Title

Aspartate/alanine aminotransferase ratio and development of chronic kidney disease in non-diabetic Japanese men and women

Authors names

Yukari Okawa¹, Toshiharu Mitsuhashi² and Etsuji Suzuki³⁴

Affiliations

¹Department of Public Health and Welfare, Zentsuji City Hall, 2-1-1 Bunkyo-cho, Zentsuji, Kagawa 765-8503, Japan
²Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
³Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
⁴Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA

Corresponding author

Yukari Okawa

Department of Public Health and Welfare, Zentsuji City Hall, 2-1-1 Bunkyo-cho, Zentsuji, Kagawa 765-8503, Japan

https://orcid.org/0000-0002-1704-6609

Tel. +81 877 63 6308

Fax. +81 877 63 6368

okw3923@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Aim

The objective of this study was to explore the relationship between serum aspartate/alanine aminotransferase ratio (AST/ALT) and subsequent development of chronic kidney disease (CKD) in non-diabetic Japanese men and women in a 25-year follow-up study.

Methods

The study included all middle-aged and older non-diabetic Japanese citizens who received health check-ups in Zentsuji, Kagawa, Japan (1998–2023). AST/ALT was classified into three categories: <1.0 (reference), 1.0–<1.5, and ≥1.5. Participant characteristics were compared by AST/ALT categories. The Weibull accelerated failure time model was used to examine the association between AST/ALT categories and subsequent CKD onset because the proportional hazards assumption was violated.

Results

Of 6309 men and 9192 women, 2966 men and 4395 women remained in the final cohort. After a mean follow-up of 7.50 years for men and 8.34 years for women, 33.7% of men and 34.0% of women developed CKD. Women had higher AST/ALT than men. In women, a dose-response relationship was observed, with a 9% shorter survival time to CKD onset for AST/ALT ≥1.5 compared with AST/ALT <1.0. In contrast, men had a shorter survival time to CKD onset by point estimates, but the 95% confidence intervals crossed 1 in all models.

Conclusions

In this study comparing the risks of CKD development in non-diabetic men and women by AST/ALT levels, a dose-response relationship was only observed in women. Differences in the distribution of AST/ALT by sex may have affected the results. Therefore, in non-diabetic Japanese women, AST/ALT may be used as an indicator of future CKD development.
Keywords

Alanine Aminotransferase, Aspartate Aminotransferases, Chronic Kidney Diseases, East Asian People,
Risk Factors
Introduction

The serum aspartate/alanine aminotransferase ratio (AST/ALT), also called the De Ritis ratio, is a beneficial indicator for the aetiology of liver diseases\(^1\). AST/ALT is typically higher in women than in men, ≥2.0 if alcoholic liver disease is present, and <1.0 if chronic hepatitis or chronic viral hepatitis is present\(^1,2\). AST/ALT is also recognized as a risk factor for a variety of outcomes, with higher levels increasing the risk of the incidence of cancer, cardiovascular disease, and death\(^3\)–\(^7\). However, the relationship between AST/ALT and chronic kidney disease (CKD) remains unclear.

CKD is a well-known public health problem, affecting 9.1% of the world’s population and causing 1.23 million deaths in 2017\(^8\). In general, CKD progresses gradually without symptoms until it reaches an irreversible state. If CKD remains untreated and progresses to end-stage renal disease, renal replacement therapies such as dialysis or kidney transplantation are required\(^9\). However, access to these expensive therapies is limited, especially in low-income countries, conferring physical, psychological, and financial burdens on patients\(^10\). Consequently, identification of risk factors for the early stages of CKD onset has important public health implications for preventing CKD and improving people’s quality of life.

A previous cross-sectional study investigated the relationship between AST/ALT and CKD onset in 29133 middle-aged Japanese women\(^11\). The study reported an adjusted odds ratio of 1.43 (95% confidence interval [CI]: 1.30–1.58) for the prevalence of CKD in those with AST/ALT <1 compared with those with AST/ALT ≥1, regardless of gamma-glutamyl transferase (GGT) elevation. However, because the study had a cross-sectional design and only included women, the findings only provided a snapshot of one female population at one point in time, and it was impossible to identify cause and effect. Moreover, the study included both non-diabetic and diabetic participants, although diabetes is a risk factor for incident CKD and liver diseases\(^12\)\(^,\)\(^13\). Therefore, follow-up studies involving men and women without diabetes are needed to clarify the relationship between AST/ALT and new-onset CKD.

Accordingly, we aimed to evaluate the relationship between AST/ALT and CKD development in diabetes-free Japanese men and women in a longitudinal study.
Methods

Data source
This study is an ongoing longitudinal study in Zentsuji, Kagawa Prefecture, Japan. Zentsuji City is located in the northeastern part of Shikoku Island, one of the four main islands of Japan. The city had a population of 30505 (49.6% men) on 1 April 2023. The city database includes data for annual health check-ups since 1998. We used the same database in previous studies. In the present study, data were extracted from the database on 6 July 2023.

Annual health check-ups
All citizens with fiscal year (FY) age ≥40 years are eligible to receive one health check-up per FY under their own volition. In FY1998 and FY1999, the city expanded the targeted citizens to include 35–39 years of age on a trial basis to promote the health of younger people. Approximately 30%–40% of the eligible population receive an annual health check-up on average.

