Alzheimer's disease and neurodegeneration in symptomatic cerebral small vessel disease

Philipp Arndt¹ ² *, Malte Pfister¹ *, Valentina Perosa¹ ³, Hendrik Mattern² ⁴, Jose Bernal² ⁵, Anna-Charlotte John¹, Marc Dörner² ⁶, Patrick Müller⁷ ⁸, Rüdiger C. Braun-Dullaeus⁷, Cornelia Garz¹ ², Christopher Nelke⁹, Alma Kokott⁹, Robin Jansen⁹, Michael Gliem⁹, Sven G. Meuth⁹, Solveig Henneicke¹ ², Stefan Vielhaber¹, Katja Neumann¹ *, Stefanie Schreiber¹ ² *

¹ Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
² German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
³ J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
⁴ Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany
⁵ Center for Clinical Brain Sciences, the University of Edinburgh, Edinburgh, UK
⁶ Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
⁷ Department of Cardiology, Otto-von-Guericke University, Magdeburg, Germany
⁸ German Center for Mental Health (DZPG), Magdeburg, Germany
⁹ Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany

* equally contributed first/last authorship

Corresponding author:
Prof. Dr. Stefanie Schreiber
Otto von Guericke University Magdeburg
Leipziger Str. 44, 39120 Magdeburg, Germany
Email: stefanie.schreiber@med.ovgu.de

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Co-occurrence of cerebral small vessel disease (CSVD) is common in aging and Alzheimer’s disease (AD) dementia, but, in symptomatic CSVD prevalence and role of AD and neurodegenerative co-pathologies have been less explored.

Methods: In vivo determination of prevalence, predictors and relevance for cognition of AD and neurodegenerative co-pathologies in symptomatic CSVD, including deep perforator arteriopathy (DPA) and cerebral amyloid angiopathy (CAA), utilizing cerebrospinal fluid (CSF) biomarkers. Cross-sectional study from October 2010 to September 2021 of participants with magnetic resonance imaging (MRI) and CSF biomarkers (amyloid-β 42/40 ratio, phosphorylated-tau, total-tau, neurofilament light). Biomarker levels were compared among groups; prevalence of ATN classification subtypes was estimated and related to clinical phenotype, CSVD MRI markers and global cognition.

Results: The study comprised 229 individuals (median age 74 years; 47% females), 70 with AD dementia, 79 with probable CAA, 62 with DPA patients and 18 healthy controls. Participants were categorized based on the ATN classification: normal biomarkers (A-T-N-), AD pathology continuum (A+T±N±), and non-AD pathological changes, including primary age-related tauopathy (PART, A-T+N+) or isolated neurodegeneration (A-T-N+). Of 141 CSVD patients, 43 (30%) were A-T-N-, 39 (28%) A+T±N±, with lower prevalence in DPA than CAA (15% vs. 38%, p = .003), 18 (13%) A-T+N+, and 41 (29%) A-T-N+, with higher prevalence in DPA than CAA (42% vs. 19%, p = .002). A+T±N± was associated with increasing age, female sex, lobar hemorrhages and low burden of deep white matter hyperintensities and lacunes. A-T-N+ was related to younger age, symptomatic stroke and lacunes. A-T+N+ had no specific predictors, except advanced age. Each pathological ATN profile was independently related to lower Mini Mental State Examination scores (A+T±N±: B = -2.7, p = .013; A-T+N+: B = -4.6, p = .002; A-T-N+: B = -2.3, p = .034), accounting for demographics, clinical phenotype and MRI CSVD severity.

Conclusions: Using biomarkers, this study confirms in vivo that CSVD frequently co-occurs with AD or neurodegenerative pathologies, exerting independent effects on cognitive health. As disease-modifying therapies emerge, integrating interacting biomarkers will be crucial for the selection of patients with the greatest benefit.
Key words
Cerebral small vessel disease, deep perforator arteriopathy, cerebral amyloid angiopathy, ATN classification, Alzheimer's disease pathology

Background
Postmortem neuropathologic studies revealed that the co-occurrence of cerebral small vessel disease (CSVD) and Alzheimer's disease (AD) or neurodegenerative pathology is common and accelerates cognitive impairment, compared to isolated pathologies [1–4].

