Title: Safety and effects of acetylated and butyrylated high amylose maize starch in recently diagnosed youths with type 1 diabetes.

Author list:
Heba M Ismail¹, Jianyun Liu², Michael Netherland Jr³, Carmella Evans-Molina¹, Linda A DiMeglio¹

Affiliations:
¹Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
²Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
³EzBiome, Inc., Gaithersburg, MD, USA

Corresponding Author:
Heba Ismail, MB BCh
Indiana University School of Medicine
Email: heismail@iu.edu
Phone: 317-944-3889

Main Document Word Count: 1348
Combination of Figures/Tables: 2/2
References: 14
Abstract

Acetylated and butyrylated high amylose starch (HAMS-AB) is a prebiotic shown to be effective in type 1 diabetes (T1D) prevention in mouse models and is safe in adults with established T1D. HAMS-AB alters the gut microbiome profile with increased bacterial fermenters that produce short chain fatty acids (SCFAs) with anti-inflammatory and immune-modulatory effects. We performed a pilot study using a cross-over design to assess the safety and efficacy of 4 weeks of oral HAMS-AB consumption by recently diagnosed (< 2 years of diagnosis) youths with T1D. Seven individuals completed the study. The mean±SD age was 15.0±1.2 yrs., diabetes duration 19.5±6.3 months, 5 of the 7 were female and 4/7 were White, all with a BMI of < 85th%. The prebiotic was safe. Following prebiotic intake, gut microbiome changes were seen, including a notable increase in the relative abundance of fermenters such as Bifidobacterium and Faecalibacterium. Treatment was also associated with changes in bacterial functional pathways associated with either improved energy metabolism (upregulation of tyrosine metabolism) or anti-inflammatory effects (reduced geraniol degradation). Stool SCFA analyses showed increased butyrate levels post-prebiotic (8.1±9.8 vs 22.6±6.4mmol SCFA/kg fecal material, p=0.047). Plasma metabolites associated with improved glycemia, such as hippurate, were significantly increased after treatment and there were positive and significant changes in the immune regulatory function of mucosal associated invariant T cells. There was a significant decrease in the area under the curve glucose but not C-peptide, as measured during a mixed meal tolerance testing, following the prebiotic consumption. In summary, the prebiotic HAMS-AB was safe in adolescents with T1D with positive and promising effects on the gut microbiome composition, function and immune regulatory function.

Keywords: HAMS-AB, dietary intervention, type 1 diabetes (T1D), Beta cell function, mixed meal tolerance test (MMTT), glucose regulation, C-peptide levels, glycemic control, metabolomics, SCFAs.
Introduction:

Compared to healthy individuals, people with type 1 diabetes (T1D) demonstrate gut dysbiosis (microbial imbalance) [1]. The gut microbiome can be altered using high-amylose maize starch (HAMS), a well-tolerated source of dietary fiber with selective gut fermentation properties. Further, HAMS that is acetylated and butyrylated (HAMS-AB) releases large amounts of short chain fatty acids (SCFAs) after colonic bacterial fermentation [2]. SCFAs are anti-inflammatory and have been linked to modulation of the immune response [2, 3].

The main objective of this pilot study was to assess the safety of HAMS-AB and its effect on the gut microbiome in people with recently diagnosed T1D. We used a cross-over design to allow for assessment of prebiotic efficacy through comparison of individuals to themselves as their own controls. Secondary outcomes included HAMS-AB’s effects on glycemia and β-cell function. The full study protocol has been previously published [4]. Briefly, participants were randomized to start with either the prebiotic and a standard ADA recommended diabetes diet at home for 4 weeks or just the diabetes diet for 4 weeks, with a 4-week washout period and then a cross-over to the other arm for 4 weeks (12-week study period). This study was approved by Indiana University's Institutional Review Board on November 21st, 2019, under protocol number 1907172784.

The authors have obtained assent from participants and consent from their legal guardians to take part in the present study and with results being published.

Results:

Recruitment occurred between July 2020 and December 2022. Twelve participants were recruited, 7 of whom finished the study. Three withdrew for anxiety around blood draws or personal reasons and prior to consumption of study drug. The other two did not tolerate the prebiotic; one developed gagging with attempted prebiotic consumption, the second developed nausea after a few days of prebiotic consumption. Symptoms resolved with prebiotic discontinuation.
Data from the remaining 7 individuals was considered sufficient to proceed to a Phase Ib trial, thus resulting in closure of this Phase Ia trial. Supplemental Table 1 shows participant baseline characteristics from the 7 who completed.

