second-line antimicrobial drugs, adverse impacts on the income and livelihoods of individuals, and general economic harm at a national level [5,6].

Prompt diagnosis of urinary tract infection is critical for patient management. However, some people with UTI present with atypical signs and symptoms, whilst others may have UTI symptoms in the absence of infection. This makes the clinical diagnosis a challenge [7], and illustrates the need for laboratory investigations. Quantitative urine culture is the gold standard method for UTI diagnosis despite widely acknowledged limitations of cost, labour intensity and prolonged time to result of between 24-72 hours [8]. These limitations have made urine dipstick a more convenient and frequently used first line laboratory investigation for UTI in primary care settings [9]. In many resource-limited settings it is the only test available [10,11].
Dipstick test is a 10-parameter reagent strip designed to test markers of infection to a range of medical conditions, based on colorimetric principles. Markers which are mainly helpful to detect UTIs are leucocytes esterase (LE) and nitrite (NIT) which detects bacteriuria or pyuria in urine [9]. Nitrite testing detects the presence of bacteria with enzymes that can convert urinary nitrates to nitrites and is associated with members of the family Enterobacterales. Other urinary pathogens such as *Staphylococcus* spp., *Pseudomonas* spp., and *Enterococcus* spp. do not produce nitrate reductase enzymes [8]. This limits the microbiological range of nitrite-mediated detection of UTI. Another limitation is the fact that a minimum bladder incubation period of 4 hours is required for nitrates to be converted to nitrites at reliably detectable levels [7,8].

The leucocyte esterase (LE) test detects whether leucocytes have produced proteins with esterolytic activity that have then hydrolysed ester substrates. LE testing is likely to give a false positive result when urine is highly contaminated with bacterial vaginal flora; when specimens contain eosinophils or *trichomonas* species, both of which can produce esterase; and when the strip is exposed to an oxidizing agent or formalin [7,12,13]. False negative results may arise when urine has high levels of glycosuria and proteinuria; when urine is preserved using boric acid; and when patient is on antibiotic treatment regimen [12]. In addition to nitrites and leucocyte esterase, other urinary dipstick markers of UTI include blood, increased pH, and proteins. However, these are less specific, as they also have many other causes [8].

A previous meta-analysis conducted on the accuracy of urine dipstick test relative to quantitative urine culture found moderate sensitivity (48%) and specificity (91%) in detecting UTIs. The sensitivity was higher in inpatients (58% vs 45%), while the specificity was greater in outpatients (96% vs 45%)[14]. In High Income Countries (HIC), there is widespread
recognition of the urine dipstick test’s utility as a preliminary screening tool, guiding clinicians on whether further culture is warranted. However, in Low-and-middle Income (LMICs), most hospitals lack the laboratory capacity to perform urine culture and rely entirely on dipstick for diagnosis. This may result in inappropriate use of antimicrobials. This study quantifies the limitations of dipstick characteristics in settings where it is mostly used without culture back-up and assesses how best it can be utilized despite its limitations.

2. Materials and methods

2.1. Study design

A cross-sectional study was conducted at Mama Lucy Kibaki Hospital (MLKH) and Mbagathi District Hospital (MDH) between 25/05/2022 to 22/04/2023. The hospitals are located within Nairobi County, Kenya, and mostly serve the urban populace. The Kenyan healthcare system is structured in a hierarchical manner, from community-based primary healthcare services through to specialized hospital care. The current structure consists of six levels (I-VI) in ascending order. Both MLKH and MDH are government owned level (V) tertiary health facilities.

2.2. Participant recruitment and sample collection

Adults (≥18 years) and children (5-17 years) were recruited at the outpatient department of MLKH or MDH if they presented with one or more UTI symptoms (increased urinary frequency or urgency, dysuria, burning sensation upon urination, lower abdominal pain, and/or unexplained fever (≥38°C) in children). Participants were taken through the informed consent document in their preferred language (English or Kiswahili). Written informed consent was obtained from adult patients. Assent and consent were obtained for participants aged 13-17 years. Parents/guardians of participants aged ≤13 years consented on their behalf.
Participants/guardians who were unable to sign marked the consent form with a thumb print. Potential participants who did not meet the criteria of a presumptive UTI case, or who declined to consent were excluded from the study. A structured questionnaire was used to collect self-reported socio-demographic details such as age, gender, level of education, monthly income, and prior antibiotic intake. Parents/guardians of children (5-17 years) filled the questionnaire on their behalf. All data were collected electronically using Epicollect5 mobile application (https://five.epicollect.net) [15]. Consenting participants were instructed on how to aseptically collect clean catch mid-stream urine into a sterile screw capped universal bottle. All samples were assigned a unique study identification number, transported to the microbiology laboratory, and processed within two hours of collection.