In clinical practice, the characterization of concurrent brain pathologies in vivo remains rare, as typically, primary symptomatic pathologies receive focus in care. CSVD diagnosis relies on magnetic resonance imaging (MRI) detection of non-hemorrhagic and hemorrhagic lesions, with heterogeneous clinical presentation and a lack of disease-specific biofluid markers [5]. Conversely, AD dementia diagnosis is based on disease-specific biofluid markers for amyloid-beta (Aβ) and phosphorylated-tau (pTau), alongside a specific cognitive profile [6]. Integrating MRI-based CSVD detection with the biomarker-driven scheme for AD pathology diagnosis, the ATN classification, facilitates identification of individuals with isolated or mixed brain pathologies.

In vivo studies have confirmed the significance of concurrent CSVD in AD dementia patients. Compared to cognitively unimpaired controls, they demonstrated more frequently CSVD lesions on MRI, which accelerated cognitive decline [7–12].

In contrast, less is known about mixed pathologies in patients with symptomatic CSVD. Some studies investigated concurrent Aβ or tau pathology using positron electron tomography (PET) imaging [13–16], but these studies comprise small sample sizes or lack precise clinical and neuroradiological characterization of CSVD etiology. Further, the entire ATN classification has not been fully applied in symptomatic CSVD to investigate AD (A+T±N±) and neurodegenerative non-AD (A-T+N+, A-T-N+) co-pathologies.

We aimed to overcome these knowledge gaps by applying MRI and fluid biomarkers to a clinical cohort of 229 participants, including patients with symptomatic deep perforator
arteriopathy (DPA) and cerebral amyloid angiopathy (CAA), to investigate prevalence of AD and neurodegenerative non-AD co-pathologies, their predictors and relevance on global cognition in vivo.

Methods

Study population

We included 211 patients with DPA, CAA or AD dementia and 18 controls with non-specific complaints who underwent MRI and lumbar puncture (LP) for diagnostic workup between 10/2010 and 09/2021 in the Department of Neurology, Otto-von-Guericke University Magdeburg. DPA diagnosis was based on the existence of deep cerebral microbleeds (CMB), probable CAA on the Boston criteria version 2.0 [17] and AD dementia on the NINDCS/ADRDA and ATN criteria, i.e. a positive cerebrospinal fluid (CSF) AD pathology profile (A+T+N±) [18, 19]. None of the CSVD patients fulfilled the diagnostic criteria for AD dementia and all controls were free of CMB.

Clinical data and neuropsychological assessment

Patients were characterized with regard to clinical symptomatic phenotype (cognitive impairment, symptomatic stroke, gait disturbances, seizure or a mixture of them), demographics (age, sex), years of education (available for n = 159, 69%), apolipoprotein E (ApoE) genotype (available for n = 105, 46%) and presence of vascular risk factors (available for n = 218, 95%). Global cognition was determined through Mini Mental State Examination (MMSE, available for n = 132, 58%) (for details see Supplementary material).

Cerebrospinal fluid

CSF biomarker levels of AD pathology (Aβ42/40 ratio, pTau) and neurodegeneration (total-tau (tTau) and Neurofilament light (NFL, available for n = 136, 59%)) were used to categorize participants as A-T-N- (normal biomarker status), A+T±N± (AD pathology continuum), A-T+N+ (age-related tauopathy, PART) or A-T-N+ (isolated neurodegeneration). None of the participants was classified A-T+N- (for details see Supplementary material).

MRI acquisition and analysis
For analysis, clinical 3T MRI (n = 92, 40%) or 1.5T MRI (n = 137, 60) was available and intracerebral hemorrhage (ICH), CMB, white matter hyperintensities (WMH) and lacunes were quantified according to the CSVD Standards for Reporting Vascular Changes on Neuroimaging (STRIVE) criteria [5] by one trained investigator (M.P.) blinded to demographic and clinical data. Global CSVD burden was determined through an ordinal sum score ranging from 0 to 5 points, in which one point was allocated for the presence of lacunes, 1-4 CMB and moderate WMH (WMH grade 3-4 according to Fazekas [20]) and two points were allocated for ≥5 CMB and severe WMH (WMH grade 5-6), respectively (for details see Supplementary material).