Safety

Overall, HAMS-AB consumption was safe. Supplemental Table 2 shows the list of adverse events (AEs) documented. There were no Severe Adverse Events (SAE) during the trial and 21 reported AE, of which 57% were Grade 1 and 38% Grade 2. All AEs resolved without sequelae. There were expected gastrointestinal symptoms in a few participants due to the increase in fiber intake.

Gut microbiome profile and functional pathway changes

There were no differences seen in alpha diversity measures by treatment period. There were shifts seen in the gut microbiome profile. Figure 1 show changes in the relative abundance of several taxa following each treatment period. Notable changes include an increased relative abundance of Bifidobacterium at the end of prebiotic consumption (p>0.05). Both diet and prebiotic intake decreased the relative abundance of Blautia, which was more prominent at the end of prebiotic consumption (p=0.0057). There was an increase in Faecalibacterium in those who started with a diabetic diet then later changed to prebiotic treatment. The relative abundance of Dialister remained stable after prebiotic consumption compared to a decrease at the end of the diabetic diet. Lastly, Dorea decreased at the end of each of each period, but more significantly following prebiotic consumption (p=0.007).

For functional pathway analysis, there was an upregulation in tyrosine metabolism at the end of prebiotic consumption. Geraniol degradation was reduced in those who started with diet followed by prebiotic vs those who started with prebiotic first.
Metabolites Analysis

Daily consumption of HAMS-AB significantly increased stool butyrate levels, as measured by gas chromatography, from 8.1 ± 9.8 to 22.6 ± 6.4 mmol / kg fecal material (p=0.047). There were no changes in acetate or propionate levels.

An untargeted metabolomics analysis of plasma revealed increases in plasma Hippurate, L-glutamate, tryptophan, and dihydroxyquinoline after prebiotic consumption (p=0.02 for all after adjusting for multiple comparisons).

MAIT cells analysis

Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes that are activated by bacterial riboflavin. MAIT cells are altered in children at risk for and with T1D [5]. Consumption of HAMS-AB did not change the overall MAIT cell frequency. We saw a reduction in the activation state of MAIT cells marked by reduced CCR6+, CD25+, Granzyme B+ and PD1+ MAIT cells, but this was not seen on non-MAIT T cells, Figure 2.

β cell function

Mixed meal tolerance tests (MMTTs) were used to assess residual beta-cell function. Area under the curve (AUC) measurements showed that HAMS-AB significantly reduced glucose levels compared to baseline values. An improvement in C-peptide was seen, albeit non-significant (supplemental Table 3).

Discussion

In this Phase Ia clinical trial, we examined the safety of HAMS-AB consumption in recently diagnosed youths with T1D and its effects on the gut microbiome, metabolites, immune markers and glycemia. We saw an acceptable safety profile of HAMS-AB, with no SAEs. Most AEs were mild/moderate, all resolved before the end of the study period. We saw changes in the gut microbiome composition and metabolite profile associated
with prebiotic consumption and changes in immune markers, β-cell function and glycemia. Therefore, our findings underscore the potential for HAMS-AB use in T1D management.

We saw a shift in the gut microbial community following HAMS-AB consumption. There was an increased relative abundance of Bifidobacterium and Faecalibacterium. Bifidobacterium is a fermenter and SCFA producer that is typically decreased in both T1D [1]. Faecalibacterium prausnitzii is a butyrate producer and hyperglycemia reduces its abundance [6]. Blautia decreased following prebiotic and diabetes diet alone, although more prominent at the end of the prebiotic consumption period. Blautia abundance is inversely associated with visceral fat adiposity [7]. Lastly, an increase in Dorea and a decrease in Dialister is seen in patients with T1D and their siblings [8], in contrast to what we saw in response to prebiotic.