The city follows the protocol of the Japanese Ministry of Health, Labour and Welfare when conducting the annual health check-ups. Each check-up includes height and weight measurements, blood pressure testing, blood and urine tests, and a self-reported questionnaire about lifestyle habits such as alcohol intake and smoking.

Study participants
This study aimed to evaluate the relationship between AST/ALT levels and subsequent development of CKD among non-diabetic Japanese men and women. Therefore, participants with non-Japanese nationality, haemoglobin A1C (HbA1c) ≥6.5% at study entry, glycosuria ≥1+ at study entry, or a single health check-up were excluded from the analysis. Participants with missing data for outcome or exposure variables, HbA1c values, or glycosuria levels at study entry were also excluded.
Variables

Outcome

The outcome variable was development of CKD. The estimated glomerular filtration rate (eGFR) was used as a measure of renal function, with eGFR <60 mL/min/1.73 m^2 defined as prevalent CKD^9. The three-variable Japanese equation was used to calculate eGFR:

\[
\text{eGFR} = \frac{194}{\text{serum creatinine (mg/dL)}} - \frac{1.094}{\text{age(years)}} - \frac{0.287}{(\times 0.739 \text{ if female})} \]

Serum creatinine was measured to two decimal places using enzymatic methods.

Exposure

The exposure variable was AST/ALT levels. Serum AST (U/L) and ALT (U/L) were measured to zero decimal places using an ultraviolet spectrophotometric method^19. AST/ALT was classified into four categories: <1.0 (reference), 1.0–<1.5, 1.5–<2.0, and ≥2.0^11. Owing to the small number of participants with AST/ALT ≥2.0, the AST/ALT ≥2.0 category was combined with the 1.5–<2.0 category.

Other covariates

In an attempt to reduce potential confounding effects, we adjusted for the following covariates: age category (34–59[reference]/60–69/70–100), body mass index (BMI) category (normal weight[reference]/overweight or obesity), self-reported alcohol intake (non- or seldom-drinker[reference]/drinker), self-reported smoking status (non- or ex-smoker[reference]/smoker), hypertension (normal[reference]/hypertensive), dyslipidaemia (normal[reference]/dyslipidaemic), HbA1c value (%), and residential district (East[reference]/West/Central/South/Fudeoka/Tatsukawa/Yogita/Yoshiwara). The residential districts were adjusted to minimize the health impacts of neighbourhood characteristics^20.

BMI was calculated as weight in kilograms divided by height in meters squared, rounded to one decimal place, and dichotomized into normal weight (<25.0 kg/m^2) and overweight or obesity (≥25.0 kg/m^2)^21. Hypertension was defined as systolic blood pressure ≥130 mmHg and/or diastolic blood pressure ≥80 mmHg^22. Dyslipidaemia was regarded as serum low-density lipoprotein ≥140 mg/dL, serum high-density lipoprotein <40 mg/dL, and/or serum triglyceride ≥150 mg/dL^23.
On 1 April 2013, Japan changed the reporting units for HbA1c from the Japan Diabetes Society (JDS) unit (%) to the National Glycohaemoglobin Standardization Program (NGSP) unit (%). HbA1c levels in JDS units were converted to NGSP units using the following officially certified formula:

\[HbA1c_{NGSP}(\%) = 1.02 \times HbA1c_{JDS}(\%) + 0.25 \]

Statistical analysis

All analyses were stratified by sex. The participants’ demographic characteristics were summarized by the AST/ALT categories. The number of failures, person-years at risk, and incidence rate per 1000 person-years (IR) were displayed for binary or categorical covariates. The mean and standard deviation (SD) were shown for continuous covariates. Person-years were calculated from the date of study entry to the date of onset of CKD or diabetes, otherwise to the date of last check-up. Because this study aimed to examine the relationship between AST/ALT and CKD onset in a non-diabetic population, those who developed diabetes during the follow-up period were treated as right-censored. HbA1c ≥6.5% was defined as prevalent diabetes.

Kaplan–Meier curves by AST/ALT categories were generated for men and women. Violation of the proportional hazards assumption was confirmed by the Schoenfeld residuals and log–log plots. Thus, the Weibull accelerated failure time model was selected according to the Akaike and Bayesian information criteria. The outcome measure of the Weibull accelerated failure time model was the time ratio; a higher time ratio indicates a longer survival time to CKD onset (e.g., a time ratio of 0.6 indicates a 40% shorter survival time to CKD onset compared with the reference category). Only estimates of exposure (i.e. AST/ALT) effects were presented to avoid the Table 2 fallacy.

In addition to the Crude model, four adjusted models were added to reduce confounding bias by reference to previous studies: Model 1 was adjusted for age category; Model 2 was further adjusted for BMI category, self-reported alcohol intake, and self-reported smoking status; Model 3 was further adjusted for prevalent hypertension, dyslipidaemia, and HbA1c value; and Model 4 was further adjusted for residential district. In all analyses, a multiplicative term was added to the models if an interaction effect was observed between the exposure variable and any of the following covariates: sex, age category, BMI.
category, self-reported alcohol intake, self-reported smoking status, hypertension, dyslipidaemia, and
HbA1c value.