Statistical analysis

Results of continuous variables were expressed as median (IQR) or mean (SD), as appropriate; results of categorical variables were expressed as proportions. Intergroup comparisons were performed in univariate analyses, using the χ²-test, 2-sample t-test, Mann-Whitney U-test, Kruskal-Wallis-test or ANOVA as appropriate. Pairwise post-hoc comparisons were conducted applying Kruskal-Wallis-test with Dunn's correction and χ²-test or ANOVA with Bonferroni's correction for multiple testing. Univariate tests were used to compare clinical and neuroimaging data between patients with and those without each pathological ATN profile, i.e. separately for A+T±N±, A-T+N+ and A-T-N+. To explore independent, relevant predictors of pathological ATN profiles in CSVD, we performed multivariable logistic regression analysis in a stepwise, forward-elimination approach (minimal adjusted model), which was based on the results from univariable analyses (including variables with p < .05). Linear regression was conducted to examine associations between pathological ATN profiles and MMSE score in CSVD, accounting for age, clinical phenotype and global MRI CSVD severity. (Adjusted) Significance level was set at 0.05 for all analyses. IBM SPSS Statistics 24.0 software was used for all analyses.

Results

We included 229 participants with a median age of 74 years (IQR 67 – 79), of whom 107 (47%) were female. Diagnostic groups were distributed as follows: n = 18 controls and n = 211 patients with DPA (n = 62, 27%), probable CAA (n = 79, 34%) or AD dementia (n = 70, 31%). Out of all AD dementia patients, n = 12 (17%) had CMB, of whom n = 10 met the Boston criteria 2.0 for
concurrent probable CAA and n = 2 had concurrent DPA. Key characteristics of the cohort and statistical group comparisons are shown in Table 1 and Supplementary Table 1.

Table 1. Inter-group comparison of patient characteristics.

<table>
<thead>
<tr>
<th></th>
<th>CON n = 18</th>
<th>DPA n = 62</th>
<th>CAA n = 79</th>
<th>AD dementia n = 70</th>
<th>Univariate analysis</th>
<th>Significant pairwise post-hoc tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age [years]</td>
<td>65 (57-73)</td>
<td>70 (61-78)</td>
<td>75 (70-80)</td>
<td>75 (71-79)</td>
<td>H = 23.36 p < .001</td>
<td>CON vs. CAA, AD: p = .001 DPA vs. CAA, AD: p < .040</td>
</tr>
<tr>
<td>Female sex</td>
<td>3 (17%)</td>
<td>27 (44%)</td>
<td>34 (43%)</td>
<td>43 (61%)</td>
<td>χ² = 13.30 p = .004</td>
<td>CON vs. AD: p = .006</td>
</tr>
<tr>
<td>Clinical phenotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive impairment</td>
<td>0 (0%)</td>
<td>28 (45%)</td>
<td>52 (66%)</td>
<td>70 (100%)</td>
<td>χ² = 63.57 p < .001</td>
<td>CON vs. DPA, CAA: p < .002 CON, DPA, CAA vs. AD: p < .001</td>
</tr>
<tr>
<td>Previous symptomatic stroke</td>
<td>0 (0%)</td>
<td>26 (42%)</td>
<td>29 (37%)</td>
<td>2 (3%)</td>
<td>χ² = 39.68 p < .001</td>
<td>CON vs. DPA, CAA: p < .020 DPA, CAA vs. AD: p < .001</td>
</tr>
<tr>
<td>Gait disturbances</td>
<td>0 (0%)</td>
<td>17 (27%)</td>
<td>17 (22%)</td>
<td>13 (19%)</td>
<td>χ² = 6.67 p = .083</td>
<td></td>
</tr>
<tr>
<td>Previous seizure</td>
<td>0 (0%)</td>
<td>15 (24%)</td>
<td>15 (19%)</td>
<td>2 (3%)</td>
<td>χ² = 17.16 p < .001</td>
<td>DPA, CAA vs. AD: p < .02</td>
</tr>
<tr>
<td>Risk factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ApoE4 positive</td>
<td>n.a.</td>
<td>11/31 (36%)</td>
<td>13/35 (37%)</td>
<td>26/39 (67%)</td>
<td>χ² = 9.04 p = .011</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>10/18 (56%)</td>
<td>56/60 (93%)</td>
<td>63/72 (88%)</td>
<td>53/68 (78%)</td>
<td>χ² = 16.76 p < .001</td>
<td>CON vs. DPA, CAA: p < .02</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>5/18 (28%)</td>
<td>30/60 (50%)</td>
<td>27/72 (38%)</td>
<td>22/68 (32%)</td>
<td>χ² = 5.34 p = .149</td>
<td></td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td>1/18 (6%)</td>
<td>13/60 (22%)</td>
<td>20/72 (28%)</td>
<td>21/68 (31%)</td>
<td>χ² = 5.48 p = .139</td>
<td></td>
</tr>
<tr>
<td>MMSEᵇ</td>
<td>24.8 (4.0)</td>
<td>22.8 (5.0)</td>
<td>19.5 (6.4)</td>
<td></td>
<td>F = 9.60 p < .001</td>
<td>DPA, CAA vs. AD: p < .02</td>
</tr>
</tbody>
</table>

Data are represented as median (IQR), mean (SD) or n (%). Significant p-values are marked in bold.

Available for n = 159 (69%), b available for n = 132 (58%).

Abbreviations: AD, Alzheimer's disease; ApoE, apolipoprotein E; CAA, cerebral amyloid angiopathy; CON, controls; DPA, deep perforator arteriopathy; MMSE, Mini Mental State Examination; n.a., not available.
One quarter of CSVD patients is within the AD pathology continuum

Of 141 CSVD patients, 39 (28%) were within the AD pathology continuum (A+T±N±) according to ATN, with lower prevalence in DPA than CAA (15% vs. 38%, p = .003), particularly for A+T+N+ (3% vs. 27%, p < .001) (Table 2). Figure 1 and Supplementary Table 2 demonstrate the distribution of the remaining ATN profiles within the AD pathology continuum across the cohort.

In CSVD, continuous AD pathology biomarker levels were in between those of controls and AD dementia, with lower AD pathology (higher Aβ42/40 ratio, lower pTau) in DPA than CAA (Supplementary Figure 1 and Supplementary Table 3).

Table 2. Inter-group comparison of ATN profiles and neurodegeneration markers.

<table>
<thead>
<tr>
<th>Pathological ATN classification profiles</th>
<th>CON n = 18</th>
<th>DPA n = 62</th>
<th>CAA n = 79</th>
<th>AD dementia n = 70</th>
<th>Univariate analysis</th>
<th>Significant pairwise post-hoc tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+T±N±</td>
<td>9 (15%)</td>
<td>30 (38%)</td>
<td></td>
<td></td>
<td>χ² = 8.93 p = .003</td>
<td></td>
</tr>
<tr>
<td>A-T+N+</td>
<td>6 (10%)</td>
<td>12 (15%)</td>
<td></td>
<td></td>
<td>χ² = 0.98 p = .323</td>
<td></td>
</tr>
<tr>
<td>A-T-N+</td>
<td>26 (42%)</td>
<td>15 (19%)</td>
<td></td>
<td></td>
<td>χ² = 10.02 p = .002</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neurodegeneration markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>tTau-positive</td>
</tr>
<tr>
<td>0 (0%)</td>
</tr>
<tr>
<td>24 (39%)</td>
</tr>
<tr>
<td>46 (58%)</td>
</tr>
<tr>
<td>65 (93%)</td>
</tr>
<tr>
<td>χ² = 65.46 p < .01</td>
</tr>
<tr>
<td>CON vs. DPA, CAA: p < .01</td>
</tr>
<tr>
<td>AD vs. CON, DPA, CAA: p < .001</td>
</tr>
<tr>
<td>NFL-positive</td>
</tr>
<tr>
<td>0/8 (0%)</td>
</tr>
<tr>
<td>23/41 (56%)</td>
</tr>
<tr>
<td>22/42 (52%)</td>
</tr>
<tr>
<td>3/45 (7%)</td>
</tr>
<tr>
<td>χ² = 33.65 p < .001</td>
</tr>
<tr>
<td>CON vs. DPA, CAA: p < .05</td>
</tr>
<tr>
<td>AD vs. DPA, CAA: p < .001</td>
</tr>
</tbody>
</table>

Data are represented as median (IQR), mean (SD) or n (%). Significant p-values are marked in bold.

Abbreviations: AD, Alzheimer’s disease; CAA, cerebral amyloid angiopathy; CON, controls; CSF, cerebrospinal fluid; DPA, Deep perforator arteriopathy; NFL, neurofilament light chain; tTau, total-tau.

Neurodegeneration is frequent and commonly related to non-AD pathological change in CSVD

Of 141 CSVD patients, 88 (62%) were N+, of whom 59 (42%) were attributable to non-AD pathological ATN profiles, including 18 (13%) with A-T+N+ and 41 (29%) with A-T-N+. Prevalence of A-T-N+ was higher in DPA than CAA (42% vs. 19%, p = .002). Prevalence of NFL positivity was
significantly higher in DPA and CAA, compared to AD dementia (56% and 52% vs. 7%), whereas prevalence of tTau positivity was lower in DPA and CAA compared AD dementia (39% and 58% vs. 93%) (Figure 1, Table 2). Continuous neurodegeneration biomarker levels are demonstrated in Supplementary Figure 1 and Supplementary Table 3.