There was an increase in stool butyrate levels after 4 weeks of HAMS-AB consumption, suggesting a bias towards SCFA producing bacteria. Although acetate and propionate remain in the picture, the effects may not be the same with microbiome utilization of this particular prebiotic. We saw an upregulation in tyrosine metabolism and downregulation of geraniol degradation functional pathways. Tyrosine is an aromatic amino acid that plays an important role in energy metabolism [9], suggesting improved energy metabolism. While geraniol is an acyclic monoterpenic alcohol with well-known anti-inflammatory and antimicrobial properties [10]. Therefore, reduced degradation suggests persistence of its anti-inflammatory effects.

Metabolomics analysis revealed an increase in several metabolites associated with the gut microbiome, glycemia and energy homeostasis. Hippurate, which increased post prebiotic, is a microbial metabolite associated with increased gut bacterial diversity and improved glycemia [11]. L-glutamic acid is an important intermediate in metabolism and has been touted with potential for glycemic control [12]. Dihydroxyquinoline has protective and homeostatic effects on the intestinal tract by suppressing inflammation [13]. While tryptophan, partially produced by the gut microbiome, is associated with reduced inflammation and regulating energy homeostasis [14].
MAIT cells are innate-like T cells that are involved in the mucosal immune response [5]. They are thought to play a key role in maintenance of gut integrity, thereby potentially providing a link between the gut microbiome changes and autoimmunity. We saw a reduction in the activation state of MAIT cells marked by reduced CCR6+, CD25+, and PD1+ MAIT cells. This is closely linked to a reduced inflammatory response and promotion of an immune profile that is more regulated, a change that could be part of the immunomodulatory effects taking place through HAMS-AB intake.

This study has strengths. Several measures and metabolic markers were assessed as part of this study. The cross-over design where individuals could be their own controls strongly suggests that changes seen were not due to chance alone. Additionally, despite the dropout rate, several measures indicate a positive effect of HAMS-AB. Further, HAMS is a natural supplement that may be favored by many patients. Limitations include the small sample size and short duration of intake. A Phase Ib trial is currently under way to assess these effects using a larger sample size (NCT06057454). Further, two individuals did not tolerate the prebiotic. This intolerance to prebiotics stresses the significance of individual differences in tolerance to dietary agents and the need for various treatment approaches, including personalized approaches in treatment. While larger and longer studies are warranted to assess the durability of these effects, the growing body of initial data is encouraging.
Figures:

![Figure: Heatmap of Relative Abundance by Treatment and Bacterial Phyla]

- **Treatment**:
 - Diabetic Diet
 - HAMS-AB

- **Relative Abundance** scale:
 - 0 to 15

The heatmap displays the relative abundance of different bacterial phyla across two treatment groups: Diabetic Diet and HAMS-AB.
Figure 1: Changes in relative abundance of different species in relation to the intervention type (HAMS-AB vs Diabetic Diet)
Figure 2: Modulation of the immune response by HAMS-AB. PBMCs were harvested from patients' blood and activated by MAIT cell antigen 5-OP-RU (A & B) or PMA/Ionomycin (C-E) overnight. MAIT cell phenotypes were analyzed by flow cytometry. Data were analyzed comparing pre- and post-diabetic (upper panels) and prebiotic (lower panels) diets. *, P<0.05, Wilcoxon paired test.
Acknowledgements

This study received support from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award, Grant Numbers, KL2TR002530 (A. Carroll, PI), and UL1TR002529 (A. Shekhar, PI). We also acknowledge support from the Board of Directors of the Indiana University Health Values Fund for Research Award and the Indiana Clinical and Translational Sciences Institute funded, in part by Grant U54TR002529 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award; the Indiana Clinical and Translational Sciences Institute funded, in part by Award Number UL1TR002529 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award; the Pilot and Feasibility Grant from the Indiana Center for Diabetes and Metabolic Diseases (P30DK097512); the National Institute Of Diabetes And Digestive And Kidney Diseases of the National Institutes of Health under Award Number K23DK129799, the Doris Duke Charitable Foundation through the COVID-19 Fund to Retain Clinical Scientists Collaborative Grant Program (Grant 2021258) and The John Templeton Foundation (Grant 62288). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or other funding agencies.

Duality of Interest

The authors declare no conflict of interest.

Contribution Statement

HMI conceived the study, drafted and edited the manuscript. CEM, LAD, MN and JL contributed to the study design, critically reviewed the manuscript and approved the final version. All have consented to the manuscript publication.

Data Availability
The data generated from this study will be made available on a case by case basis.

References:

