PRS-GRID: A Cross and Within Ancestry Polygenic Risk Prediction Method
Based on Individual Genetic Distance

Liwei Tang¹, Cong You², Xue-jun Kong³, Valerio Napolioni⁴, Jie Huang¹,⁵

¹ Department of School of Public Health and Emergency Medicine, Southern University of Science and Technology, Shenzhen, China
² Beijing International Center for Mathematical Research, Peking University, Beijing, China
³ SYNAPSE Center, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
⁴ Genomic and Molecular Epidemiology (GAME) Lab., School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
⁵ Institute for Global Health and Development, Peking University, Peking, China

*Corresponding author:
Jie Huang, M.D, M.P.H., Ph.D., Department of School of Public Health and Emergency Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055. Tel.: +86 15210081889; Email: huangj@sustech.edu.cn

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background

Two decades of genome-wide association studies (GWAS) have led to fast-growing application of polygenic risk prediction (PRS). However, due to population structure and evolutionary path difference, the PRS substrate derived mostly on studies of European ancestry does not work equally well for other ancestries. There is an association between prediction accuracy decay and individual genetic distance (GD) to the genetic centers (GC) of various populations.

Objectives

To develop a new PRS method and software that utilizes individual GD so as to improve PRS risk prediction accuracy, especially for non-European populations.

Method

We hypothesize that adding a GD-based weight into PRS methods would enhance its risk prediction performance especially for minority groups. We explore the GD first by principal components (PC) and then by phylogenetic tree structures. Building on top of an emerging software (PRS-CSx) that achieves high prediction accuracy across multiple-ancestries, we present PGS-GRID, where “GRID” stands for “Genetic Reference based on Individual Distance”.

Results

We developed a preliminary version of PRS-GRID and pilot tested its prediction performance for a classic quantitative trait (*e.g.*, height) and a disease trait (*e.g.*, type-2 diabetes (T2DM)). We found slight but noticeable improvement of risk prediction for minority populations. We further explored SHapley Additive exPlanation (SHAP) so that the performance of PRS-GRID could be clearly explained and visualized, which is a key step for PRS to be used in clinical and public health practice.

Conclusions

The PRS-GRID philosophy and method represent an innovative and significant advancement in the field of polygenic risk prediction. Our work provides a foundation for future research and clinical applications aimed at reducing health disparities and improving population health through personalized medicine.

Keywords

Polygenic risk score; multiple ancestry; genetic distance
Introduction

Two decades of genome-wide association studies (GWAS) have led to substantial progress in discovering an increasing number of alleles contributing to the risk of complex traits. This largely conform to the ‘common variant–common disease’ hypothesis.\(^1\) A straight-forward application of GWAS is polygenic risk prediction (PRS). Early PRS analyses focused on variants that fell below the genome-wide significance threshold \((P < 5 \times 10^{-8})\).\(^2\) However, the inclusion of less significant genetic variants has been found to improve PRS prediction.

A landmark study in 2009 demonstrated the theoretical rigor and technical feasibility of including thousands of genomic variants that are not genome-wide significant for risk prediction.\(^3\) Almost a decade later, another study showed that a PRS constructed from millions of SNPs could predict the risk for cardiovascular diseases equivalent to monogenic mutations.\(^4\) Since then, it has become a common practice to use thousands and even millions of genetic variants to derive genetic risk predictions for complex traits. Several studies have shown that PRS constructed in such a manner can be more predictive than well-established traditional clinical risk factors.\(^5\) As the number of genetic variants increases, the inherent issue related to genetic linkage disequilibrium (LD) needs to be properly tackled. Advances in computational methods have created software tools that adjust or shrink the effect size (\(\beta\) value) of linked genetic variants.\(^6\)–\(^9\) Now it is not unusual for large GWAS consortia to release adjusted or shrunk PRS reference panels in the public domain, such as the PGS Catalog.\(^10\)

