Food insecurity is associated with poor hypertension management in the Eastern Caribbean

Carol R. Oladele¹, Neha Khandpur², Deron Galusha¹, Sanya Nair¹, Saria Hassan¹, Josefa Martinez-Brockman¹, Marcella Nunez-Smith¹, Rafael Perez-Escamilla⁴

¹Equity Research and Innovation Center, Yale School of Medicine, New Haven, CT, USA
²Wageningen University and Research, Wageningen, The Netherlands
³Emory University School of Medicine, Emory Rollins School of Public Health, Atlanta, GA, USA
⁴Department of Social and Behavioral Sciences, Yale School of Public Health, New Haven, CT, USA

Corresponding author:
E-mail: carol.oladele@yale.edu (CO)

¹These authors contributed equally to this work.
²These authors also contributed equally to this work.
ABSTRACT

Background

Limited evidence exists on the association between food insecurity (FI) and blood pressure control in the Caribbean despite the high burden of both. The objective of this study is to examine the relationship between FI and hypertension prevalence, awareness, and control in the Eastern Caribbean.

Methods and Findings

We conducted a cross-sectional analysis of baseline data (2013-2018) from the Eastern Caribbean Health Outcomes Research Network Cohort Study (n=2961). Food insecurity was measured using the Latin American and Caribbean Food Security Scale (ELCSA) and classified as 0=no FI, 1-6 mild/moderate FI, and 7-9 severe FI. Hypertension was defined by the Seventh Report of the Joint National Committee on Prevention. Logistic regression modeling was conducted to examine the relationship between FI and hypertension prevalence, awareness, and control, adjusting for age, sex, educational attainment, site, and usual source of care.

Prevalence of FI was 28 percent among participants and was higher in Puerto Rico and Trinidad and Tobago compared to other sites. Seventeen percent of the participants experienced low, 6 percent moderate, and 4 percent experienced severe FI. Aggregate model results showed no association between FI and hypertension outcomes. Sex-stratified results showed moderate (OR=2.65, CI=1.25-5.65) and severe FI (OR=3.69, CI=1.20-11.31) were positively associated with lack of control among women.

Limitations of this study include the cross-sectional design, small sample size, and the average age of our cohort. Cross-sectional design precluded the ability to make inferences about temporality between FI and HTN prevalence and awareness. Small sample size precluded the
ability to detect statistically significant differences despite strong odds ratios for model results like lack of control.

Conclusions

Findings align with prior evidence of greater FI prevalence among women and negative health impact. Nutrition policies are needed to reduce the overall FI burden in the Caribbean and increase access to affordable, nutritious foods.
INTRODUCTION

Food insecurity (FI), defined by the WHO as an economic or social condition of limited or uncertain access to adequate food, is an increasing problem worldwide. Estimates from the Food and Agriculture Organization of the United Nations show that 2.3 billion people (29%) experienced moderate or severe food insecurity in 2021. Evidence also shows a widening gender disparity. FI has increased during the last ten years, with much of the increase stemming from the past three years during the COVID-19 pandemic. An estimated 41 percent of households experienced food insecurity in 2020, an increase from 32 percent pre-pandemic. There has also been a 38 percent increase in the number of people who reported going without food for an entire day between 2021 and 2022. Although it is well known that FI is associated with adverse health outcomes, including hypertension, a leading cause of morbidity in the region, there is limited evidence on the health impact of FI in hypertension management in the Caribbean region despite it being strongly affected by both FI and hypertension.