Table 3. Multivariable logistic regression analyses of associations with pathological ATN profiles in CSVD patients.

<table>
<thead>
<tr>
<th>ATN profile</th>
<th>Independent variable</th>
<th>OR (95% CI)</th>
<th>P-value</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+T±N±</td>
<td>Presence of lobar ICH</td>
<td>3.19 (1.14, 8.95)</td>
<td>.028</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female sex</td>
<td>2.54 (1.01, 6.47)</td>
<td>.049</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>1.75 (1.25, 2.44)</td>
<td><.001</td>
<td>p < .001, f² = .72</td>
</tr>
<tr>
<td></td>
<td>Number of lobar CMB</td>
<td>1.13 (1.03, 1.24)</td>
<td>.007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deep WMH score</td>
<td>0.53 (0.31, 0.92)</td>
<td>.024</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presence of deep lacune</td>
<td>0.16 (0.03, 0.79)</td>
<td>.024</td>
<td></td>
</tr>
<tr>
<td>A-T+N+</td>
<td>Age</td>
<td>1.37 (1.00, 1.88)</td>
<td>.048</td>
<td>p = .049, f² = .06</td>
</tr>
<tr>
<td>A-T-N+</td>
<td>Previous stroke</td>
<td>3.39 (1.50, 7.64)</td>
<td>.003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of lacunes</td>
<td>1.16 (1.03, 1.30)</td>
<td>.012</td>
<td>p < .001, f² = .34</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>0.76 (0.60, 0.95)</td>
<td>.011</td>
<td></td>
</tr>
</tbody>
</table>

Odds ratios with 95% confidence intervals are related to an increase of 5 years for age and 5 counts for number of lobar CMB. Significant p-values are marked in bold.

Abbreviations: CI, confidence interval; CMB, cerebral microbleeds; CSVD, cerebral small vessel disease; ICH, intracerebral hemorrhage; WMH, white matter hyperintensities.

MRI CSVD pathology and clinical phenotype are associated with pathological ATN profiles

We next investigated the relationship between pathological ATN profiles, MRI CSVD pathology and clinical phenotypes in CSVD. Significant variables (p < .05) of univariate comparisons between patients with and without pathological ATN profiles (separately for A+T±N±, A-T+N+, A-T-N+ in Supplementary Table 4) were included in logistic regression analysis to explore independent predictors. A+T±N± was independently associated with lobar ICH (odds ratio (OR) 3.19 [95% confidence interval (95% CI) 1.14, 8.95], p = .028), female sex (OR 2.54 [95% CI 1.01, 6.47], p = .049), increasing age (per increase of 5 years: OR 1.75 [95% CI 1.25, 2.44], p < .001) and higher numbers of lobar CMB (per increase of 5 counts: OR 1.13 [95% CI 1.03, 1.24], p =
Contrary, deep WMH (OR 0.53 [95% CI 0.31, 0.92], p = .024) and deep lacunes (OR 0.16 [95% CI 0.03, 0.79], p = .024) decreased relative A+T±N± probability. A-T-N+ was independently related to previous symptomatic stroke (OR 3.39 [95% CI 1.50, 7.64], p = .003) and numbers of lacunes (OR 1.16 [95% CI 1.03, 1.30], p = .012), whereas higher age decreased the relative A-T-N+ probability (per increase of 5 years: OR 0.76 [95% CI 0.60, 0.95], p = .011). A-T+N+ had no specific predictors except increasing age (per increase of 5 years: OR 1.37 [95% CI 1.00, 1.88], p = .048) (Table 3). The predictive effects of age and female sex for A+T±N± were driven by DPA, while the effects of lobar ICH and CMB were driven by CAA (Supplementary Table 5).

AD and non-AD pathological ATN profiles negatively impact global cognition in CSVD

In a subset of CSVD patients with available MMSE (n = 79, 54%; n = 36 DPA, n = 43 CAA), pathological ATN profiles were related to global cognition using linear regression analyses accounting for age, clinical phenotype and MRI global CSVD severity. The MMSE score was independently associated with all three distinct pathological ATN profiles with decreasing effect size in the following order: A-T+N+ (B = -4.6 [-7.4, -1.8], p = .002), A+T±N± (B = -2.7 [-4.8, -0.6], p = .013) and A-T-N+ (B = -2.3 [-4.3, -0.2], p = .034) (Table 4).

Table 4. Associations of pathological ATN profiles with global cognition in CSVD patients.

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Independent variables</th>
<th>B (95% CI)</th>
<th>β</th>
<th>P-value</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE</td>
<td>A+T±N±</td>
<td>-2.7 (-4.8, -0.6)</td>
<td>-0.27</td>
<td>.013</td>
<td>p < .001 R² adj = .54</td>
</tr>
<tr>
<td></td>
<td>A-T+N+</td>
<td>-4.6 (-7.4, -1.8)</td>
<td>-0.30</td>
<td>.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A-T-N+</td>
<td>-2.3 (-4.3, -0.2)</td>
<td>-0.22</td>
<td>.034</td>
<td></td>
</tr>
</tbody>
</table>

Multivariate linear regression analyses with pathological ATN profiles as independent variables and MMSE (available for n = 74 CSVD patients, 53%; n = 36 DPA, n = 43 CAA) as the dependent variable were conducted. The model included age, clinical phenotype (cognitive impairment, previous symptomatic stroke, gait disturbances, seizure) and a CSVD severity sum score as confounding variables. Significant p-values are marked in bold.

Abbreviations: CI, confidence interval; CSVD, cerebral small vessel disease; MMSE, Mini Mental State Examination.
Discussion

AD pathology and neurodegeneration CSF biomarkers were investigated in symptomatic CSVD patients. AD pathology continuum (A+T±N±) was found in nearly one third of patients, and was associated with older age, female sex, lobar hemorrhages and fewer deep WMH and lacunes. Non-AD pathological changes became obvious in 42%, with isolated neurodegeneration (A-T-N+), in particularly younger patients with symptomatic stroke or lacunes, or PART (A-T+N+), which was solely predicted by advanced age. All three pathological ATN profiles were independently associated with lower global cognition, regardless of clinical CSVD phenotype. Using CSF biomarkers, we confirm in vivo that CSVD and AD or non-AD neurodegenerative pathologies co-occur, characterizing different pathological subtypes of symptomatic CSVD with relevance for cognitive health.

AD pathology continuum in CSVD

Based on the CSF Aβ42/40 ratio we report positivity rates of 15% (DPA) to 38% (CAA), while rates of others were 9% to 32% in DPA [13, 15, 21, 22] or 44% to 75% in CAA [13, 14, 16, 22, 23]. Differences in CAA might derive from methodological disparities. First, prior studies included clinical AD dementia with concurrent CAA. In our cohort, 10 out of 70 (14%) AD dementia patients met the Boston criteria v2.0 and would have increased A+T±N± rates within our CAA sample from 38% to 45%. Conversely, none of our CAA patients met the diagnostic criteria for AD dementia (NINDCS/ADRDA, ATN criteria). Next, we applied the updated Boston criteria v2.0 for patient selection, which display superior accuracy compared to v1.5 for the detection of early CAA, which is presumably characterized by lower A+T±N± rates [24]. Comparing the Boston criteria v2.0 vs. v1.5, we confirmed lower A+T±N± rates in v2.0, while other pathological ATN profiles remained unchanged (Supplementary Table 6).

There is scarce knowledge about the stages of the AD pathology continuum, i.e. A+T- vs. A+T+, in DPA or CAA. We show that the majority of A+ DPA patients displayed isolated Aβ pathology without pTau positivity, while the majority of A+ CAA patients were already in advanced stages with fully developed AD pathology (A+T+). These findings might mirror the fact that DPA and AD pathology develop additively with aging, while CAA and AD pathology are mechanistically interlinked promoting faster progression of amyloid and tau accumulation. This is supported by
the fact, that in the current study the association between age and AD pathology was mainly
driven by DPA patients. Likewise, neuropathological data from early and late onset AD dementia
showed that the presence of DPA co-pathologies (lacunar or small infarcts) were associated with
advanced age, while CAA co-pathology developed independently from age.[25]

Pathophysiologically, CAA results from impaired clearance of soluble Aβ from the brain, which
accelerates parenchymal Aβ deposition and, hence, tau accumulation [26]. Vice versa AD
pathology promotes clearance demands and, thus, CAA, overall explaining the relationship [24,
27].

The mechanistic role of DPA pathologies such as arteriolosclerosis in cognitive decline is still a
matter of debate. A neuropathological study has recently suggested that arteriolosclerosis impairs
cognitive health mainly through the development of infarcts rather than through the progression
of AD pathology [27]. Here, deep lesions such as WMH and lacunes that reflect DPA downstream
pathologies were associated with a lower relative AD pathology risk. This is in line with recent
MRI studies, where lacunes and WMH were associated with the absence of Aβ co-pathology in
cognitively impaired CSVD patients [23, 28].