For both quantitative traits and binary disease traits, a key stake is to enable and improve risk prediction across diverse ancestries to reduce the inequity of PRS in minority populations. Recently, large GWAS consortia have begun to release multiple-ancestry GWAS and PRS references for both quantitative traits (e.g., height)\(^11\) and disease traits (e.g., type-2 diabetes (T2DM)).\(^12\) In 2022, PRS-CSX\(^13\) emerged and has been shown to outperform many other PRS tools that aim to improve genetic risk prediction accuracy across multiple ancestries. The current PRS-CSX software can be run in two ways. The simpler way is utilizing the ‘meta’ option to produce one set of SNP weights that can be applied to all ancestral groups and all individuals, while the preferred way is to learn a linear combination of population-specific PRS for each ancestral group. The former does not need a validation set to learn the linear combination weights, while the latter approach requires assigning target samples into distinct ancestral groups and learning the linear combination weights in the validation set, which are then applied to the testing set.

PRS-CSX assigns individuals into ancestral groups, without fully considering each individual’s genetic characteristics. A 2023 study pointed out the issue that genetic accuracy decays not only across different ancestries but also within populations.\(^14\) It used principal components (PC) as a metric to evaluate the PRS accuracy decaying problem. Some other studies used Uniform Manifold Approximation and Projection (UMAP) to characterize genetic ancestry.\(^15\) However,
genetic distance (GD) was only used as a measurement of the problem (reduced prediction accuracy) and not as a potential solution. We hypothesize that adding a GD-based weight into the regression step of PRS-CSx would further enhance its risk prediction performance especially for minority groups.

In this study, we calculate and incorporate genetic distance at the individual level and explore it as a potential solution to improve PRS-based risk prediction across multiple ancestries. We explore the genetic distance first by PC and then by phylogenetic tree. It has been reported that complex traits are strongly associated with evolutionary development and positive selection. Using objectively derived genetic ancestry instead of self-reported race would improve PRS for common diseases such as coronary artery diseases. Building on top of PRS-CSX, we present PGS-GRID, where “GRID” stands for “Genetic Reference based on Individual Distance”. We test and evaluate the prediction performance of PGS-GRID for a classic quantitative trait (e.g., height) and a disease trait (e.g., type-2 diabetes (T2DM)).

Method

Design Philosophy

PRS-GRID is designed to generate multi-ancestry PRSs by incorporating individual GD from the genetic center (GC) of representative populations, including those with smaller GWASs. The method has four key steps (Fig. 1): (1) **construct** PRS reference for each ancestry, using PRS-CSx; (2) **determine** the GC of reference populations and calculate GD for each individual to those GCs; (3) **train** the association between the trait of interest and PRS by incorporating each individual’s GD; (4) **validate** the trained parameters in the validation dataset, and **evaluate** the model’s prediction accuracy for both quantitative traits and binary disease traits.

Fig. 1: Individual distance in PRS-GRID

* The red circles indicate the “center” of each population. Subjects of four ancestries are colored by blue, black, brown, yellow, respectively. The dotted lines indicate
distance from a target person (red color) to the center of each of the four populations. Panel B is drawn on top of a vector illustrator depicting the “Darwin tree of life”.

Study Participants

We used data from the UK Biobank\(^\text{17}\), an ongoing prospective cohort study designed to investigate the determinants of diseases in middle and older age. Participants were recruited between 2006-2010 and completed a comprehensive assessment of health and lifestyle including a touchscreen questionnaire, interview, measures of physical function and biological samples.\(^\text{18}\) The study population comprised individuals from the UK Biobank who self-reported their race as white, black, Asian, or Chinese. We determined the ancestral groups of the study population by comparing self-reported races with the results of PC analysis on ancestral groups, in accordance with criteria suggested by previous studies.