Several factors contribute to FI in the Caribbean, including a strong reliance on imported food, poverty, and climate change impacts. Countries in this region import 15 to 95 percent of their food. The high reliance on imported food poses FI challenges as these foods tend to be expensive, of limited nutritional value, and oftentimes ultra-processed. Our prior work in the Eastern Caribbean showed that affordability was a main determinant of fruit and vegetable consumption, which primarily affected individuals who experienced FI. Increasing poverty due to weak economic markets and joblessness has also been correlated with higher rates of FI. Extreme weather events due to climate change has affected food production and availability in the region, which in turn, has led to increased reliance on food imports. These interrelated
factors have wide-ranging consequences, including poor dietary quality, a primary risk factor for diet-sensitive diseases like hypertension, and the inability of people to manage them properly.8 Given the prevalence of FI, evidence of negative health consequences, and paucity of evidence in the region, we sought to examine the relationship between FI and the hypertension cascade. Specifically, we aimed to understand the association between FI and prevalence, awareness, and control of hypertension.
METHODS

Data source and study sample

We analyzed baseline data from the Eastern Caribbean Health Outcomes Research Network Cohort Study (ECS) for this study. The ECS is an ongoing longitudinal cohort study conducted across four Caribbean sites that aims to identify novel risk and protective factors for non-communicable diseases in the Eastern Caribbean region. The sites included are the U.S. Virgin Islands, Puerto Rico, Trinidad and Tobago, and Barbados. The cohort was empaneled between 2013 and 2018 across the four sites using varied methods to obtain randomized samples in each site (n=2,961)\(^9\). Eligible participants were English or Spanish-speaking community-dwelling adults 40 years of age and older who had been residents of the island for at least 10 years and intended to live on the island for the next 5 years. ECS participants were included in the current study if they had complete blood pressure and food insecurity data at baseline.

Measures

Our main exposure was food insecurity. Food insecurity was measured using the 9-item version of the Latin American and Caribbean Food Security Scale (ELCSA) previously validated in the Caribbean.\(^10\) The ELCSA captured household food insecurity within the past 90 days. Response options were binary (yes/no), and one point was given for each question with a “yes” response. Responses were summed for each participant and ranged from 0 to 9. Those who scored 0 were classified as having no food insecurity, 1-6 as having mild/moderate food insecurity, and 7-9 as having severe food insecurity. The ninth ELCSA item addresses the social acceptability dimension of FI and was included as part of ELCSA’s summative score based on psychometric testing included. Rasch’s modeling of the ELCSA scale in the ECS sample indicated that the full 9-item scale was the best fit\(^11\). The Cronbach’s Alpha for the scale was 0.90.
Our main outcome was hypertension. Hypertension was defined using guidelines established by the Seventh Report of the Joint National Committee and Caribbean Health Research Council, which were clinical guidelines used to identify hypertension during the ECS data collection period. Hypertension was assessed using self-report and clinical assessment data. Details about the clinical assessment processes have been previously described. Participants were classified as having hypertension if they had systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg during the clinical exam or answered “yes” to the following question, “Has a doctor or other health provider EVER told you that you have high blood pressure?” and reported taking blood pressure lowering medication. Participants who responded “no” to this question and had blood pressure <140 mmHg and diastolic blood pressure < 90 mmHg were classified as not having hypertension.

Hypertension awareness was assessed as answering “yes” to the question, “Has a doctor or other health provider EVER told you that you have high blood pressure?” and reported taking blood pressure lowering medication. Responses of “yes” were categorized as “Aware.” Participants who responded “no” and had elevated systolic or diastolic blood pressure during the clinical exam were categorized as “unaware.” Hypertension control was determined among those who were aware and reported taking medication. Control was assessed using blood pressure values from the clinical exam and defined as having systolic blood pressure <140 mmHg and diastolic blood pressure <90 mmHg.

Covariates examined included demographic characteristics, healthcare utilization, and site. Demographic characteristics included age, sex, and educational attainment, which were measured via self-report during the ECS baseline survey. We categorized age into four groups (40-49, 50-59, 60-69, and 70+). Sex was measured on the baseline survey using the following
question, “What sex were you at birth?” Educational attainment was measured using the question, “What is the highest year of school that you completed?” Responses were categorized into less than high school (or secondary school), high school graduate, some college, and college and higher. Usual source of care was used to characterize healthcare utilization and was measured using the question, “Is there one place you usually go when you need routine or non-emergent/non-emergency care (for example, regular check-up)?” Responses were categorized into three categories: none, one, or more.

Statistical Analysis

Univariate analyses were conducted to examine the frequency distribution of variables. We conducted bivariate analyses using chi-square tests to examine the distribution of FI across demographic and healthcare characteristics. Unadjusted and adjusted logistic regression analyses were performed to determine associations between FI and hypertension prevalence, awareness, and control. Adjusted models included age, sex, educational attainment, site, and usual source of care. These covariates were selected based on evidence from prior literature. Sex-stratified modeling was performed to determine potential differences in the impact of FI for men and women. Analyses were conducted using SAS statistical software, version 9.4 (Research Triangle Institute, Research Triangle Park).

Ethics Statement

The ECS study was approved by the Yale University Human Subjects Investigation Committee (protocol 2000026077), the Institutional Review Boards of the University of Puerto Rico Medical Sciences Campus (protocol 2290033151R001), the University of the Virgin Islands (protocol 460911-18), and the University of the West Indies Cave Hill Campus (IRB Number: 171102-A), as well as by the Ministry of Health of Trinidad and Tobago. Formal written consent
was obtained from study participants. The current analysis was approved by the Data Access and Scientific Review Committee of the ECS. This study was reported according to STROBE guidelines.
RESULTS

Our final analytic dataset included 2,323 observations after excluding 638 participants who had missing FI and blood pressure data (Fig 1). The mean age of participants was 57, 65 percent were women, 35 percent had less than a high school education, and most (85%) had one or more usual places they received care. The overall prevalence of FI was 28 percent among participants, and it was higher in Puerto Rico and Trinidad and Tobago compared to other sites. Among those with FI, 17 percent experienced low, 6 percent moderate, and 4 percent experienced severe FI. Bivariate analyses showed statistically significant differences in FI by age, sex, educational attainment, and site (Table 1). Those living in households with moderate or severe FI were younger compared to those who were living in households that were food secure or had low FI. Women and those with less than a high school education were more likely to experience low, moderate, or severe FI compared to men and those with higher educational attainment (p<0.05).

Table 2 presents prevalence estimates and logistic regression model results for the relationship between FI and hypertension prevalence, awareness, and control. Hypertension prevalence was 54, 51, and 52 percent among persons with low, moderate, and severe FI, respectively. Unadjusted and adjusted model results for FI and hypertension prevalence were not statistically significant.

Table 1. ECS participant characteristics by food security status

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total</th>
<th>Secure</th>
<th>Low</th>
<th>Moderate</th>
<th>Severe</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (SD)</td>
<td>57.3 (10.5)</td>
<td>58.8 (10.6)</td>
<td>54.1 (9.5)</td>
<td>51.6 (8.0)</td>
<td>52.9 (7.4)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0279</td>
</tr>
<tr>
<td>Men</td>
<td>817 (35.2)</td>
<td>614 (36.5)</td>
<td>133 (33.8)</td>
<td>35 (24.3)</td>
<td>35 (34.3)</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>1506 (64.8)</td>
<td>1069 (63.5)</td>
<td>261 (66.2)</td>
<td>109 (75.7)</td>
<td>67 (65.7)</td>
<td></td>
</tr>
<tr>
<td>Educational attainment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><.0001</td>
</tr>
<tr>
<td>< HS</td>
<td>789 (34.8)</td>
<td>541 (32.9)</td>
<td>151 (39.7)</td>
<td>55 (39)</td>
<td>42 (42.0)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Association between level of food insecurity and hypertension outcomes

<table>
<thead>
<tr>
<th>Level of Food Insecurity</th>
<th>Secure (N=1683)</th>
<th>Low (N=394)</th>
<th>Moderate (N=144)</th>
<th>Severe (N=102)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence of Hypertension</td>
<td>991/1683 (58.9%)</td>
<td>211/394 (53.6%)</td>
<td>73/144 (50.7%)</td>
<td>53/102 (52%)</td>
</tr>
<tr>
<td>Unadjusted OR (95% CI)</td>
<td>1.00</td>
<td>0.81 (0.65-1)</td>
<td>0.72 (0.51-1.01)</td>
<td>0.76 (0.51-1.13)</td>
</tr>
<tr>
<td>Adjusted* OR (95% CI)</td>
<td>1.00</td>
<td>1.08 (0.85-1.38)</td>
<td>1.1 (0.76-1.59)</td>
<td>1.01 (0.66-1.54)</td>
</tr>
<tr>
<td>Lack of Awareness of Hypertension</td>
<td>346/991 (34.9%)</td>
<td>82/211 (38.9%)</td>
<td>23/73 (31.5%)</td>
<td>19/53 (35.8%)</td>
</tr>
<tr>
<td>Unadjusted OR (95% CI)</td>
<td>1.00</td>
<td>1.19 (0.87-1.61)</td>
<td>0.86 (0.52-1.43)</td>
<td>1.04 (0.59-1.85)</td>
</tr>
<tr>
<td>Adjusted* OR (95% CI)</td>
<td>1.00</td>
<td>0.84 (0.59-1.19)</td>
<td>0.68 (0.38-1.21)</td>
<td>0.68 (0.36-1.3)</td>
</tr>
<tr>
<td>Lack of Control of Hypertension</td>
<td>365/645 (56.6%)</td>
<td>73/129 (56.6%)</td>
<td>34/50 (68%)</td>
<td>25/34 (73.5%)</td>
</tr>
<tr>
<td>Unadjusted OR (95% CI)</td>
<td>1.00</td>
<td>1 (0.68-1.46)</td>
<td>1.63 (0.88-3.01)</td>
<td>2.13 (0.98-4.63)</td>
</tr>
<tr>
<td>Adjusted* OR (95% CI)</td>
<td>1.00</td>
<td>0.98 (0.65-1.48)</td>
<td>2.18 (1.13-4.21)</td>
<td>2.31 (0.99-5.37)</td>
</tr>
</tbody>
</table>

* Adjusted for age, sex, education level, site, and usual source of care

Results for lack of awareness showed that 35 percent of those who lived in food-secure households and 39 percent of low food-insecure households were unaware of their hypertension, compared to 32 percent and 36 percent among those with moderate and severe FI. Unadjusted
and adjusted model results showed that lack of hypertension awareness was not significantly associated with FI.

Results for lack of control showed that 57 percent of households with low FI, 68 percent of those with moderate FI, and 73 percent of those with severe FI did not have their hypertension controlled, compared to 57 percent among persons who were food secure. Adjusted model results for control showed moderate FI was associated with higher odds (OR=2.18; CI=1.13-4.21) of poorly controlled hypertension compared to those who were food secure.

Table 3 presents sex-stratified model results. Results showed that overall, women who experienced moderate or severe FI were more likely to have hypertension and poor control compared to men. Fifty-four and 58 percent of women with moderate and severe FI had hypertension, compared to 40 percent among men with moderate and severe FI. Similarly, results for lack of control showed that women with moderate (72% vs. 43%) and severe FI (81% vs. 50%) were more likely to lack control of their hypertension compared to men. Unadjusted and adjusted model results showed statistically significant positive associations between moderate and severe FI and lack of control for women. Results showed that women with moderate and severe FI had 2.6- and 3.7 times greater odds of uncontrolled hypertension. Results for men were not statistically significant.

Table 3. Gender-stratified models for food insecurity and hypertension control

<table>
<thead>
<tr>
<th></th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Secure (N=1069)</td>
</tr>
<tr>
<td>Prevalence of Hypertension</td>
<td>625/1069 (58.5%)</td>
</tr>
<tr>
<td>Unadjusted OR (95% CI)</td>
<td>1.00</td>
</tr>
<tr>
<td>Adjusted* OR (95% CI)</td>
<td>1.00</td>
</tr>
<tr>
<td>Lack of Awareness of Hypertension</td>
<td>177/625 (28.3%)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Unadjusted OR (95% CI)</td>
<td>1.00</td>
</tr>
<tr>
<td>Adjusted* OR (95% CI)</td>
<td>1.00</td>
</tr>
<tr>
<td>Lack of Control of Hypertension</td>
<td>249/448 (55.6%)</td>
</tr>
<tr>
<td>Unadjusted OR (95% CI)</td>
<td>1.00</td>
</tr>
<tr>
<td>Adjusted* OR (95% CI)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Men</th>
<th>Secure (N=614)</th>
<th>Mild (N=133)</th>
<th>Moderate (N=35)</th>
<th>Severe (N=35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence of Hypertension</td>
<td>366/614 (59.6%)</td>
<td>83/133 (62.4%)</td>
<td>14/35 (40%)</td>
<td>14/35 (40%)</td>
</tr>
<tr>
<td>Unadjusted OR (95% CI)</td>
<td>1.00</td>
<td>1.13 (0.77-1.66)</td>
<td>0.45 (0.23-0.91)</td>
<td>0.45 (0.23-0.91)</td>
</tr>
<tr>
<td>Adjusted* OR (95% CI)</td>
<td>1.00</td>
<td>1.38 (0.91-2.09)</td>
<td>0.58 (0.28-1.18)</td>
<td>0.58 (0.28-1.18)</td>
</tr>
<tr>
<td>Lack of Awareness of Hypertension</td>
<td>169/366 (46.2%)</td>
<td>40/83 (48.2%)</td>
<td>7/14 (50%)</td>
<td>6/14 (42.9%)</td>
</tr>
<tr>
<td>Unadjusted OR (95% CI)</td>
<td>1.00</td>
<td>1.08 (0.67-1.75)</td>
<td>1.17 (0.4-3.39)</td>
<td>0.87 (0.3-2.57)</td>
</tr>
<tr>
<td>Adjusted* OR (95% CI)</td>
<td>1.00</td>
<td>0.68 (0.39-1.19)</td>
<td>0.35 (0.09-1.37)</td>
<td>0.39 (0.11-1.35)</td>
</tr>
<tr>
<td>Lack of control</td>
<td>116/197 (58.9%)</td>
<td>26/43 (60.5%)</td>
<td>3/7 (42.9%)</td>
<td>4/8 (50%)</td>
</tr>
<tr>
<td>Unadjusted OR (95% CI)</td>
<td>1.00</td>
<td>1.07 (0.54-2.1)</td>
<td>0.52 (0.11-2.4)</td>
<td>0.7 (0.17-2.87)</td>
</tr>
<tr>
<td>Adjusted* OR (95% CI)</td>
<td>1.00</td>
<td>1.12 (0.54-2.32)</td>
<td>0.69 (0.14-3.36)</td>
<td>0.86 (0.19-3.86)</td>
</tr>
</tbody>
</table>

* Adjusted for age, sex, education level, site, and usual source of care
DISCUSSION

This study aimed to determine the relationship between FI and hypertension prevalence, awareness, and control in the Eastern Caribbean. Our findings showed that FI prevalence was 28 percent and 10 percent of households experienced moderate or severe FI. Findings also showed sex differences in experiences with FI and the relationship between FI and hypertension control. Women were more likely to experience food insecurity, and a higher proportion of women with FI had hypertension compared to men. Findings also showed a statistically significant and positive association between FI and lack of hypertension control among women. These findings further substantiate FI as a significant public health issue in the Caribbean and demonstrate its role in poor blood pressure control. In addition, our findings highlight the differential impact of FI on health outcomes among women. This study contributes to a growing evidence base on the health impacts of FI in the Caribbean, where evidence is limited yet needed to guide the creation of region-specific solutions.

Our finding that showed a relationship between FI and poor blood pressure control is novel within the FI and chronic disease literature. While prior studies have examined associations between FI and chronic disease management, the preponderance of evidence is focused on diabetes prevalence and management.18,19 Fewer studies have examined the association between FI and hypertension or examined the role of FI in poor blood pressure management, though it has been linked to poor dietary quality.20,21 Findings from studies conducted in the US and other high-income countries show mixed findings for the relationship between FI and hypertension prevalence, which may be attributed to variation in how blood pressure is measured (self-report vs. clinical measurement) in studies. Most fail to demonstrate a statistically significant association. Evidence on the relationship between FI and blood pressure management is scant.
Studies that have examined this association suggest a positive association.20-23 Potential mechanistic pathways between FI and poor blood pressure include poor dietary quality, inflammation, and gut microbiome disruptions.24-26 Findings on sex differences in FI prevalence and the differential impact of FI on blood pressure control among women are consistent with prior studies. The consistency of these findings spans context, culture, race, and ethnicity. Several explanations have been offered. Gendered roles and inequities in earning power and household responsibilities are some explanations for the observed differences in FI between men and women.27 In most cases, women are responsible for food purchasing and preparation. Some evidence suggests that women are more likely to sacrifice in households experiencing FI by employing strategies like reducing food consumption, reducing the diversity of foods they consume, and consuming cheaper energy-dense foods to provide for others in the household.27 Evidence also suggests women are less likely to absorb economic and household shocks related to FI due to inequities in access to assets and resources to cope with FI.28 Mounting evidence that shows sex differences in the relationship between FI and obesity29-31 a risk factor for hypertension, may offer another explanation. Evidence shows a positive relationship among women32,33 but not men, which may complicate hypertension management among women with FI.34 The current findings are generalizable to populations represented in the ECHORN sites and have several implications. The high burden of FI across the region and the demonstrated association with poor blood pressure control suggests an urgent need for policy and healthcare system interventions. A recent review of nutrition interventions and policies in the small island developing states, including those in the Caribbean, highlighted the paucity of nutrition policies in the region and the overall low proportion of states where policies were fully implemented.35
Limitations

This study has few limitations. The cross-sectional design of our study precludes the ability to make inferences about temporality in the relationship between FI and HTN. This may have contributed to our inability to observe a relationship between FI and HTN prevalence and awareness. The small sample size available to examine associations between moderate and severe FI and hypertension outcomes may have precluded the ability to detect statistically significant differences despite observing strong odds ratios for some model results like lack of control. Given the age of our cohort and findings that show higher FI among younger persons, our study may underestimate the overall true burden of FI in the Caribbean region. Despite these limitations, findings remain salient to efforts to reduce FI and improve blood pressure management in the region. Future studies will seek to identify food environment and individual factors that contribute to poor blood pressure management among individuals experiencing FI.

Public Health Implications

Findings have implications for healthcare system solutions to identify and address FI and other complex social factors that contribute to poor blood pressure control. In addition, an examination of clinical factors that contribute to a lack of blood pressure control is warranted.
ACKNOWLEDGMENTS

Disclosure of Which Tasks Each Author Completed

CO, NK, RPE, SH, and JM conceptualized the study. MNS contributed to data acquisition. CO, RPE, and DG analyzed data. CO, NK, SH, SN, and JM interpreted the results. CO contributed to drafting and writing. NK, MNS, SH, SN, and JM contributed to the critical review. MNS and RPE approved the final draft of the paper. All authors read and approved the final manuscript.

Conflicts of Interest

The study sponsor has no role in the study design, collection, analysis, and interpretation of the data. To the best of our knowledge, there are no relevant conflicts of interest, financial or otherwise, relevant to this study and the publication thereof to declare.

Data Sharing

The corresponding author had full access to all the data in the study and takes responsibility for its integrity and the data analysis. Data described in the manuscript will be made available upon reasonable request.
REFERENCES

1. UN Report: Global hunger numbers rose to as many as 828 million in 2021.

2. World Food Programme. Sharp rise in food insecurity in the Caribbean, survey finds.

3. Programme WF. Caribbean Food Security and Livelihoods Impact Survey. 2023;

 doi:10.1161/circ.143.suppl_1.P094

 doi:10.1016/j.pmedr.2022.101694

21;38(2):388-395. Inseguridad alimentaria y su asociación con la obesidad y los riesgos cardio metabólicos en mujeres mexicanas. doi:10.20960/nh.03389

21
Fig 1. Construction of Study Cohort

Figure 1: Construction of Study Cohort

2,961 Participants

All 9 food security questions answered

Yes (2,344) → 617 excluded

Missing information to determine hypertension status

Yes → 21 excluded

No (2,323) → Study Cohort (2323)