CAA explained the association between lobar hemorrhages and AD pathology. In CAA, lobar
hemorrhages reflect advanced disease stages, where chronic vascular Aβ exposure induces
smooth muscle cell loss, creating a rupture-prone vascular segment [24]. A study in CAA patients
has similarly associated frequent lobar CMB with the AD pathology continuum [23] and, further,
a more precise anatomical location of lobar CMB in strictly juxta- and intracortical areas was
associated with Aβ accumulation in spontaneous ICH [29]. In DPA, lobar hemorrhages reflect
advanced hypertensive CSVD pathology as well (but not CAA) [30], which may explain the absent
association with Aβ co-pathology.

Non-AD pathologica changes

Suspected non-AD pathologica changes refers to individuals with normal Aβ, but abnormal
neurodegeneration biomarkers (A-T-N+, A-T+N+) [31]. These profiles have not yet been studied
in CSVD. Notably, N+ was found in >60% of CSVD patients, mainly attributable to non-AD
pathological changes.
N+ was based on abnormal CSF tTau and NfL, both released into the extracellular space upon neuronal injury or death. CSF NfL showed no sensitivity to AD dementia but was strongly increased in CSVD patients, suggesting it as a promising biofluid neurodegeneration marker that distinguishes between AD and CSVD pathology. The absent correlation between CSF NfL and AD pathological markers in CSVD support this assumption (data not shown), as well as recent studies that have related NfL, WMH severity and cognitive decline in CSVD [32–38].

The A-T+N+ biomarker profile is indicative of neurodegenerative fibrillary tau tangle pathology without Aβ accumulation and might indicate PART. PART is common among the elderly and can lead to cognitive impairment. The strongest neuropathological predictor for cognitive impairment in PART is CSVD co-pathology [39, 40]. Our results showed that aging was the only predictor of an A-T+N+ profile, which suggests CSVD and PART rather develop additively with aging. While the effects of vascular Aβ are better understood, it remains uncertain how pathological tau interacts with vascular pathology. Upcoming evidence suggests that in absence of Aβ, tau induces morphological changes in blood vessels, which impairs blood flow and accelerates neurodegeneration [41]. However, further research is needed to understand how vascular pathology interacts together with tau accumulation to accelerates cognitive decline.

Cognition

While different pathological ATN profiles appear to characterize different CSVD subtypes, they similarly relate to poor global cognition. Additive Aβ co-pathology has been associated with accelerated longitudinal cognitive decline in lacunar stroke, CAA and CSVD with preexisting cognitive impairment [16, 21, 42]. One may speculate that this particular CSVD cohort could also benefit from Aβ modifying immunotherapy. Considerations and according studies have to be taken against the background that therapeutic mechanisms rely on vascular clearance, which might be impaired in CSVD, and related side effects, i.e., amyloid-related imaging abnormalities, have to be monitored even more carefully. There are no studies on the cognitive outcome of non-AD pathological ATN profiles in CSVD, although NfL alone has been associated with cognitive decline (as explained above). Similar to AD dementia, our study confirms that neurodegeneration leads to cognitive decline regardless of etiology.

Strengths and limitations
The main strength of our study is the use of large and clinically diverse CSVD cohort along the whole spectrum of different disease stages, which had complete information on ATN profiles and STRIVE. The approach is of translational value, as the ATN classification is easy to implement and provides bed-side information, along with the separate consideration of DPA and CAA, which have different disease trajectories and therapies. Further, the CSF Aβ_{42/40} ratio, used here, displays superior accuracy compared to CSF Aβ42 alone in reference to neuropathological Aβ burden and does not correlate with neuropathological CAA severity, making it an attractive biomarker to study (parenchymal) Aβ co-pathology in vivo [43].

Our study faces limitations. There were missing data for vascular risk factors, ApoE status, CSF NfL and MMSE, which is based on the clinical nature of the cohort. We cannot rule out that additional age-related neurodegenerative co-pathologies (e.g. alphasynucleinopathies) have contributed to non-AD pathological changes [44]. Notably, differences of the prevalence of ATN subtypes can derive from different locally established cut-offs, and our results should thus be validated in a multicenter approach.

Conclusions

The development of multiple interacting brain pathologies during aging and their mutual relevance for brain health requires multiple biomarkers to better understand the complexity of brain pathologies in vivo. Further work is necessary to fully understand the interplay of vascular and neurodegenerative diseases and capture the value of co-pathology testing. Particularly with the emergence of disease-modifying therapies for neurodegenerative and cerebrovascular diseases it will be necessary to integrate interacting biomarkers for the selection of patients with greatest benefit.

List of abbreviations

Aβ, amyloid-beta; AD, Alzheimer’s disease; ApoE, apolipoprotein E; CAA, cerebral amyloid angiopathy; CI, confidence interval; CMB, cerebral microbleeds; CON, controls; CSF, cerebrospinal fluid; CSVD, cerebral small vessel disease; DPA, deep perforator arteriopathy; ICH,
intracerebral hemorrhage; LP, lumbar puncture; MMSE, Mini Mental State Examination; MRI, magnetic resonance imaging; NfL, Neurofilament light; PART, primary age-related tauopathy; PET, positron electron tomography; pTau, phosphorylated-tau; STRIVE, Standards for Reporting Vascular Changes on Neuroimaging; tTau, total-tau; WMH, white matter hyperintensities.

Declarations

Ethics approval and consent to participate

The local ethic committee (Ethikkommission, Otto-von-Guericke-Universität Magdeburg; No. 07/17, addendum 11/2021) approved this retrospective study.

Consent for publication

Informed consent was obtained from all participants for anonymized retrospective analysis of their data conducted for clinical diagnostics.

Availability of data and materials

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was funded by the Deutsche Alzheimer Gesellschaft e.V. (DAizG) and the Föderstiftung Dierichs (www.foerderstiftung-dierichs.de) (MD-DARS project) and by the German Research Foundation (GRK SynAge 2413). PA received a research scholarship by the Medical Faculty of the Otto-von-Guericke University Magdeburg.

Authors’ contributions

P.A., M.P., K.N. and S.S. have contributed to the conception or design of the work. P.A., M.P., A.C.J., C.G., K.N. and S.V. have contributed to the acquisition, analysis of data. P.A., M.P., K.N. and S.S. have contributed to the interpretation of data. P.A. and M.P. have drafted the work. V.P., H.M., J.B., M.D., P.M., R.C.B.-D., C.N., A.K., R.J., M.G., S.G.M., S.H., K.N. and S.S. substantively revised the manuscript.
All authors have approved the submitted version of the manuscript.

All authors have agreed both to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature.

Acknowledgements

Not applicable.
References

3. Hainsworth AH, Markus HS, Schneider JA. Cerebral Small Vessel Disease, Hypertension, and Vascular Contributions to Cognitive Impairment and Dementia. Hypertension. 2024;81:75–86. doi:10.1161/HYPERTENSIONAHA.123.19943.

Neurofilament Light Chain Is Associated with Incident Lacunes in Progressive Cerebral Small Vessel Disease.

The current study aimed to determine the role of neurofilament light chain (NFL) in the progression of cerebral small vessel disease (CSVD) and the development of lacunar infarcts.

Methods: The study enrolled 419 participants with cerebral microbleeds (CMBs) and no history of stroke. NFL was measured using a sensitive and specific ELISA assay in both CSF and plasma. The primary outcome was incident lacunar infarcts (LIs) during a median follow-up of 3.9 years. The secondary outcomes were changes in white matter hyperintensities (WMHs) and CMBs.

Results: In the first 3 years of follow-up, 21% of the participants developed a new LI. In the presence of CMBs, the risk of LI development was significantly higher in the NFL group compared to the control group, with a hazard ratio of 2.20 (95% CI: 1.22-3.95, p=0.008). Among CSF-NFL levels, participants with the highest quartile of NFL had a significantly higher risk of developing LIs compared to those with the lowest NFL quartile (HR: 4.35, 95% CI: 1.39-13.53, p=0.012). The risk of LIs was also higher in those with the highest quartile of NFL in the plasma compared to the control group (HR: 3.54, 95% CI: 1.12-10.98, p=0.031).

Conclusion: The results of this study suggest that higher levels of NFL in CSF and plasma may be associated with a higher risk of developing lacunar infarcts in patients with cerebral microbleeds. This finding highlights the potential role of NFL as a biomarker in the progression of cerebral small vessel disease and the development of lacunar infarcts.

Figure 1. Relative frequencies of ATN profiles in patients with DPA and CAA.

None of the participants were A+T+N- or A-T+N-.

Abbreviations: A, amyloid-beta; AD, Alzheimer’s disease; CAA, cerebral amyloid angiopathy; DPA, deep perforator arteriopathy; T, phosphorylated Tau; N, neurodegeneration.