Assessment of GD

We first extracted each person’s PC values provided by the UK Biobank data (data field: 22009). We then used the median valued of PCS as the GC of four ethnical groups: European (EUR), African (AFR), Southern Asian (SAS), and Eastern Asian (EAS). We then calculated the Euclidean GD of each individual to these four centers as illustrated by Ding et al.\(^\text{14}\) We included all 40 PCs for this analysis. We next used yhaplo (https://github.com/23andMe/yhaplo), which can identify the Y-chromosome haplogroup of each male in a sample with up to millions of individuals. This method first builds an internal representation of the Y-chromosome phylogeny by reading its primary structure from (Newick-formatted) text and importing phylogenetically informative SNPs from the ISOGG database. It then affiliates each SNP with the appropriate node and grows the tree as necessary. It traverses the tree for each individual, identifying the path of derived alleles leading to a haplogroup designation.

Train PRS Model with Individual GD

The raw Euclidean distance \(d_E\) of the GD for each individual is given in **Equation 1**. \(PC_1\) to \(PC_n\) are the PC of each individual, while \(PC_{c1}\) to \(PC_{cn}\) are the presumed genetic centers of each race. The GD is then normalized through **Equation 2**, where \(d_1\) to \(d_4\) are the GD from four main races or ancestral groups (EUR, AFR, SAS, and EAS), \(\beta_{adj,r}\) is the adjustment coefficient and \(r\) belongs to (EUR, AFR, SAS, EAS).

\[
d_E = \sqrt{\sum_{i=1}^{n}(PC_i - PC_{ci})^2} \quad (1) \quad \beta_{adj,r} = \frac{1}{\sum_{i=1}^{4}\frac{1}{d_i}} \quad (2)
\]

We fit the target phenotype and PRS with the GD adjusted coefficient (**Equation 3**):

\[
y = \frac{1}{1 + e^{-(\beta_0 + \sum_{i=1}^{4}\beta_i \beta_{adj} + \sum_{k=1}^{n}\beta_{c,k}x_{c,k})}} \quad (3)
\]

Validate PRS in an independent set

\(^\text{17}\) UK Biobank

\(^\text{18}\) The study population comprised individuals from the UK Biobank who self-reported their race as white, black, Asian, or Chinese.
The regression is shown in Equation 4, where X_i is the ith PRS and β_i is the regression coefficient for the independent variable X_i given by best fitting logistic regression models. The X_c and β_c correspond to the covariate and the regression coefficient of the covariate.

$$y = \beta_0 + \sum_{i=1}^{4} \beta_i \beta_{adj,i} X_i + \sum_{k=1}^{n} \beta_{c,k} X_{c,k} \quad (4)$$

Evaluate Prediction Performance. For providing robust results of the model performance, we used 10-fold cross-validation in our analyses. The R-squared and AUC (Area Under the Curve) were respectively used to evaluate the predictive performance for the continuous numerous values of height and the binary outcome of T2DM. To compare the impact of introducing correction coefficients on the predictive power of each variable in the model, we utilized the random forest approach for analysis and visualization. In the random forest approach, the percentage increase in mean squared error ($\%$IncMSE) and the mean decrease accuracy were used to evaluated the direction and the corresponding influences of each feature to the models on the prediction performance. The age and sex of the participants were included in the regression models as the covariates to adjust for the possible confounding effects.

Results

After excluding individuals lacking phenotype data (T2DM binary outcome and height) and necessary covariates (age and sex), we included a total of 473,399 and 472,123 individuals for the prediction of T2DM and height, respectively, using ancestral-specific PRS scores from PRS-CSx. The ancestral groups and the outcome phenotypes of the study population is detailed in **Table 1**.