2.3. Dipstick test.

The dipstick test was conducted using combur-10 test M strips according to the manufacturer’s instructions (Comb-10, UK). The urine strip was dipped into approximately 10 ml of the urine specimen, removed immediately, and results read after waiting period of 2 minutes. The strip was held horizontally adjacent to the reagent colour blocks on the strip container and colours carefully matched. LE was reported as negative, trace, 1+ small, 2+ moderate, 3+ large while NIT was recorded as either positive or negative. With reference to the manufacturers guide for interpretation, dipstick testing that produced nitrites or leucocyte esterase greater than trace was taken as positive for UTI. No nitrites or leucocyte esterase were interpreted as negative.

2.4. Quantitative urine culture assay

A well-mixed 10 µl urine aliquot was plated directly on CLED agar, blood agar (BA) and MacConkey agar (Oxoid, England), and incubated aerobically at 37°C for 24 hours. A pure
bacterial growth yielding colony counts of 10^4 cfu/ml was deemed significant for a UTI infection. Mixed urine cultures (with more than one colony type) or those with either low bacterial colony counts of $<10^4$ cfu/ml, or without microbial growth were interpreted as negative for UTI. Isolates were identified to the species level using colonial morphological characteristics, Gram-staining technique and standard biochemical tests (catalase, coagulase, urease, oxidase, sulfide indole motility, methyl red, citrate utilization)[16].

2.5. Statistical analysis

Data were downloaded from Epicollect to Microsoft excel for analysis (Microsoft Corp, Redmond, Washington, USA). Characteristics of study participants were all presented as categorical variables including age (which was separated into brackets of 5-10, 11-20, 21-30, 31-40, 41-50 and >50 years) and average monthly income (which was separated into brackets of <3000, 3000-9900, 10000-24000, 25000-49990, 50000-74900, and 75000-100000 Ksh). Age was also summarised as median and interquartile range (IQR).

For urinary dipstick, LE and NIT diagnostic yield were calculated in four ways: LE positive, irrespective of NIT result (LE+), NIT positive irrespective of LE result (NIT+), both NIT and LE positive (NIT+ and LE+), and either NIT or LE positive (NIT or LE+).[17]. Univariate logistic regression was performed to assess the relationship between prior medication exposure and urine culture positivity, with the result expressed as an Odds Ratio (OR) and 95% confidence interval (CI). The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and likelihood ratios (LR) were calculated with 95 % CI for dipstick parameters using urine culture as the reference standard. Whilst there is no universal agreement on target performance thresholds for UTI diagnostics, it is generally accepted that diagnostic tests with very high positive +LR (>10) and very low -LR (<0.1) are most useful in ruling in or
ruling out a clinical diagnosis respectively[18]. Percentage agreement and Cohen’s Kappa coefficient were applied to assess the agreement between dipstick and culture results. Cohen’s Kappa results were interpreted as follows: 0-0.2, ‘no’ agreement; 0.21-0.39, ‘minimal’ agreement; 0.40-0.59, ‘weak’ agreement; 0.60-0.79, ‘moderate’ agreement; 0.80-0.90, ‘strong’ agreement; >0.9, ‘perfect’ agreement [19].

2.6. Ethical statement

This study was approved by the University of St. Andrews Teaching and Research Ethics Committee (UTREC), [Approval code. MD15749]; Jomo Kenyatta University of Agriculture and Technology Institutional Ethics Review Board (JKUAT-IERB) [Approval no. JKU/IERC/02316/0166]; National Commission for Science Technology and Innovation (NACOSTI) [Approval no. P/21/12520]. Approvals to access study sites were also obtained from the Nairobi metropolitan services, MLKH and MDH. Each participant in the study provided either a written informed consent or marked the consent form with a thumb print. Although the study involved children, their participation was limited to providing a urine sample under the supervision of their parents/guardians. All questionnaires were completed by parents/guardians on their behalf. The principal investigator was never alone with the children; all interviews were conducted in the presence of an adult. Therefore, certification for working with people in the vulnerable group or the local East African equivalent was not required.