A two-sided p-value <0.05 was considered statistically significant. All statistical analyses were
conducted using Stata/SE 18.0 (StataCorp, College Station, TX, USA). A flow chart for the participants
was created in Python 3.11.733,34. The district map of Zentsuji City was drawn in R 4.3.235,36. Geographic
information system data were downloaded from the portal site of official statistics of Japan37.

Missing data

Participation in the health check-ups is voluntary. Consequently, there were missing values in this study.
In the final cohort, the respective proportions of missing values for men and women were as follows: BMI
category (0.02% and 0.02%), hypertension (0.01% and 0.03%), dyslipidaemia (16.7% and 24.2%), self-
reported alcohol intake (31.2% and 28.6%), self-reported smoking status (25.1% and 23.1%), and
residential district (1.32% and 1.43%).

Missing values were imputed using multiple imputation methods because we assumed that the
pattern of missingness was missing at random. Binary variables were imputed by logistic regression and
categorical variables by multinomial logistic regression38. The number of imputations was set to 40 times
using the Stata module “how_many_imputations”39.

Sensitivity analyses

Three sensitivity analyses were performed in this study. In the first sensitivity analysis, we used AST, AST,
and GGT as exposure variables to determine which enzymes had the greatest impact on CKD
development. ALT and AST were categorized as <30 (reference), 30–<40, and ≥40 U/L11,40. GGT was
measured to zero decimal places using visible absorption spectroscopy and categorized as <30, 30–<50,
and ≥50 U/L41,11,42.

CKD and liver diseases often coexist43. To assess the presence of reverse causation, the second
sensitivity analysis further excluded those with missing proteinuria information at study entry or those with
prevalent proteinuria ≥1+ at study entry.
In general, eGFR values vary between observations. Therefore, the third sensitivity analysis used a more stringent definition of CKD to minimize the impact of eGFR variability leading to misclassification. Specifically, two consecutive observations of eGFR <60 mL/min/1.73 m² were treated as CKD.

Results

Main analysis

In total, 6309 men and 9192 women agreed to participate in the study, with a mean age at study entry of 63.8 years (SD: 11.3) for men and 61.3 years (SD: 13.1) for women. After application of the exclusion criteria, 2966 men and 4395 women remained in the final cohort (Figure 1), with a mean age at study entry of 62.0 years (SD: 10.6) for men and 59.2 years (SD: 12.0) for women. The proportions of men and women who had CKD at study entry and were excluded from the analysis were 8.40% and 17.5% in the 34–59 age group, 25.8% and 31.8% in the 60–69 age group, and 47.7% and 54.3% in the 70–100 age group, respectively. The district map of Zentsuji is shown in Figure 2. The Kaplan–Meier survival estimates for men and women stratified by AST/ALT categories are shown in Figure 3.

Tables 1 and 2 show the participant characteristics for men and women, respectively. The mean follow-up period for women (8.34 years) was slightly longer than that for men (7.50 years). After approximately 25 years of follow-up, 33.7% of men and 34.0% of women developed new-onset CKD. The mean age at CKD onset was 69.3 years (SD: 9.16) for men and 67.5 years (SD: 11.2) for women. At CKD onset, the proportions of stages G3a (eGFR: 45–59 mL/min/1.73 m²; mildly to moderately decreased), G3b (eGFR: 30–44 mL/min/1.73 m²; moderately to severely decreased), G4 (eGFR: 15–29 mL/min/1.73 m²; severely decreased), and G5 (eGFR: <15 mL/min/1.73 m²; kidney failure) were 96.8%, 2.70%, 0.50%, and 0.00% for men and 95.7%, 3.88%, 0.20%, and 0.27% for women, respectively. In both sexes, higher AST/ALT was associated with higher IR. Approximately half of the follow-up time belonged to the AST/ALT 1.0–<1.5 category regardless of sex. Men with higher AST/ALT tended to be normal weight, drinkers, and/or non-dyslipidaemic (Table 1). Women with higher AST/ALT tended to be normal weight, non-smokers, and/or non-dyslipidaemic (Table 2).
Table 3 shows the estimation results for the relationship between AST/ALT and new-onset CKD in men and women. In the AST/ALT 1.0–<1.5 group, survival time to CKD onset was similar in both sexes and 4% shorter compared with the reference group, with all 95% CIs crossing 1 in all models. However, women with AST/ALT ≥1.5 showed a shorter survival time to CKD onset with a maximum of 9% (95% CI: 4%–14%), while men had a slightly shorter survival time to CKD onset by point estimates, but all 95% CIs crossed the null value.

Sensitivity analyses

The first sensitivity analysis used ALT, AST, and GGT as the exposure variables. Table S1 shows the results using ALT as the exposure variable. Women had higher ALT than men, with ALT ≥40 U/L accounting for 30.7% of the total follow-up time (8.90% in men). Both sexes had longer survival times with higher ALT, with all 95% CIs crossing 1 in all models. Men had slightly higher point estimates of survival time than women in the elevated ALT categories.

Table S2 presents the results with AST as the exposure variable. Men had slightly higher AST than women, with AST ≥30 U/L accounting for 19.2% of the total follow-up time (9.62% in women). The trends in the estimation results differed between men and women. In men, higher AST was associated with longer survival time to CKD onset by point estimates, while in women, higher AST was associated with slightly shorter survival time to CKD onset by point estimates. Regardless of sex, all 95% CIs crossed 1 in all models.

Table S3 shows the findings when GGT was the exposure variable. Men had higher GGT than women, with GGT ≥30 U/L accounting for 49.7% of the total follow-up time (19.2% in women). After adjusting for all covariates including alcohol intake, all point estimates of survival were around the null value for both sexes, with all 95% CIs crossing 1. There was no clear evidence for a dose-response relationship in either sex.

In the second sensitivity analysis, participants with missing data on proteinuria at study entry or prevalence of proteinuria ≥1+ at study entry were further excluded from the analysis to evaluate the presence of a reverse causation effect. Specifically, 4.71% of men and 2.84% of women in the 34–59 age group, 4.27% of men and 3.03% of women in the 60–69 age group, and 5.45% of men and 4.97% of
women in the 70–100 age group were further excluded from the analysis. Following the exclusion, 2921 men (98.5%) and 4355 women (99.1%) remained in the analysis. After a mean follow-up time of 7.53 years for men and 8.38 years for women, 33.1% of men and 33.6% of women developed CKD. The participants who developed CKD after the follow-up had similar mean ages to the main analysis, at 69.2 years (SD: 9.20) for men and 67.4 years (SD: 11.2) for women. Both men and women had similar characteristics to the main analysis (Tables 1 and 2). Table S4 presents the relationships between AST/ALT categories and subsequent CKD development after the exclusion. The results were similar to those in the main analysis (Table 3), with shorter survival times to CKD onset in the elevated AST/ALT groups in both men and women.

Table S5 shows the results of the third sensitivity analysis using the stringent definition of CKD, in which two consecutive observations of eGFR <60 mL/min/1.73 m² were regarded as CKD. The men and women excluded for prevalent CKD at study entry comprised 3.56% and 8.88% in the 45–59 age group, 15.9% and 21.2% in the 60–69 age group, and 27.7% and 33.5% in the 70–100 age group, respectively. In total, fewer participants developed CKD (19.3% of men and 19.8% of women) compared with the main analysis (Tables 1 and 2). The mean ages of the participants at CKD onset were 70.6 years (SD: 8.68) for men and 69.3 years (SD: 10.7) for women, being slightly older than the main analysis. The characteristics of both sexes were similar to the main analysis (Tables 1 and 2). Both sexes showed attenuated results with longer survival times to CKD onset and 95% CIs crossing 1, similar to the full model (Table 3).

Discussion

Main analysis

After approximately 25 years of follow-up, a dose-response relationship between AST/ALT categories and subsequent CKD development was only found in women, with a 9% shorter survival time to CKD onset for AST/ALT ≥1.5 compared with AST/ALT <1.0. A previous cross-sectional study involving 29133 middle-aged Japanese women with and without diabetes found that AST/ALT <1 had a 1.43 times stronger association (95% CI: 1.30–1.58) with prevalent CKD than AST/ALT ≥1, after adjustment for all covariates including diabetes. The trend in the present study contradicted the results of the previous study.
The main reason for the discrepancy is the difference in study designs. The present study had a longitudinal study design, while the previous study had a cross-sectional study design, which is generally used as a stepping stone to infer causality before follow-up studies are conducted11,44. In the present study, only participants without CKD at study entry were followed to determine whether they would develop CKD, and >95% of those who developed CKD were in the least severe stage G3a. In contrast, the previous cross-sectional study included participants without and with CKD of any severity: G3a (82.0% of CKD patients), G3b (6.2% of CKD patients), G4 (0.7% of CKD patients), and G5 (0.3% of CKD patients)11. Another Asian retrospective study conducted in India (n=300) reported that AST and ALT were lower in CKD patients than in those with normal renal function, and decreased as the severity of CKD increased45. A systematic review reported the same trend, even in haemodialysis patients with end-stage renal disease, regardless of viral hepatitis46. This suggests that the prevalence of CKD may affect liver enzymes. Thus, the differences in participant characteristics based on the difference in study designs (i.e., the previous cross-sectional study included more participants with CKD because the present longitudinal study excluded participants with CKD at study entry) may account for the difference in findings between the present study and the previous study11.

Another reason for the discrepancy may be that the present study only included non-diabetic participants, while the previous Japanese cross-sectional study included both diabetic and non-diabetic participants11, which may have influenced the results. In an Asian cohort study involving 87883 Chinese adults, a one-unit increase in AST/ALT was associated with a 0.56-fold risk of developing diabetes (95% CI: 0.37–0.85) after adjusting for all covariates including fasting plasma glucose and family history of diabetes47. In the previous Japanese cross-sectional study, participants with CKD tended to have diabetes of any severity (7.2% of CKD participants) compared with those without CKD (3.4% of non-CKD participants)11. This suggests that, even after controlling diabetes, there may have been residual confounding between AST/ALT and new-onset CKD, which may have influenced the reversed trend observed in the previous study11.

In a study on people in the Japanese general population who underwent health check-ups in 11 prefectures, the prevalences of CKD (eGFR <60 mL/min/1.73 m2) in men and women by age groups were 3.97% and 2.57% in their 40s, 7.48% and 6.82% in their 50s, 15.8% and 14.8% in their 60s, 27.7% and
31.8% in their 70s, and 44.6% and 46.1% in their 80s and above, respectively. The fact that the maximum age of the participants in the present study was very old (100 years) may partly explain the differences between the populations.

Sensitivity analyses

In the first sensitivity analysis, AST, ALT, and GGT were used as the exposure variables. In the present study, elevated ALT and GGT showed a slightly longer survival time to CKD onset in both sexes by point estimates, but all 95% CIs crossed 1 in all models. In the previous Japanese cross-sectional study, elevated ALT >40 U/L and GGT >50 U/L were 1.53 (95% CI: 1.31–1.79) and 1.60 (95% CI: 1.42–1.80) times more strongly associated with CKD prevalence than ALT ≤40 U/L and GGT ≤50 U/L, respectively, after full adjustment for confounders including diabetes (no data were provided for AST). To our knowledge, no follow-up studies involving non-diabetic Asian participants have examined ALT or AST and subsequent development of CKD. However, one Asian cohort study did investigate the relationship between GGT and CKD onset among 9341 non-diabetic Japanese men in the Kansai Healthcare Study. In that cohort study, higher GGT showed no clear association with CKD onset in the non-diabetic Japanese participants, consistent with the trend in the present study. In summary, ALT, AST, and GGT are not risk factors for CKD development in Japanese adults without diabetes.

The second sensitivity analysis evaluated the presence of reverse causation by further excluding participants with missing information on proteinuria at study entry or with proteinuria ≥1+ at study entry. The results were consistent with the main analysis, showing no clear evidence of reverse causation.

Meanwhile, the results of the third sensitivity analysis using a stringent definition of CKD, in which two consecutive observations of eGFR <60 mL/min/1.73 m² were considered to indicate CKD, showed that fewer participants were excluded due to CKD prevalence at study entry, and fewer participants developed CKD after follow-up at a slightly older age and with higher point estimates than the main analysis. The present study used the results of annual health check-ups. Therefore, the definition in the third sensitivity analysis was more stringent than the KDIGO definition of CKD, which is renal dysfunction for >3 months. The stringent definition minimized the visit-to-visit variability of eGFR to define CKD.
However, all participants who developed CKD at the last observation were classified as non-CKD, possibly underestimating the results based on the overly stringent definition of CKD.

Strengths and limitations

The strengths of the study are the single ethnicity of the participants, the sufficiently long follow-up period for detection of CKD development, and the sex-stratified analysis, given that the distribution of liver enzymes varies by sex\(^1\). To the best of our knowledge, this is the first sex-stratified longitudinal study evaluating AST/ALT and new-onset CKD in a non-diabetic Asian population.

Several limitations of the study should also be noted. First, we used health check-up data in a single city, with the participants themselves deciding whether or not to undergo the health check-ups. Thus, the participants in the study were not randomly sampled from the entire Japanese population and were not representative of Japan as a whole. Thus, the present results may not be generalizable to other populations.

Second, the study participants were healthier than the general population because they continued to undergo health check-ups over a long period. Unhealthy participants may have tended to be right-censored during the follow-up period because of competing risks such as serious illnesses requiring regular medical visits, hospitalization, or death (data unavailable). Thus, our results may have been underestimated. Furthermore, because of the long follow-up period in the study, a built-in selection bias may have existed, leading to further underestimation of the results\(^49\).

Third, there is a possibility of misclassification of renal outcomes. We used serum creatinine, which is affected by higher muscle mass and dehydration, for calculation of eGFR\(^50,51\). Previous studies reported that men have higher skeletal mass than women, that skeletal mass decreases with age, and that dehydration is more common in older people\(^52,53\). In the present study, the results were described separately for men and women, with 72.2% of the men in the entire follow-up period being ≥60 years of age (62.8% in women). Thus, due to the small number of young participants, the effect of high muscle mass should be negligible. Nevertheless, there may be residual bias derived from older participants even after controlling for age, and the findings may have been overestimated. However, in the present analysis,
we used the three-variable Japanese equation, which performs better than conventional equations for
calculation of eGFR, and thus the effect of age may have been smaller.18

Fourth, the study used interval data, for which the observation intervals depended on the
participants, and thus the actual date of CKD onset was unknown. Finally, there may be confounding
factors that were not observed in the study such as hepatitis B and C virus infection. Patients with
hepatitis B or C tend to have AST/ALT $<$ 1 and are more likely to develop CKD1,54,55. However, the
prevalences of hepatitis B and C are quite low in Japanese people (3.0\% and 0.13\%, respectively)56,57,
suggesting that they may have had little impact on the results of the study.

Conclusions

In the present study using administrative health check-up data (1998–2023) for healthy middle-aged and
older Japanese without diabetes, there was a dose-response relationship between AST/ALT and
subsequent development of CKD in women (higher AST/ALT was associated with shorter survival time to
CKD onset), but no clear trend in men. The present findings suggest that AST/ALT values commonly
obtained in daily practice can be used as an indicator for early detection of CKD in non-diabetic Japanese
women.

Ethics approval statement

We used data anonymized before receipt. The Ethics Committee of Okayama University Graduate School
of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital approved this
study (No. K1708-040). The Ethics committee waived the need for informed consent. This study was
conducted in accordance with the Declaration of Helsinki and Japanese Ethical Guidelines for Medical
and Biological Research Involving Human Subjects.
Acknowledgements

This research is self-funded and received no specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Yukari Okawa has been employed by Zentsuji City as a part-time data analyst. Etsuji Suzuki and Toshiharu Mitsuhashi have no competing interests to declare. We appreciate all participants of this study, Ayaka Nakatsu, Masako Matsumoto, Mayumi Kitadani and all local government officers of Zentsuji City for their support and contribution. The authors thank Alison Sherwin, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Data accessibility statement

All data relevant to this study are included in the article and supplementary appendix.

Author contributions

Etsuji Suzuki: Conceptualization, Methodology, Writing - review & editing, Supervision. Toshiharu Mitsuhashi: Conceptualization, Methodology, Writing - review & editing, Supervision. Yukari Okawa: Conceptualization, Methodology, Formal analysis, Investigation, Data curation, Writing - original draft, Writing - review & editing, Visualization, Project administration.

References

Figure 1. Flow chart of participants in the study cohort.
Figure 2. Map showing the districts in Zentsuji City.
Figure 3. Kaplan–Meier survival estimates by AST/ALT categories for men and women.

Tables
Dyslipidaemia is defined as serum low-density lipoprotein cholesterol

Hypertension is defined as systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 mmHg.

Table 1. Descriptive statistics of all observations stratified by AST/ALT ratio categories among 2966 non-diabetic Japanese male citizens of Zentsuji City (1998–2023)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total</th>
<th><1.0</th>
<th>1.0–1.5</th>
<th>≥1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time at risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>22234.5</td>
<td>4801.9</td>
<td>11164.3</td>
<td>6268.3</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.34</td>
<td>0.40</td>
<td>0.46</td>
<td>0.34</td>
</tr>
<tr>
<td>Maximum</td>
<td>24.5</td>
<td>24.5</td>
<td>22.4</td>
<td>24.5</td>
</tr>
<tr>
<td>Mean</td>
<td>4.64</td>
<td>5.22</td>
<td>4.54</td>
<td>7.50</td>
</tr>
<tr>
<td>Median</td>
<td>3.09</td>
<td>3.95</td>
<td>3.04</td>
<td>6.04</td>
</tr>
</tbody>
</table>

| **Failure/IR†** | 209 | 33.3 | 537 | 48.1 | 254 | 52.9 | 1000 | 45.0 |

Variables								
Age category in years								
34–59	102	6171.2	16.5					
60–69	394	8401.7	43.4					
70–100	505	7913.6	63.8					

BMI category‡								
Normal	106	939.9	143	148.7	115.1	60.3	36.0	60.3
Overweight or obesity	103	5508.0	210.9	4133.4	7030.9	402.3	3286.8	134.7

Self-reported smoking status								
Non- or ex-smoker	148.7	7877.5	51.1	189.4	3393.7	41.0	1462.3	414.7
Smoker	60.3	5105.5	41.5	92.0	2093.8	41.0	1462.3	414.7

Hypertension§								
Normal	128.0	81.0	5105.5	41.5	92.0	2093.8	43.9	385.0
Hypertensive	126.3	360.5	325.0	6058.8	41.2	162.0	59.8	615.0

Dyslipidaemia¶								
Normal	143.9	65.2	213.2	5183.8	41.1	126.3	50.5	404.7
Dyslipidemic	143.9	4282.8	33.6	323.8	5980.5	54.1	127.7	55.6

Residential district								
East	45.8	4587.3	46.3					
Tatsukawa	27.5	3747.7	40.3					
South	24.5	3747.7	40.3					
Fudeoka	28.6	2699.7	46.8					
Central	29.3	1226.6	47.1					
Yoshiwara	20.5	2273.9	53.0					
West	21.5	2133.0	44.9					
Yūgita	11.3	1355.2	40.7					

| **HbA1c values** | | | | | | | | |
| Mean (SD) | 5.51 (0.43) | 5.46 (0.41) | 5.41 (0.41) | 5.46 (0.42) |

Abbreviations: ALT, alanine transaminase; AST, aspartate aminotransferase; BMI, body mass index; HbA1c, haemoglobin A1C; IR, incidence rate.

Results for multiple imputed variables (overweight or obesity†, hypertension§, dyslipidaemia¶, self-reported alcohol intake, self-reported smoking status and residential district) are averaged over 40 imputations.

†Incidence rate is reported per 1000 person-years.

‡Overweight or obesity is defined as a BMI ≥25 kg/m².

§Hypertension is defined as systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 mmHg.

¶Dyslipidaemia is defined as serum low-density lipoprotein cholesterol ≥140 mg/dL, serum high-density lipoprotein cholesterol <40 mg/dL, and/or serum triglycerides ≥150 mg/dL.
Table 2. Descriptive statistics of all observations stratified by the AST/ALT ratio categories among 4395 non-diabetic Japanese female citizens of Zentsuji City (1998–2023)

<table>
<thead>
<tr>
<th>AST/ALT ratio classification</th>
<th>Total</th>
<th>Time at risk</th>
<th>Failure</th>
<th>IR†</th>
<th>Failure</th>
<th>PY</th>
<th>IR†</th>
<th>Failure</th>
<th>PY</th>
<th>IR†</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.0</td>
<td></td>
<td></td>
<td>5322.5</td>
<td>20052.3</td>
<td>11265.2</td>
<td>36639.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0–1.5</td>
<td></td>
</tr>
<tr>
<td>≥1.5</td>
<td></td>
</tr>
</tbody>
</table>

Variables

Age category in years

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>34–59</td>
<td>67</td>
<td>2467.1</td>
<td>27.2</td>
<td>182</td>
<td>7566.3</td>
<td>24.1</td>
<td>97</td>
<td>3592.1</td>
<td>27.0</td>
<td>346</td>
</tr>
<tr>
<td>60–69</td>
<td>60</td>
<td>2003.1</td>
<td>30.0</td>
<td>239</td>
<td>7015.2</td>
<td>34.1</td>
<td>126</td>
<td>3185.6</td>
<td>39.6</td>
<td>425</td>
</tr>
<tr>
<td>70–100</td>
<td>39</td>
<td>852.3</td>
<td>45.8</td>
<td>339</td>
<td>5470.9</td>
<td>62.0</td>
<td>345</td>
<td>4487.4</td>
<td>76.9</td>
<td>723</td>
</tr>
</tbody>
</table>

BMI category‡

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>90</td>
<td>3113.2</td>
<td>28.9</td>
<td>527</td>
<td>15770.5</td>
<td>33.4</td>
<td>472</td>
<td>9848.6</td>
<td>47.9</td>
<td>1089</td>
</tr>
<tr>
<td>Overweight or obesity</td>
<td>76</td>
<td>2209.3</td>
<td>34.4</td>
<td>233</td>
<td>4281.8</td>
<td>54.4</td>
<td>96</td>
<td>1416.6</td>
<td>67.8</td>
<td>405</td>
</tr>
</tbody>
</table>

Self-reported alcohol intake

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Non- or seldom-drinker</td>
<td>125.7</td>
<td>3977.9</td>
<td>31.6</td>
<td>609.5</td>
<td>14650.4</td>
<td>41.6</td>
<td>443.2</td>
<td>8586.9</td>
<td>51.6</td>
<td>1178.3</td>
</tr>
<tr>
<td>Drinker</td>
<td>40.4</td>
<td>1344.6</td>
<td>30.0</td>
<td>150.6</td>
<td>5401.9</td>
<td>27.9</td>
<td>124.8</td>
<td>2678.2</td>
<td>46.6</td>
<td>315.7</td>
</tr>
</tbody>
</table>

Self-reported smoking status

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Non- or ex-smoker</td>
<td>161.2</td>
<td>4983.5</td>
<td>32.3</td>
<td>726.9</td>
<td>18986.2</td>
<td>38.3</td>
<td>553.5</td>
<td>10672.9</td>
<td>51.9</td>
<td>1441.5</td>
</tr>
<tr>
<td>Smoker</td>
<td>4.8</td>
<td>339.0</td>
<td>14.2</td>
<td>33.2</td>
<td>1066.1</td>
<td>31.1</td>
<td>14.6</td>
<td>592.2</td>
<td>24.6</td>
<td>52.5</td>
</tr>
</tbody>
</table>

Hypertension§

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>62.0</td>
<td>2467.1</td>
<td>25.1</td>
<td>321.0</td>
<td>10513.5</td>
<td>30.5</td>
<td>225.0</td>
<td>5842.7</td>
<td>38.5</td>
<td>608.0</td>
</tr>
<tr>
<td>Hypertensive</td>
<td>104.0</td>
<td>2855.4</td>
<td>36.4</td>
<td>439.0</td>
<td>9538.8</td>
<td>46.0</td>
<td>343.0</td>
<td>5422.4</td>
<td>63.3</td>
<td>886.0</td>
</tr>
</tbody>
</table>

Dyslipidaemia¶

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>57.3</td>
<td>2009.0</td>
<td>28.5</td>
<td>315.5</td>
<td>9435.6</td>
<td>33.4</td>
<td>275.8</td>
<td>5806.2</td>
<td>47.5</td>
<td>648.6</td>
</tr>
<tr>
<td>Dyslipidaemic</td>
<td>108.7</td>
<td>3313.5</td>
<td>32.8</td>
<td>444.5</td>
<td>10616.7</td>
<td>41.9</td>
<td>292.2</td>
<td>5458.9</td>
<td>53.5</td>
<td>845.4</td>
</tr>
</tbody>
</table>

Residential district

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>39.7</td>
<td>1096.0</td>
<td>36.2</td>
<td>159.8</td>
<td>4041.9</td>
<td>39.5</td>
<td>109.0</td>
<td>2406.6</td>
<td>45.3</td>
<td>308.5</td>
</tr>
<tr>
<td>Tatsukawa</td>
<td>27.5</td>
<td>821.1</td>
<td>33.5</td>
<td>111.2</td>
<td>3513.2</td>
<td>31.7</td>
<td>90.8</td>
<td>2052.7</td>
<td>44.2</td>
<td>229.5</td>
</tr>
<tr>
<td>South</td>
<td>19.3</td>
<td>677.5</td>
<td>28.5</td>
<td>117.3</td>
<td>2789.8</td>
<td>42.0</td>
<td>94.7</td>
<td>1607.5</td>
<td>58.9</td>
<td>231.3</td>
</tr>
<tr>
<td>Fudeoka</td>
<td>22.5</td>
<td>643.5</td>
<td>34.9</td>
<td>86.9</td>
<td>2542.8</td>
<td>34.2</td>
<td>65.7</td>
<td>1310.4</td>
<td>50.1</td>
<td>175.0</td>
</tr>
<tr>
<td>Central</td>
<td>17.2</td>
<td>634.9</td>
<td>27.1</td>
<td>75.5</td>
<td>2008.7</td>
<td>37.6</td>
<td>57.5</td>
<td>1280.6</td>
<td>44.9</td>
<td>150.2</td>
</tr>
<tr>
<td>Yoshiwara</td>
<td>16.3</td>
<td>590.6</td>
<td>27.6</td>
<td>88.5</td>
<td>2111.0</td>
<td>41.9</td>
<td>51.6</td>
<td>1032.6</td>
<td>49.9</td>
<td>156.4</td>
</tr>
<tr>
<td>West</td>
<td>18.4</td>
<td>519.6</td>
<td>35.5</td>
<td>70.3</td>
<td>1999.9</td>
<td>35.2</td>
<td>61.6</td>
<td>939.1</td>
<td>65.6</td>
<td>150.3</td>
</tr>
<tr>
<td>Yogita</td>
<td>5.1</td>
<td>339.2</td>
<td>15.1</td>
<td>50.7</td>
<td>1045.0</td>
<td>48.5</td>
<td>37.2</td>
<td>635.6</td>
<td>58.5</td>
<td>93.0</td>
</tr>
</tbody>
</table>

HbA1c values

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD)</td>
<td>5.58</td>
<td>(0.41)</td>
<td>5.50</td>
<td>(0.39)</td>
<td>5.45</td>
<td>(0.36)</td>
<td>5.49</td>
<td>(0.38)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ALT, alanine transaminase; AST, aspartate aminotransferase; BMI, body mass index; HbA1c, haemoglobin A1C; IR, incidence rate†.

Results for multiple imputed variables (overweight or obesity‡, hypertension§, dyslipidaemia¶, self-reported alcohol intake, self-reported smoking status, and residential district) are averaged over 40 imputations.

†Incidence rate is reported per 1000 person-years.
‡Overweight or obesity is defined as a BMI ≥25 kg/m².
§Hypertension is defined as systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 mmHg.
¶Dyslipidaemia is defined as serum low-density lipoprotein cholesterol ≥140 mg/dL, serum high-density lipoprotein cholesterol <40 mg/dL, and/or serum triglycerides ≥150 mg/dL.
<table>
<thead>
<tr>
<th>AST/ALT ratio classification</th>
<th>Crude</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PY</td>
<td>Failure</td>
<td>aTR (95% CI)</td>
<td>aTR (95% CI)</td>
<td>aTR (95% CI)</td>
</tr>
<tr>
<td>Men (n=2966)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1.0 (reference)</td>
<td>6268.3</td>
<td>209</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1.0–<1.5</td>
<td>11164.3</td>
<td>537</td>
<td>0.98 (0.95–1.02)</td>
<td>0.98 (0.94–1.03)</td>
<td>0.97 (0.93–1.01)</td>
</tr>
<tr>
<td>≥1.5</td>
<td>4801.9</td>
<td>254</td>
<td>1.01 (0.96–1.05)</td>
<td>1.00 (0.95–1.05)</td>
<td>0.98 (0.93–1.03)</td>
</tr>
<tr>
<td>Women (n=4395)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1.0 (reference)</td>
<td>5322.5</td>
<td>166</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1.0–<1.5</td>
<td>20052.3</td>
<td>760</td>
<td>0.98 (0.93–1.02)</td>
<td>0.98 (0.94–1.02)</td>
<td>0.96 (0.92–1.01)</td>
</tr>
<tr>
<td>≥1.5</td>
<td>11265.2</td>
<td>568</td>
<td>0.93 (0.89–0.98)</td>
<td>0.94 (0.90–0.99)</td>
<td>0.92 (0.88–0.97)</td>
</tr>
</tbody>
</table>

Abbreviations: ALT, alanine transaminase; AST, aspartate transferase; aTR, adjusted time ratio; CI, confidence interval; HbA1c, haemoglobin A1C; PY, person-years; TR, time ratio.

†Overweight or obesity is defined as BMI ≥25 kg/m².
‡Hypertension is defined as systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 mmHg.
§Dyslipidaemia is defined as serum low-density lipoprotein cholesterol ≥140 mg/dL, serum high-density lipoprotein cholesterol <40 mg/dL and/or serum triglycerides ≥150 mg/dL.

Multiple imputed variables: overweight or obesity†, hypertension‡, dyslipidaemia§, self-reported alcohol intake, self-reported smoking status and residential district.

Model 2: Adjusted for the variable of Model 1, BMI category† (normal[reference]/overweight or obesity), self-reported alcohol intake (non- or seldom-drinker[reference]/yes), and self-reported smoking status (non- or ex-smoker[reference]/smoker).
Model 3: Adjusted for all variables of Model 2, hypertension‡ (normal[reference]/hypertensive), dyslipidaemia§ (normal[reference]/dyslipidaemic), and HbA1c values.
Model 4: Adjusted for all variables of Model 3 and residential district (East[reference]/Tatsukawa/South/Fudeoka/Central/Yoshikawa/West/Yogita).