Table 1. Baseline characteristics of the study population

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>EUR</th>
<th>AFR</th>
<th>SAS</th>
<th>EAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>56.8 (8.02)</td>
<td>51.9 (8.05)</td>
<td>53.4 (8.47)</td>
<td>52.3 (7.64)</td>
</tr>
<tr>
<td>Female (%)</td>
<td>45.72</td>
<td>42.61</td>
<td>53.3</td>
<td>37.22</td>
</tr>
<tr>
<td>Alcohol status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>14,646</td>
<td>1,147</td>
<td>3,214</td>
<td>339</td>
</tr>
<tr>
<td>Previous</td>
<td>15,951</td>
<td>389</td>
<td>419</td>
<td>53</td>
</tr>
<tr>
<td>Current</td>
<td>425,989</td>
<td>5,494</td>
<td>4,187</td>
<td>1,044</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>245,732</td>
<td>4,973</td>
<td>6,098</td>
<td>1,145</td>
</tr>
<tr>
<td>Previous</td>
<td>162,102</td>
<td>1,190</td>
<td>998</td>
<td>189</td>
</tr>
<tr>
<td>Current</td>
<td>47,532</td>
<td>848</td>
<td>711</td>
<td>102</td>
</tr>
<tr>
<td>Height(cm)</td>
<td>168.67 (9.25)</td>
<td>167.36 (8.65)</td>
<td>164 (9.25)</td>
<td>161.62 (7.83)</td>
</tr>
<tr>
<td>T2DM Case</td>
<td>34,198</td>
<td>1,234</td>
<td>1,917</td>
<td>103</td>
</tr>
</tbody>
</table>

Note: The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Prediction performance

We selected the T2DM and the height of the individuals from UK biobank as the phenotype variable to examine the prediction accuracy of our PRS-GRID approach. The prediction performance and the comparison between original PRS-CSx and ancestral genetic distance adjusted PRS-GRID models were as shown in Figure 2. For T2DM, the AUC of all three underrepresented ancestral groups were slightly higher than original PRS-CSx models by 10-fold cross verification. The AUC of the ancestral group of AFR, SAS, and EAS were corresponding 0.697, 0.819, and 0.733 in the original PRS-CSx model while 0.717, 0.826, and 0.753 in PRS-GRID model, respectively.

Fig 2. The prediction accuracy PRS-CSx vs. PRS-GRID.

Explainable machine learning.

To better investigate and explain the improvement on the prediction performance of PRS-GRID, we used random forest approach, a classical machine learning approach based on decision tree algorithm to explain the potential impact of the PRS scores after adjusting for the GD of multi-ancestry. Figure 3 displays the mean decrease accuracy of four ancestral-specific polygenic risk score (PRS) models for predicting binary T2DM classification among SAS and EAS individuals, using the best-fitting
random forest model. After adjusting for GD within the four ancestral GC, there was a marked improvement in the predictive accuracy of the ancestral-specific PRS models, particularly among EAS individuals. This finding supports the hypothesis that improving prediction performance after GD adjustment is due to an increase in the PRS scores from the same ancestral groups as the population being predicted.

Fig3. Explainable machine learning

![PRS-GRID for predicting T2DM](image)

Discussion

Based on a recent observation that PRS prediction accuracy decays with GD from each individual to the center of genetic ancestry groups, we hypothesized that adding GD into PRS models would increase prediction performance especially for individuals of minority ancestry groups. We derived ancestry specific reference PRS from an existing method (PRS-CSx) but mitigated its drawback of not adequately considering the heterogeneity of individuals within the same ancestral group.

The lofty objective of PRS is precision medicine, where individual genetic profile is the key. In order to fully taking into account each individuals’ characteristics, we measure each person’s genetic position on the global population map, by calculating its genetic distance to the center of reference populations. The genetic distance-based weight adjustment in the PRS-GRID model provides a novel way to enhance the utility and accuracy of PRS across different ancestries. This method can potentially reduce health disparities by providing more accurate genetic risk assessments for diverse populations. Our findings suggest that incorporating genetic distance in PRS
calculations can lead to more equitable healthcare outcomes by ensuring that PRS models are applicable to all ancestral groups, not just those of European descent.