3. Results

3.1. Characteristics of study participants

A total of 622 participants were screened for enrolment into the study. However, 552 were enrolled, 402 at Mama Lucy Kibaki Hospital, 150 at Mbagathi District hospital. Seventy were
excluded for the reasons outlined in Fig 1. The median age of the participants was 29 years (IQR: 24-36). There were proportionally more females 72% (398/552). Most of the participants had at least a secondary level of education 270 (49%). Among the 552 individuals recruited, 236 (43%) had taken medication within two weeks preceding their enrolment. Of these individuals, 168 (30%) had been on antibiotics, while the remaining 68 (12%) had taken other types of medication. Details of participants characteristics are shown in Table 1.

Fig 1: Participant recruitment flow diagram. A total of 622 symptomatic adults and child patients were screened for enrolment. Five hundred and fifty-two urine samples were obtained from eligible participants tested using dipstick and culture.
Table 1: Social-demographic characteristics of study participants

<table>
<thead>
<tr>
<th>Variable</th>
<th>Response</th>
<th>n=552 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male</td>
<td>154 (28)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>398 (72)</td>
</tr>
<tr>
<td>Age</td>
<td>5-10</td>
<td>30 (5)</td>
</tr>
<tr>
<td></td>
<td>11-20</td>
<td>49 (9)</td>
</tr>
<tr>
<td></td>
<td>21-30</td>
<td>238 (43)</td>
</tr>
<tr>
<td></td>
<td>31-40</td>
<td>128 (23)</td>
</tr>
<tr>
<td></td>
<td>41-50</td>
<td>67 (12)</td>
</tr>
<tr>
<td></td>
<td>>50</td>
<td>40 (7)</td>
</tr>
<tr>
<td>Marital status</td>
<td>Married</td>
<td>258 (52)</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>184 (37)</td>
</tr>
<tr>
<td></td>
<td>Widowed</td>
<td>37 (7)</td>
</tr>
<tr>
<td></td>
<td>Divorced</td>
<td>15 (2)</td>
</tr>
<tr>
<td>Level of education</td>
<td>Pre-primary</td>
<td>17 (3)</td>
</tr>
<tr>
<td></td>
<td>Primary</td>
<td>116 (21)</td>
</tr>
<tr>
<td></td>
<td>Secondary</td>
<td>270 (49)</td>
</tr>
<tr>
<td></td>
<td>Tertiary</td>
<td>149 (27)</td>
</tr>
<tr>
<td>Average monthly income (Ksh)</td>
<td><3000</td>
<td>133 (24)</td>
</tr>
<tr>
<td></td>
<td>3000-9900</td>
<td>110 (20)</td>
</tr>
<tr>
<td></td>
<td>10000-24900</td>
<td>139 (25)</td>
</tr>
<tr>
<td></td>
<td>25000-49900</td>
<td>94 (17)</td>
</tr>
<tr>
<td></td>
<td>50000-74900</td>
<td>68 (12)</td>
</tr>
<tr>
<td></td>
<td>75000-100000</td>
<td>8 (1)</td>
</tr>
<tr>
<td>Medication intake</td>
<td>No medication</td>
<td>316 (57)</td>
</tr>
<tr>
<td></td>
<td>Yes-antibiotics</td>
<td>168 (30)</td>
</tr>
<tr>
<td></td>
<td>Yes-others</td>
<td>68 (12)</td>
</tr>
</tbody>
</table>

3.2. Microbiological characteristics

Among 552 urine samples analysed, 124 (22.5%) were positive for UTI (a monoculture bacterial growth of $\geq10^4$ cfu/ml). Two-hundred-and-thirty-six (43%) participants had taken medication in the two weeks prior to enrolment, and a negative culture result was more likely in those who had taken prior medication (OR: 1.3, 95% CI; 0.64-2.87).
The bacterial isolates from positive cultures were characterised and identified to the species level. The proportion of infections attributable to Gram-negative organisms were 97 (78%). The most prevalent uropathogen was *Escherichia coli*, 64 (51.6%). *E. coli* was followed in order of prevalence by *Klebsiella pneumoniae*, 16 (12.9%); *Staphylococcus aureus*, 14 (11.3%); coagulase negative *Staphylococcus* (CoNS), 7 (5.6%); *Enterococcus faecalis*, 6 (4.8%); *Klebsiella* spp., 5 (4%); *Proteus mirabilis*, 5 (4%); and *Acinetobacter baumannii*, 1 (0.8%).

Pseudomonas aeruginosa, *Proteus vulgaris*, and *Citrobacter koseri* each were 2 (1.6%).

The positivity rate from urinary dipstick was dependent on how LE and NIT results were interpreted, as shown in **Fig 2**. If ‘NIT+ or LE+’ was considered, 187 (34%) of participants were positive, translating to a higher positivity rate than culture. If only ‘LE+’ was used, 158 (29%) were positive which also exceeded the culture positivity rate. ‘NIT+’ and ‘NIT and LE+’ analyses yielded 63 (11%) and 34 (6%) positive results respectively which were lower than the culture positivity rate. In general, dipstick positivity was higher when based on ‘LE+’ alone, and lower when a ‘NIT+’ result was required.

Fig 2: UTI prevalence estimation based on dipstick test parameters. UTI prevalence based on culture was 23%. The LE, NIT or LE estimated UTI prevalence was higher, while NIT, NIT and LE were lower than prevalence based on culture.

3.3. Performance characteristics of dipstick using urine culture as a reference

Having identified positivity rates from different combinations of urinary dipstick results, it was important to progress to assess performance in relation to the current gold standard urine culture. Results are provided in **Table 2**. Having either NIT+ or LE+ yielded the highest sensitivity of 67%, but overall sensitivity of urine dipstick was poor (ranging from 25-67%).
Having NIT+ and LE+ yielded the highest specificity of 99.3%, and specificity of urine dipstick was generally higher when NIT+ was required as part of a positive result (97.9% for NIT+ and 99.3% for NIT+ and LE+). Similar to specificity, both PPV and +LR were highest when NIT+ was required as part of a positive result (PPV of 85.7% for NIT+ and 91.2% for NIT+ and LE+; +LR of 20.7 for NIT+ and 35.7 for NIT+ and LE+). Overall, NPV ranged from 82-9% and -LR ranged from 0.43-0.66.
Table 2: Diagnostic performance of NIT and LE relative to quantitative urine culture.

<table>
<thead>
<tr>
<th>Dipstick parameter</th>
<th>Urine culture</th>
<th>Dipstick performance (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>LE</td>
<td>+</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>64</td>
</tr>
<tr>
<td>NIT</td>
<td>+</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>NIT and LE</td>
<td>+</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>93</td>
</tr>
<tr>
<td>NIT or LE</td>
<td>+</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>41</td>
</tr>
</tbody>
</table>

Quantitative urine culture was used as the reference test; NIT - Nitrite; LE - Leucocyte Esterase; NIT and LE - Combined nitrites and Leucocyte Esterase; NIT or LE - Either nitrite or leucocyte Esterase; PPV-Positive Predictive Value; NPV- Negative Predictive Value; LR-Likelihood Ratio.
None of age, gender or use of prior medication, including antibiotics, substantially altered any performance characteristics of urinary dipstick compared to a reference of urine culture.

3.4. Concordance between dipstick and culture results.

Further to measuring dipstick performance with culture as a ‘gold standard’, direct concordance of results was also assessed. Percentage agreement and Cohen’s kappa results were both calculated, as shown in Table 3, because Cohen’s kappa considers the possibility that some concordance may occur by chance. The highest percentage agreement between dipstick and culture occurred when NIT+ was used to denote dipstick positivity (86% agreement, 95% CI: 0.82-0.88) but even then, the Cohen’s kappa of 0.5 described only ‘weak’ agreement.

Table 3: Concordance between Dipstick parameters and quantitative urine culture.

<table>
<thead>
<tr>
<th>Dipstick parameter</th>
<th>Concordance with urine culture</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(% Agreement (95% CI)</td>
<td>Cohen’s Kappa (95% CI)</td>
</tr>
<tr>
<td>LE</td>
<td>71 (0.66-0.74)</td>
<td>0.23 (0.13-0.33)</td>
</tr>
<tr>
<td>NIT</td>
<td>86 (0.82-0.88)</td>
<td>0.50 (0.40-0.60)</td>
</tr>
<tr>
<td>NIT and LE</td>
<td>82 (0.78-0.85)</td>
<td>0.32 (0.20-0.44)</td>
</tr>
<tr>
<td>NIT or LE</td>
<td>73 (0.69-0.77)</td>
<td>0.36 (0.25-0.41)</td>
</tr>
</tbody>
</table>
4. Discussion

This study formally quantified the limitations of the urine dipstick test in accurately predicting a positive urine culture, particularly to inform its use in resource-constrained settings where confirmatory culture may not be available. The overall results show that urine dipstick test is an inadequate tool to assess the probability of a positive urine culture in outpatients with UTI associated symptoms. However, given the test characteristics, the dipstick test may be considered as a rule-out tool for antibiotic prescriptions; a negative dipstick test result characterized by no reaction for both nitrites and leucocyte esterase has very high specificity to predict a negative urine culture, making the diagnosis of UTI unlikely and empirical antimicrobial therapy unnecessary. Implementation of this strategy in an outpatient setting where culture is rarely performed could lead to a reduction in the prescription of antibiotics, thereby contributing to antimicrobial stewardship.

Even though all 552 participants recruited to this study had typical symptoms of UTI, only 124 (23%) were confirmed by positive urine culture, illustrating the difficulty for healthcare providers in deciding on the need for antibiotic prescription based on clinical presentation alone. However, 30% of patients had already taken antibiotics before presentation to hospital out-patient department. This has been demonstrated as a clear predictor of a negative culture result in the present study and in prior literature [16], underlining the challenge of performing and interpreting microbiology test results in a heavily antibiotic pre-exposed population. The overall context highlights the need for development and expanded availability of new, reliable point of care tests to guide decision-making in UTI management.

The urine dipstick test is a complex read-out with different variables reported. In this study, consideration of urine dipstick positivity as ‘either NIT+ or LE+’ reported a positivity rate of
34%. This compares to prior dipstick positivity reports of 54% by Maina et al in a similar study in Kenya[11], 73% by Katunzi et al in Tanzania[20] and 34% by Dadzie et al in Ghana[17]. Differences in the care setting and population-specific estimates have been cited as the main sources of heterogeneity of dipstick results between studies[21].

In the context of clinical decision-making for infection management, diagnostic tests can be used to ‘rule-out’ or to ‘rule-in’ the need for antibiotic therapy. From these data, the requirement for both NIT+ and LE+ to confer dipstick positivity had potential as a good ‘rule-out’ test due to its high specificity of 99%, albeit with a cautionary note to clinicians that of 518 patients who were dipstick negative on this basis, 93 (17.9%) had positive urine cultures. Most uncomplicated UTIs are self-limiting in large patient groups[22], suggesting that an initial missed diagnosis will often have minimal consequences. However, for certain patient groups the balance of risk may be different; e.g., for pregnant women, a missed UTI diagnosis could lead to poor perinatal and maternal outcomes [23]. Overall, the findings concur with a meta-analysis including 14 studies that support the use of urine dipstick test in a rule-out strategy[24]. A similar conclusion was drawn by Deville et al in a meta-analysis that included 70 publications, despite a considerable variation in settings of the different studies that included both out- and in-patients, emergency department, ante-natal unit, and all levels of care from the community to tertiary care [14]. These results are all contradictory to an older meta-analysis which reported that in many clinical settings, the probability of a positive culture with a negative dipstick test is too high to dismiss the probability of a UTI [25].

An alternative, and common, use of the urine dipstick test in resource limited settings is by interpreting the positive results as a tool to support the diagnosis of UTI (rule-in strategy) and as the key result necessary to justify to antibiotic initiation. Whilst ‘either NIT+ or LE+’ confers the highest sensitivity for any dipstick positivity analysis in this study, the result of 67%
sensitivity is still unsatisfactory (1/3 of patients with culture confirmed UTI will be missed). Additionally, the specificity of interpreting the dipstick result in this was low. These findings mirror those of Maina et al and Dadzie et al who report an overestimation of UTI by ‘either NIT+ or LE+’ test results compared to culture by 74% and 72% respectively. The consequence may be that some patients who don’t need antibiotics will receive them, whilst a concerning proportion of those who need them may not have them prescribed.

The greatest overall agreement between urinary dipstick and culture was found when dipstick positivity is reported based on a NIT+ test alone. Therefore, this approach to dipstick interpretation might be the best surrogate for culture positivity if dipstick is the only test available, but the kappa agreement of 0.5 remains weak. In prior studies, the presence of nitrites in urine has been shown to be highly specific for bacteriuria (96.6%-97.5%), but has a low sensitivity of 0-44% for bacteriuria between 10^3-10^5 cfu/ml [7,9,17,26,27]. The typically low sensitivity value for nitrites can be explained by the process of nitrification that requires approximately 4 hours for detectable nitrite levels to be produced in urine [28]. Alternative explanations could be the lack of dietary nitrates, dilution of the nitrite in urine with diuretics, and unreliability of the nitrite test in detecting Gram-positive organisms[8]. Therefore, the presence of nitrites is highly predictive of UTI, but their absence does not exclude it. In a marked contrast, a higher sensitivity of 90% for NIT+ alone, was reported by Sirasaporn et al among 56 spinal cord injury patients (SCI) in Thailand [29]. While UTI in the general population is based on symptoms, urinalysis and culture, this approach is not applicable to SCI patients as they already have an impaired neurological function and urinary system[30,31]. Perhaps, the difference in target population, diagnostic criterion, and the small sample size could explain the discrepancy between this study and others.
The LE+ test alone has a slightly higher sensitivity, and lower specificity when compared to the individual performance of NIT+. The test has poor positive predictive value and minimal agreement with culture (kappa, 0.23). The LE sensitivity of 62.2% reported by Maina et al [11], 60% by Dadzie et al [17] and 48% by Anith et al [9] were all higher than the nitrite test, which mirrors that of the present study. Despite being more sensitive than nitrites, the LE test is not specific for UTI and may be associated with other inflammatory disorders affecting the urinary tract such as vaginitis, chlamydial urethritis or other infections than can elicit an immune response and production of white blood cells [32]. These factors may have contributed to variability in the positive predictive value of LE test from 19% to 88% in prior work, and may also undermine its usefulness in the present dataset [26,33].

The diagnostic gains of the urine dipstick assessed through the likelihood ratios (+LR and -LR), ranged from 2.1-30.7 and 0.4-0.7 respectively. Likelihood ratios, which result from the interplay of sensitivity and specificity provide valuable insights into the probability of ‘ruling in’ or ‘ruling out’ an infection. According to Guyatt et al, diagnostic tests with very high positive +LR (>10) and very low -LR (<0.1) are very useful in ruling in or ruling out a diagnosis respectively[18,34]. Based on this, NIT+, and combined ‘NIT+ and LE+’ are useful indicators for ruling in a UTI. These findings are comparable to systematic review by John et al which reported +LR ranging from 4.27-29.3 and -LR from 0.2-0.5 [24]. However, the ≤0.5 kappa values recorded for all the dipstick parameters suggests a minimal or weak agreement, and consequently, little confidence should be placed on results generated by dipstick in the absence of culture results.

This study had some limitations. The study was conducted in two purposively chosen health facilities in an outpatient setting. Generalisation to other settings or patient populations can be challenging, particularly when symptoms associated with UTI may stem from other
underlying medical conditions. Optical (naked eye) reading of test strips, as employed in this study may have introduced variations in results accuracy. Reports indicate that automated reading methods using spectrophotometers deliver superior outcomes. By enabling standardized readings, the methods enhance repeatability and reproducibility, indirectly influencing the analytical performance of the tests. Despite the enrolment of over 500 participants, the number of positive reference test based on culture was limited by antibiotic intake prior to recruitment into the study and a definition of positivity that required a concentration of 10^4 cfu/ml. As the majority (78%) of positive urine cultures were attributable to gram negative bacterial infections, there was insufficient diversity of pathogens to study whether different infecting organisms influenced the diagnostic performance of urinary dipstick results.

4. Conclusion

This study corroborate the widely held view that dipsticks are a poor surrogate for urine culture and are not suitable as definitive method for UTI diagnosis. However, particularly in settings where urine culture is unavailable, the use of urine dipstick test (Negative for both NIT and LE) as a rule out strategy has potential in lower risk patient groups to reduce unnecessary antibiotic prescriptions. Future studies might combine specific UTI symptoms and dipstick test results to explore possible approaches to increase the test’s reliability. Finally, the challenges of performing urine culture diagnostics in resource limited settings, calls for research to develop and validate novel near or point of care technologies with better performance characteristics than urinary dipstick.
Acknowledgements

The authors would like to thank and appreciate all participants for their participation in the study. We would also like to thank MLKH and MDH for giving us an opportunity to conduct this research, not forgetting the clinicians and laboratory personnel who supported us in data collection.
REFERENCES

SUPPORTING INFORMATION

S1 Table. Performance of LE.

S2 Table. Performance of NIT.

S3 Table. Performance of NIT and LE

S4 Table. Performance of either NIT or LE

S1-S4 Tables. Performance characteristics of dipstick parameters across study variables. The dipstick performance was not influenced by age, gender or prior medication intake.

S5 File. Dipstick manuscript raw data

S6 File. Participants baseline demographic characteristics
Screened participants n=622

Eligible participants n=557

Excluded (n=65)
- Distance = 40
- Declined = 15
- Language barrier = 10

Excluded n=5
- Insufficient sample

Mid-stream urine obtained n=557

Urine sample tested n=552

Dipstick Culture