We developed and tested PGS-GRID, a new method to improve cross-ancestry PRS prediction by incorporating individual GD. Our results demonstrated that the PGS-GRID model performed better than traditional PRS models and PRS-CSX models in predicting both height and T2DM across different ancestries. The improved prediction performance of the PGS-GRID model highlights the importance of considering genetic distance in polygenic risk prediction models. Our study confirms that accounting for individual genetic characteristics can mitigate the decay in prediction accuracy when applying PRS models across diverse populations. This approach is particularly beneficial for minority populations, who often have limited representation in GWAS and PRS studies.

In addition to the improved predictive accuracy, the PGS-GRID model offers several practical advantages. By using individual genetic distances rather than relying solely on population-specific adjustments, the PGS-GRID approach allows for a more personalized risk assessment. This is particularly relevant in increasingly diverse societies where individuals may have mixed ancestry, and traditional PRS models may not accurately capture their genetic risk. Moreover, the PGS-GRID model's framework can be adapted to other complex traits and diseases, making it a versatile tool for genetic epidemiology. Future research should focus on validating the PGS-GRID model in larger and more diverse cohorts to ensure its robustness and generalizability. Additionally, integrating other omics data, such as epigenomics and transcriptomics, could further enhance the predictive power of the PGS-GRID model.

For PRS to be eventually usable in clinical practices, the explainability is key. By comparing the SHapley Additive exPlanation (SHAP) values of the four ancestral-specific PRS scores before and after adjusted for the genetic distance adjustment coefficient, it can be partly explained whether and how the introduction of genetic distance-based adjustment coefficient influences the prediction ability of the models. The implementation of PGS-GRID in clinical practice could revolutionize the way genetic risk is assessed and managed. By providing more accurate risk predictions, healthcare providers can tailor prevention and intervention strategies to individuals' specific genetic profiles, leading to better health outcomes. However, the transition from research to clinical application will require careful consideration of ethical, legal, and social implications, including issues related to genetic privacy and data sharing.

The present study still has some limitations that should be acknowledged. First, although we made an effort to improve the prediction performance of PRS scores across populations by adjusting for multi-ancestral GD, the optimal measurement of GD in populations with uncertain population structure requires further exploration. Our next-step studies will consider combining results from phylogenetic tree analysis and molecular anthropology to develop more effective assessment methods for multi-ancestral GD. Second, the sample size of the minority group, specifically individuals of EAS, in the UK Biobank used for this study was small. The limited sample size may compromise accurate assessments of the predictive performance of
the models among these underrepresented ancestral groups. Additionally, it is important to consider that many human diseases are influenced by multiple complex factors, including genes, environmental exposure, and gene-gene or gene-environment interactions. Our study did not include these multiple factors due to the lack of data on gene-environment interactions in the UK Biobank dataset. However, we plan to incorporate this information in future studies once sufficient data becomes available.

Conclusions
The PRS-GRID model represents an innovative and significant advancement in the field of polygenic risk prediction. By incorporating individual genetic distance, it addresses key limitations of traditional PRS models and offers a more accurate and equitable approach to genetic risk assessment. Our study provides a foundation for future research and clinical applications aimed at reducing health disparities and improving population health through personalized medicine.

Author contributions
All authors meet authorship criteria by contributing to components of research conception, design, interpretation of results, and manuscript revisions. JH. conceptualized and designed the study, conducted formal data analyses, and drafted the initial manuscript. L.T., C.Y. conducted formal data analyses, interpreted the results, and revised the manuscript. X.K., V.N. provided input into the study design and revised the manuscript. All authors reviewed the final manuscript as submitted.

Declaration of competing interests
There are no competing interests to disclose.

Acknowledgments
This research was conducted using the UK Biobank resources under application 66137. We thank the participants for sharing their health-related information.

Ethical statement. All participants provided written informed consent at their baseline visit. Ethical approval of the UK Biobank study was obtained from the National Information Governance Board for Health and Social Care and the National Health Service North West Multi-Centre Research Ethics Committee (Ref 11/NW/0382).

References

